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Reciprocity in diffusive spin-current circuits
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Similarly to their purely electric counterparts, spintronic circuits may be presented as networks of lumped
elements. Due to the interplay between spin and charge currents, each element is described by a matrix conduc-
tance. We establish reciprocity relations between the entries of the conductance matrix of a multiterminal linear
device, comprising normal metallic and strong-ferromagnetic elements with vanishing spin-orbit interactions
and spin-inactive interfaces. In particular, reciprocity equates the spin transmissions through a two-terminal
element in opposite directions. When applied to “geometric spin ratchets,” reciprocity shows that certain effects,
announced for such devices, are, in fact, impossible. We describe the relation between our work and the spintronic
circuit theory formalism and contrast our results with the requirements following from the Onsager symmetry of
kinetic coefficients. Consequences of finite spin-orbit interactions are also discussed.
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I. INTRODUCTION

Spin currents have been actively discussed in the context of
spintronics, a field where memory and logic devices employ
electron spin on par with its charge. A number of theoretical
concepts have been developed to describe operation of such
devices. As the field matures, one needs to build and work
with ever larger networks of connected spintronic elements—
akin to how electric circuits are composed of elementary
resistors, capacitors, etc. To this end, a spin circuit theory
was proposed in the pioneering paper Ref. [1]. The principles
of the latter approach were then used to formulate circuit
descriptions that may be more convenient for applications
[2,3].

In dc electric circuits a textbook resistor is characterized
by a single parameter, the resistance R that encapsulates
the element’s material properties, shape, size, and contact
positions. In spintronics, where spin and charge currents are
interconnected, even the simplest element is characterized not
by a single number but by a conductance matrix [2,3]. In
this paper we show—within the assumptions detailed below—
that the entries of the spintronic conductance matrix obey
certain general relations that are independent of shape, size,
and material constants of the actual physical elements and
are similar to classic reciprocity relations for electric circuits
[4–6]. Generally, these relations are different from the On-
sager reciprocity relations [7] for spintronic devices.

The ultimate goal of a circuit theory is to describe spin-
tronic circuits using generalized Kirchhoff rules. Realizing
this program, one has to keep in mind, however, that certain
differences between spin and electric currents invalidate much
of the intuition accumulated in electric circuits. First, unlike
electric current, spin current is not conserved, and in a two-
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terminal element the incoming and outgoing spin currents are
generally different: an element cannot be characterized by a
single value of spin current. Second, spin currents behave
differently from electric currents when potentials applied to
the two terminals of an element are interchanged. For electric
current, Ohm’s law I = G(V1 − V2), expressed through the
conductivity G = 1/R, states that by interchanging V1 and V2,
one flips the sign of the current but preserves its magnitude. In
this sense, the resistor is a directionless element. As detailed
below, this does not apply to two-terminal spin elements,
where interchanging the terminal potentials generally changes
the magnitudes of both incoming and outgoing spin currents.
However, the relations between the entries of the conductance
matrix, obtained in this paper, show that a two-terminal spin
element behaves in a familiar way with respect to interchange
of potentials in a special case where a driving spin potential
is applied to one terminal, and the resulting spin current is
measured at the other, grounded terminal. This means that
the transmission of spin current through a spin-dissipating
element is directionless.

II. RECIPROCITY IN THE DIFFUSION REGIME

We consider metallic devices in the diffusion regime, with
the mean-free paths of charge carriers being much shorter than
any other length scale in the problem. In this approximation,
the electron state is completely described by the distributions
of electric potential μe(r) and spin potential μs(r) [8–11].
Instead of electric current density ji, we will work with
particle current density je

i = ji/e. Here the index i = {x, y, z}
denotes direction in real space. The spin-current density jsα

i
has two indices, with α = {x, y, z} denoting direction in spin
space. Spin current is also defined in terms of the number of
particles: passage of one spin-up electron per second through
a mathematical plane contributes one, not 1/2, to js flowing
through it. In the diffusion regime, currents are driven by the
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FIG. 1. Left: A two-terminal element, an island with two con-
tacts, where spin potentials μs

1,2 and electric potentials μe
1,2 are ap-

plied. Conserved electric current (Ie
1 = −I2

2 ) and nonconserved spin
current (Is

1 �= −Is
2) are shown schematically. White denotes a normal

metal, gray denotes a ferromagnet. Right: The same connected to
ferromagnetic leads (gray) in a spin circuit.

gradients of electric potential μe(r) and spin potential μsα (r)
[8–11].

A sample device is shown in Fig. 1. The element has
arbitrary shape and may contain magnetic and nonmagnetic
metal parts. Two contacts connect it to the outside world. They
are assumed to be small enough for the electric and spin po-
tentials to be considered constant across each of them. In order
to apply spin potentials to the element, the external circuit
must involve magnetic elements, producing the required spin
imbalance.

A. A two-terminal normal-metal element

We start with a conceptually simpler case of a normal-
metal element. The currents are related to the potentials
as per

je
i = − σ

e2
∇iμ

e , (1)

jsα
i = − σ

2e2
∇iμ

sα, (2)

where σ is the (possibly nonuniform) electric conductivity
of the metal. We will study steady-state solutions, where the
continuity equation ∂tρ + ∇ · j = 0 yields

∇i je
i = 0 (3)

for the electric current and

∇i jsα
i = ν

τs
μsα (4)

for the spin current, with ν being the density of states of the
normal metal and τs the spin relaxation time.

Equations (1) and (3) for electric potential, and (2) and (4)
for spin potential are decoupled. Once the system (2), (4) is
solved, the spin-current density jsα

i can be found everywhere,
and the total spin current flowing through each contact is
given by

Isα
t =

∫
St

jsα
i dAi,

where the integration goes over the contact surface St , and
t = 1, 2 labels the two contacts. It is, of course, assumed
that the spin current does not leak in or out anywhere else at

the sample boundary. By definition, the current is considered
positive if it flows out of the element, i.e., surface element
dA points along the outward normal. Due to the linearity of
Eq. (2), the total spin currents must be linearly related to the
spin potentials of the terminals

Isα
t = Gs

tt ′μ
sα
t ′ (5)

via the matrix spin conductance Gs
tt ′ , which is determined by

the solution of system (2), (4). Since both equations in the
system are diagonal in the spin index α, the conductance is
diagonal in it as well. We will thus suppress the spin index in
the equations for normal-metal elements.

Note that a purely electric two-terminal device can be
described by a matrix conductance similar to Eq. (5). How-
ever, Ohm’s law I2 = −I1 = G(V1 − V2) constrains the elec-
tric conductance matrix to a form

Ĝe =
∣∣∣∣−G G

G −G

∣∣∣∣,
with a single independent entry. The spin conductance matrix

Ĝs =
∣∣∣∣Gs

11 Gs
12

Gs
21 Gs

22

∣∣∣∣
has four entries, and one may ask whether there are any
relations between them that hold regardless of the shape and
material of the spintronic element.

We now prove that the answer to the question above is
affirmative and the off-diagonal elements of Ĝs are always
equal. The proof is based on the so-called reciprocity property
[5] of the solutions of Eq. (4), summarized in Appendix A.
Imagine solving this equation for mixed boundary condi-
tions, specified by constant spin potentials μs(r) = μs

t at the
contacts and js

i ni = 0 (no current penetrating the boundary)
outside the contact areas, where ni is the local normal to
the surface of the element. Consider two solutions, each for
a separate pair of potentials μs

t applied at the contacts t =
1, 2. These solutions will be denoted μs(r, c), with a “case
label” c = 1, 2. Knowing μs(r, c), one can find the currents
js
i (r, c) = −(σ/2e2)∇i μ

s(r, c). Now, let us use the functions
μs(r, c) and js

i (r, c) to calculate the integral:

Q =
∫ [

μs(r, 1)∇i js
i (r, 2) − μs(r, 2)∇i js

i (r, 1)
]
dV .

On the one hand, Eq. (4) tells us that Q = 0. On the other
hand, the identity (A2) of Appendix A transforms Q into the
surface integral

Q =
∮

[μs(r, 1)( − σ∇iμ
s(r, 2))

−μs(r, 2)( − σ∇iμ
s(r, 1))]dAi.

Since spin potentials are constant across each contact, the
contacts do not overlap, and js

i crosses the surface only at the
contacts, we obtain

Q = μs
t (1)Is

t (2) − μs
t (2)Is

t (1) = 0

with summation over repeating indices t . Expressing currents
through potentials via (5), we find

μs
t (1)Gs

tt ′μ
s
t ′ (2) − μs

t (2)Gs
tt ′μ

s
t ′ (1) = 0
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FIG. 2. Asymmetric normal element.

or

μs
t (1)μs

t ′ (2)
(
Gs

tt ′ − Gs
t ′t

) = 0.

As the potentials μs
t (1) and μs

t (2) can be chosen arbitrarily,
the above means Gs

tt ′ = Gs
t ′t . Thus, a 2 × 2 matrix Gs

tt ′ obeys
the constraint

Gs
12 = Gs

21. (6)

The physical meaning of Eq. (6) manifests itself in ex-
periments with a single driving terminal, i.e., μs

t (c) = μs0δtc.
In the first case (c = 1), spin potential μs0 > 0 is applied
to the first (driving) terminal, while the second terminal is
kept at zero spin potential (ground terminal). In the second
case (c = 2), the driving terminal and the ground terminal
are interchanged. It is physically clear (and can be mathe-
matically proven) that, in the first case, a current (−Is

1 ) > 0
will enter the element at the driving terminal, and a current
Is
2 > 0 will leave it at the ground terminal. As already dis-

cussed, the transmitted current will be smaller due to spin
dissipation: (−Is

1 ) > Is
2, i.e., G12 � G1 , G2. Equation (5) now

reads Is
2 = Gs

21μ
s0, i.e., the matrix conductance element Gs

21
parameterizes the transmission of spin current through the
device from the driving terminal to the ground terminal. In
the second case, spin current is driven by the same spin
potential, applied to terminal two. The current, transmitted
from the driving terminal to the ground terminal, is now given
by Is

1 = Gs
12μ

s0. The reciprocity property Gs
12 = Gs

21 means
that, for equal potentials applied to the driving terminal, the
spin current transmitted to the ground terminal is independent
of which of the two terminals is driven. In other words, spin
transmission from the driving terminal to the ground terminal
is directionless.

We now show that the diagonal elements of Ĝs may
differ from each other. Consider a geometrically asymmetric
element such as the one in Fig. 2. Apply potentials μs

t (c) =
μs0δtc as discussed above and measure the current flowing
through the driving terminal. On the one hand, it equals
Is
1 (1) = μs0Gs

11 in the first case and Is
2 (2) = μs0Gs

22 in the
second. On the other hand, it is physically clear that for such
an element these currents are different, since spins injected
into the t = 1 terminal can diffuse in only one direction,
whereas spins injected into the t = 2 terminal can also diffuse
into the vertical bar (cf. Ref. [12], Sec. III C), thus increasing
the total spin current entering the element. Due to our defini-
tion of current signs, we have Is

2 (2) < Is
1 (1) < 0. As a result,

Gs
22 < Gs

11 < 0. Put more generally, in an asymmetric element
of a size exceeding the spin-diffusion length, the diagonal

m1

m2

μs
2 ,μe

2

I1
s

I2
s

I2
e

μs
1 ,μe

1

I1
e

FIG. 3. Two-terminal element with normal (white) and ferro-
magnetic (shaded) parts.

elements Gs
11 and Gs

22 are primarily defined by the geometry
and material properties of the device within a few diffusion
lengths from the corresponding contact.

The reciprocity equation (6) presents the main result of
our work in the simplest setting of a two-terminal diffusive
normal-metal element: transmission of spin current between
the terminals is direction independent. We now proceed to
describe the reciprocity relations that emerge in more general
settings.

B. Composite elements incorporating normal
metals and strong ferromagnets

In this section we consider a two-terminal element com-
prising normal ferromagnetic (F ) as well as nonmagnetic (N)
regions (Fig. 3). In each ferromagnetic region, magnetiza-
tion is assumed to be uniform; magnetizations of different
F regions are not expected to be collinear. We restrict our
analysis to strong ferromagnets, where itinerant electron spins
are polarized along the direction of local magnetization. It
is further assumed that different ferromagnetic parts do not
border each other directly but are always separated by a
nonmagnetic region. The boundaries between the normal and
ferromagnetic regions are assumed to be Ohmic (no tunnel
barriers).

Inside a strong ferromagnet, the spin potential may be pre-
sented as μsα (r) = μs(r)mα , where mα is a unit vector along
the magnetization. The currents are given by the expressions
[8–11]

je
i = − σ

e2

(
∇iμ

e + 1

2
p∇iμ

s

)
, (7)

jsα
i = −mασ

e2

(
1

2
∇iμ

s + p∇iμ
e

)
, (8)

where p is the spin polarization parameter, characterizing the
material of a given ferromagnetic part. Since jsα

i ∝ mα , it
follows that (δαβ − mαmβ ) jsβ = 0.

To streamline the formulas, we combine the electric
and spin potentials into a four-component rescaled po-
tential μ̃a(r) = {μe, μsx/2, μsy/2, μsz/2}, where a = {e, sx,
sy, sz}. Likewise, the currents are combined into ja

i =
{ je

i , jsx
i , jsy

i , jsz
i }. Then, Eqs. (7) and (8) take the form

ja
i = −
ab∇iμ̃

b, (9)
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where 
 is the generalized conductivity matrix. The use of
μ̃a renders 
ab symmetric (Appendix B), which allows us to
apply the identity (A3)

Q ≡
∫ (

μ̃a(1)∇i ja
i (2) − μ̃a(2)∇i ja

i (1)
)
dV

=
∮ (

μ̃a(1) ja
i (2) − μ̃a(2) ja

i (1)
)
dAi . (10)

The divergences ∇i ja
i in the volume integral are nonzero for

the spin part only. In the bulk, be it normal or ferromagnetic,
one has ∇i ja

i = {0, ν(r)μα/τ (r)}, with material-specific ef-
fective densities of states and relaxation times [10,11]. A
direct check shows that bulk relaxation gives zero contribution
to Q.

However, in a composite device spin relaxation is not lim-
ited to the bulk but acquires an additional contribution from
the F/N interfaces. Here we will assume Ohmic, spin-inactive
interfaces. At the interface S, the potentials are continuous,

μa(N )|S = μa(F )|S = {μe, μsmx, μ
smy, μ

smz}, (11)

but the currents ja are not [13,14]. Spin current may have
arbitrary direction in spin space on the normal-metal side
of the interface, but it has to be parallel to mα on its ferro-
magnetic side. The spin-current component perpendicular to
mα is absorbed in a thin boundary layer near the interface,
while the current component parallel to mα is continuous.
In the strong-ferromagnet approximation the absorption layer
thickness is infinitesimally small, so the boundary conditions
for currents read

je
i (N )ni

∣∣
S

= je
i (F )ni

∣∣
S
, (12)

mα jsα
i (N )ni

∣∣
S

= mα jsα
i (F )ni

∣∣
S
, (13)

with ni being the normal to the interface. The discontinuity
of the perpendicular spin current gives rise to a surface
absorption term

∇i jsα
i = Rα (r) = (δαβ − mαmβ ) jsβ

i (N ) niδS (r) (14)

proportional to the surface delta function δS at the F/N
interface. In the expression (14) the spin current is evaluated
on the normal-metal side of the interface.

We now show that Q also vanishes in the presence of sur-
face absorption (14). Indeed, since spin potential is continuous
at the N/F interface, μsα = mαμs on both sides of the surface,
and

μ̃sα (c)∇i jsα
i (c′) = 1

2 mαμs(c)Rα = 0,

where we used mα (δαβ − mαmβ ) = 0. We therefore have∮ (
μ̃a(1) ja

i (2) − μ̃a(2) ja
i (1)

)
dAi = 0,

and hence after integration,

μ̃a
t (1)Ia

t (2) − μ̃a
t (2)Ia

t (1) = 0. (15)

In a composite two-terminal element Eq. (5) is generalized to

Ia
t = Gab

tt ′ μ̃
b, (16)

and thus (15) means

μ̃a
t (1) Gab

tt ′ μ̃
b
t ′ (2) − μ̃a

t (2) Gab
tt ′ μ̃

b
t ′ (1) = 0

or

μ̃a
t (1)μ̃b

t ′ (2)
(
Gab

tt ′ − Gba
t ′t

) = 0.

Since we are free to choose the potentials μ̃a
t (1) and μ̃a

t (2)
arbitrarily, the above equality means

Gab
tt ′ = Gba

t ′t . (17)

This equation generalizes our result (6) to a composite two-
terminal diffusive element.

The symmetry requirement (17) applied to an n × n matrix
produces n(n − 1)/2 relations between its entries. For an 8 ×
8 matrix Gab

tt ′ this yields 28 relations between 64 entries. Note
that relations between the elements with t �= t ′ and a = b have
a meaning similar to that of (6): transmission from one contact
to another is directionless. In particular, for a = b = e one
recovers the direction independence of the charge transport,
already well known from elementary physics. For a = e and
b = sx, sy, sz we find additional relations between the spin
currents generated by the electric potential and vice versa.

C. Multiterminal elements

An element with N terminals is described by the con-
ductance Gab

tt ′ with t, t ′ = 1 . . . N : conductance is a 4N × 4N
matrix. Applying the procedure of the previous section, we
can prove the relation

μa
t (1)μb

t ′ (2)
(
Gab

tt ′ − Gba
t ′t

) = 0

for any choice of 4N-dimensional vectors μa
t (1) and μa

t (2).
Thus Eq. (17) holds for Gab

tt ′ , and the 4N × 4N conductance
matrix Gab

tt ′ is symmetric as well.

III. CONSEQUENCES OF ELECTRIC
CURRENT CONSERVATION

A. Two-terminal elements

Let us return to the two-terminal case. The tensor Gab
tt ′ may

be represented as an 8 × 8 matrix in two ways: first as(
Ia
1

Ia
2

)
= Gab

11 Gab
12

Gab
21 Gab

22

(
μ̃b

1

μ̃b
2

)
, (18)

with 4 × 4 matrix entries in every block, and second as⎛
⎜⎜⎜⎝

Ie
t

Isx
t

Isy
t

Isz
t

⎞
⎟⎟⎟⎠ =

Gee
tt ′ Ge,sx

tt ′ Ge,sy
tt ′ Ge,sz

tt ′

Gsx,e
tt ′ Gsx,sx

tt ′ Gsx,sy
tt ′ Gsx,sz

tt ′

Gsy,e
tt ′ Gsy,sx

tt ′ Gsy,sy
tt ′ Gsy,sz

tt ′

Gsz,e
tt ′ Gsz,sx

tt ′ Gsz,sy
tt ′ Gsz,sz

tt ′

⎛
⎜⎜⎜⎝

μe
t ′

μ̃sx
t ′

μ̃
sy
t ′

μ̃sz
t ′

⎞
⎟⎟⎟⎠, (19)

with 2 × 2 matrices in every block. The order of the tensor’s
elements in two cases is different, but in both representations
the resulting 8 × 8 matrix is symmetric.

The second representation is more convenient for taking
into account the electric current conservation: for any set of
applied potentials Ie

1 = −Ie
2 (the minus on the left-hand side

appears due to our definition of current signs). This gives
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Gea
1t = −Gea

2t for every t and a, where, in the notation of
Eqs. (9), (18), and (19), a takes the values e, sx, sy, and sz.
This amounts to eight more constraints on the entries of the
conductance matrix, which further reduces the number of its
independent entries to 28 = 64–28 (reciprocity)–8 (electric
current conservation).

Note that, together with the reciprocity condition, the
electric current conservation yields Gae

t1 = −Gae
t2 . That is, ev-

ery current Ia
t depends only on the difference μe

1 − μe
2, as

required by gauge invariance. This is simply a manifestation
of the intimate relation between gauge invariance and charge

conservation [15]. Equivalently, we could impose gauge in-
variance via Gae

t1 = −Gae
t2 , which would then imply eight

constraints and, of course, yield electric current conservation.
Needless to say, the conductance matrix ends up with the same
28 independent entries.

With current conservation taken into account,

Gee
tt ′ =

∣∣∣∣−G G

G −G

∣∣∣∣, Gsα,e
tt ′ =

∣∣∣∣ Cα
1 Cα

2

−Cα
1 −Cα

2

∣∣∣∣.
Now we can write down the 8 × 8 matrix Gab

tt ′ that obeys
all the constraints and has 28 independent entries:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ie
1

Ie
2

Isx
1

Isx
2

Isy
1

Isy
2

Isz
1

Isz
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−G G Cx
1 Cx

2 Cy
1 Cy

2 Cz
1 Cz

2

G −G −Cx
1 −Cx

2 −Cy
1 −Cy

2 −Cz
1 −Cz

2

Cx
1 −Cx

1 Sx
1 Sx

c Sxy
11 Sxy

12 Sxz
11 Sxz

12

Cx
2 −Cx

2 Sx
c Sx

2 Sxy
21 Sxy

22 Sxz
21 Sxz

22

Cy
1 −Cy

1 Sxy
11 Sxy

21 Sy
1 Sy

c Syz
11 Syz

12

Cy
2 Cy

2 Sxy
12 Sxy

22 Sy
c Sy

2 Syz
21 Syz

22

Cz
1 −Cz

1 Sxz
11 Sxz

21 Syz
11 Syz

21 Sz
1 Sz

c

Cz
2 −Cz

2 Sxz
12 Sxz

22 Syz
12 Syz

22 Sz
c Sz

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μe
1

μe
2

μ̃sx
1

μ̃sx
2

μ̃
sy
1

μ̃
sy
2

μ̃sz
1

μ̃sz
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

For electric current we obtain the expression

Ie
t = (−1)t

[
G

(
μe

1 − μe
2

) + Cα
t ′ μ̃

sα
t ′

]
. (21)

For spin current we find

Isα
t = Cα

t

(
μe

1 − μe
2

) + Sαβ

tt ′ μ̃
sβ
t ′ , (22)

with a symmetric spin conductance matrix Sαβ

tt ′ = Sβα

t ′t . The
matrix elements of Sαβ

tt ′ with α �= β, t �= t ′ describe the preces-
sion of spin injected at one terminal while it is transmitted to
the other terminal. For instance, Sxy

12 describes spin precession
from y to x that may occur due to, e.g., the presence of mag-
netic parts in the element. Note that the reciprocity relations
do not connect Sxy

12 and Sxy
21, that is, transmission in the opposite

spatial directions with the same spin precession. Instead, the
equation Sxy

12 = Syx
21 connects the processes that are opposite in

both the spatial direction and the sense of spin precession.
An interesting special case is found when both terminals

of an element are strong ferromagnets (Fig. 4). The mag-
netization directions of the terminals, mα

1 and mα
2 , may be

noncollinear. Spin potentials and spin currents at the terminals
are restricted to the form μsα

1 = mα
1 μs

1 and μsα
2 = mα

2 μs
2, Isα

1 =
mα

1 Is
1 and Isα

2 = mα
2 Is

2. Equation (20) then reduces to a simpler

m1

m2
1

2

FIG. 4. Composite element with ferromagnetic contacts.

one involving a 4 × 4 conductance matrix as per

⎛
⎜⎜⎜⎝

Ie
1

Ie
2

Is
1

Is
2

⎞
⎟⎟⎟⎠ =

∣∣∣∣∣∣∣∣∣

−G G C1 C2

G −G −C1 −C2

C1 −C1 S1 Sc

C2 −C2 Sc S2

∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎝

μe
1

μe
2

μ̃s
1

μ̃s
2

⎞
⎟⎟⎟⎠, (23)

with C1 = Cα
1 mα

1 , C2 = Cα
2 mα

2 , S1 = mα
1 Sαβ

11 mβ

1 , S2 =
mα

2 Sαβ

22 mβ

2 , and Sc = mα
1 Sαβ

12 mβ

2 . We see that the conductance
of such an element is defined by six independent parameters.

A related special case, admitting an equally simple descrip-
tion, is found when the magnetizations of all ferromagnetic
parts of a composite element are collinear. The terminals may
be ferromagnetic or normal, but it is required that the applied
spin potentials are collinear with the magnetization direction.
The situation then reduces to the one described by Eq. (23)
with mα

1 = mα
2 .

Returning to the general expressions (21) and (22) for
the currents, we stress that, unlike the electric potentials μe

t ,
spin potentials do not have to appear only in the form of a
difference μsα

1 − μsα
2 . In other words, the coefficients Cα

1 and
Cα

2 are not necessarily equal in absolute value and opposite
in sign. The same is true for Sαβ

t1 and Sαβ

t2 . The absence of
such a requirement becomes transparent in a collinear setup,
where μsα differs from zero for a single direction α in spin
space. Here it is evident that μs

t = μ
↑
t − μ

↓
t is already gauge

invariant for each t as the difference of spin-up and spin-
down potentials. Thus electric and spin currents may depend
separately on μs

1 and μs
2 without violating gauge invariance.

We illustrate this point by an explicit example of a com-
posite element consisting of ferromagnetic and normal parts,
shown in Fig. 5. The parts have lengths LF,N , much larger than
the spin-diffusion lengths λF,N in either material. We assume
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μs

j s

μ =0s
je

μs
j sμ =0s

L L

(a)

(b)

F N

FIG. 5. Composite element consisting of a ferromagnetic
(shaded) and normal-metal (white) parts. Electric current is gen-
erated by spin potential applied to one terminal (a) but not the
other (b).

that the ferromagnet is magnetized along the x direction. No
electric potentials are applied to the element.

In the first experiment, a spin potential is applied along
the magnetization, to the left (t = 1) contact only, μsα

t =
μs0δαxδt1. Thus spin current jsx is injected and propagates
along the ferromagnetic part of the element over a distance
λF before dissipating. The presence of nonzero jsx in a
ferromagnet, in turn, generates electric current je according
to the Johnson-Silsbee physics [16,17]. Electric current, once
generated, reaches the right terminal of the element. The
total electric current is given by Ie

1 = −Ie
2 = Cx

1μs0 �= 0. Thus
Cx

1 �= 0.
In the second experiment, spin potential is applied only to

the right (t = 2) contact μsα
t = μs0δαxδt2, also injecting spin

current. As in the previous case, the spin current completely
dissipates before reaching the boundary between the parts of
the element. However, in a normal metal, pure spin current
generates no electric current and thus Ie

1 = −Ie
2 = Cx

2μs0 = 0.
Therefore, Cx

2 = 0 �= Cx
1 .

B. Multiterminal elements

An easy way to find the additional constraints arising from
electric current conservation in a multiterminal element is to
work with the generalizations of Eqs. (21) and (22):

Ie
t = Ge

tt ′μ
e
t ′ + Cα

tt ′μ̃
sα
t ′ , (24)

Isα
t = Cα

t ′tμ
e
t ′ + Sαβ

tt ′ μ̃
sβ
t ′ . (25)

The reciprocity requirements translate into Ge
tt ′ = Ge

t ′t , Sαβ

tt ′ =
Sβα

t ′t , and the indices of C in the second equation being
transposed compared with the first.

Conservation of electric current requires
∑N

t=1 Ie
t = 0,

where the summation is performed over all terminals. Two
conditions emerge from it:

N∑
t=1

Ge
tt ′ = 0,

N∑
t=1

Cα
tt ′ = 0. (26)

The first of them is the standard requirement satisfied in any
multiterminal electric element.

IV. NO GEOMETRIC SPIN RATCHETS

While spin electronics may promise various advantages,
spin dissipation hinders spin transmission and is clearly an

j sμs 0

μs 0

(a)

(b)

FIG. 6. Normal-metal elements (a) with directional arrow shape
and (b) reference strip.

obstacle. This naturally raises the issue of finding systems
with longer spin propagation lengths.

One interesting proposal [18,19] involves optimizing the
geometric shape of a conductor—and a claim that, in an
arrow-shaped normal wire [Fig. 6(a)], spin transmission is
enhanced as compared with a rectangular wire [Fig. 6(b)].
Indeed, depending on the precise shape of the arrow, the spin
conductance Gs

12 of the wire with an arrow may or may not be
enhanced compared with a rectangular strip. But this does not
yet mean that the reason for the enhancement is the orientation
of the arrow. The presence or absence of propagation boost
due to the geometric asymmetry of the wire should be inferred
from a comparison between spin propagation along the arrow
direction and opposite to it. And this is precisely where the
reciprocity relation (6) applies. It tells us that spin propagation
through the arrow-shaped element is the same in both direc-
tions. The conductances Gs

11 and Gs
22 may differ, and thus the

current drawn from the injector may depend on the side where
μs is applied. But, at a given μs, the transmitted spin current
remains the same regardless of the arrow orientation. We must
conclude that an arrow pointing against the spin-current flow
“amplifies” it as much as the one pointing along the flow. This
conclusion holds for any passive spintronic element of a kind
described above, to which the reciprocity relations apply.

V. COMPARISON WITH THE CIRCUIT
THEORY FORMALISM

The “circuit theory” (CT) of Ref. [1] is a finite-element
(lumped element) theory, operating with two types of ele-
mentary units: normal or ferromagnetic “nodes,” each char-
acterized by a spatially uniform electron distribution function,
and “contacts” that define the conductance between the nodes.
Spin relaxation may take place in the nodes but not in the
contacts. A special type of node, the “reservoirs,” sets the
voltages and spin potentials applied to the device.

Here we illustrate the correspondence between the matrix
conductance Gab

tt ′ of the diffusion-equation description of the
preceding sections and the CT matrix conductance. We focus
on a simple two-terminal F/N element in Fig. 5. To begin
with, the terminology of the two approaches is different: In
the diffusion-equation approach, an “element” connects two
“contacts”, each characterized by its electric potential μe and
spin potential μsα . In the CT approach, a “contact” connects
two “nodes”, each characterized by its μe and μsα . Thus
an “element” of the diffusion-equation description should be
compared with a CT “contact”, while a diffusion-equation
“contact” corresponds to a CT “node”.

In a CT F/N contact, the electric and spin currents are
determined by spin-resolved real conductances G↑, G↓ and
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a complex mixing conductance G↑↓, which in total makes
four real parameters [1]. At the same time, the conductance
matrix Gab

tt ′ in Eq. (20) involves 28 independent parameters.
The relation between the parameter sets of the CT and the
diffusion-equation description is discussed below.

The settings studied in Ref. [1] and in our work are gen-
erally different, and comparison is meaningful only where the
validity domains of the two approaches overlap. First, Ref. [1]
assumed no spin dissipation in the contact. Second, it consid-
ered an F terminal with the spin potential set to zero, μsα

F = 0.
Without loss of generality, we can also choose μe

F = 0, since
currents depend only on the difference, μe

N − μe
F . The spin

potential μsα
N of the N contact is allowed to have an arbitrary

direction, not necessarily collinear with the magnetization
direction mα of the F electrode. Third, Ref. [1] studied the
currents in the N terminal. Therefore, we shall compare the
matrix conductance of a CT contact with that of a diffusive
F/N element with spin relaxation lengths λF,N → ∞.

The CT operates with a 2 × 2 matrix current Î , related
to the electric and spin currents as per Î = (IeÊ + Isασ̂α )/2,
where σ̂α are the Pauli matrices. Likewise, the matrix potential
is given by μ̂ = μeÊ + μ̃sασ̂α . If the z axis is chosen along
mα , CT provides the following formula for the current in the
N contact:

ÎN = −
(

G↑μ↑↑(N ) G↑↓μ↑↓(N )

G∗
↑↓μ↓↑(N ) G↓μ↓↓(N )

)

= −
(

G↑
(
μe

N + μ̃sz
N

)
G↑↓

(
μ̃sx

N − iμ̃sy
N

)
G∗

↑↓
(
μ̃sx

N + iμ̃sy
N

)
G↓

(
μe

N − μ̃sz
N

)
)

.

By recasting this formula in the form Ia
N = Gabμ̃a

N , one gets
the conductance,

Ĝ = −

∣∣∣∣∣∣∣∣∣

G↑ + G↓ 0 0 G↑ − G↓
0 2 Re[G↑↓] 2 Im[G↑↓] 0

0 −2 Im[G↑↓] 2 Re[G↑↓] 0

G↑ − G↓ 0 0 G↑ + G↓

∣∣∣∣∣∣∣∣∣
.

(27)

The matrix Gab should be compared with the 4 × 4 sector Gab
NN

of the 8 × 8 matrix Gab
tt ′ (18),

Gab
NN =

∣∣∣∣∣∣∣∣∣

−G Cx
N Cy

N Cz
N

Cx
N Sx

N Sxy
N Sxz

N

Cy
N Sxy

N Sy
N Syz

N

Cz
N Sxz

N Syz
N Sz

N

∣∣∣∣∣∣∣∣∣
. (28)

The sectors Gab
NF and Gab

FF are not related to Gab.
The Gab

NN of Eq. (28) assumes the form of Gab in Eq. (27) if
its entries satisfy a number of conditions:

First, zero entries of Ĝ should be matched by Cx
N = Cy

N =
Sxz

N = Syz
N = 0. Appendix C shows that this is the case for

collinear devices, of which ours is a particular example.
Appendix D illustrates this for the device in Fig. 5 by direct
calculation along the lines of Refs. [1,13,14,20].

Second, the equality of the first and the last diagonal
entries of Ĝ requires Sz

N = −G. Appendix C shows that
this property relies both on the collinear character of the
device and on the absence of spin relaxation. Under these

(τ  = 0)s
-1

with spin relaxationwithout spin relaxation

reciprocity

C
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interface
(Im[G   ] = 0)

spin-active
interface
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FIG. 7. Regimes of a diffusive F/N element: Reciprocity proper-
ties discussed in our work break down in the presence of a spin-active
interface. In terms of circuit theory, an element can be described as a
single CT contact if τ−1

s = 0 but has to be modeled by a CT circuit
with spin-relaxing inner nodes when τ−1

s �= 0.

conditions, the equality Sz
N = −G is protected by a peculiar

symmetry of the diffusion equations and boundary conditions.
Appendix D illustrates this by direct calculation and shows
that, in the presence of spin relaxation, Sz

N and −G are
different.

Third, since the entry Im[G↑↓] appears in Ĝ antisymmetri-
cally, while the symmetry of ĜNN is our main statement, Ĝ and
ĜNN can be equal only if Im[G↑↓] = 0. In terms of Eq. (28),
this means Sxy

N = 0. In the diffusion-equation description, this
can be traced back to the F/N interface being spin-inactive
(Appendix D).

To conclude, in the absence of spin relaxation, a diffusive
F/N element with a spin-inactive interface can indeed be
modeled as a single CT contact with symmetric (reciprocal)
Ĝ. By contrast, in the presence of spin relaxation, Sz

N �= −G,
and thus the F/N element cannot be modeled by a single CT
contact of the form (27). Instead, the model shall involve a
CT circuit with at least one inner node, accounting for spin
relaxation. All of this is schematically summarized in Fig. 7.

Finally, we wish to note that diffusive elements can also
be described by equations for the spatially nonuniform 2 × 2
spin distribution function [21]. As the node size reduces below
the diffusion length, this description explicitly crosses over to
the CT formalism in the form of Ref. [1]. Yet another way of
introducing spin relaxation was developed in Ref. [22].

VI. RECIPROCITY AND THE ONSAGER RELATIONS

There exist universal relations between the entries of the
spin conductance matrix [7] that follow from Onsager’s prin-
ciple [23] of the symmetry of the kinetic coefficients. In this
section we show that such relations are generally different
from (and more general than) the reciprocity relations of
Sec. II. To demonstrate this difference, we consider a two-
terminal device with all magnetizations and applied spin
potentials being collinear. Onsager relations have a different
meaning for systems with and without the microscopic re-
versibility of equations of motion. Below we consider these
cases one by one.

For a device described in the preceding paragraph, mi-
croreversibility holds only in the absence of ferromagnetic
elements. A derivation presented in Appendix E shows
that Onsager’s principle imposes the following form of the

184443-7



YA. B. BAZALIY AND R. R. RAMAZASHVILI PHYSICAL REVIEW B 99, 184443 (2019)

conductance matrix, given by Eq. (E10):⎛
⎜⎜⎜⎝

Ie
1

Ie
2

Is
1

Is
2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−G G B1 B2

G −G −B1 −B2

−B1 B1 S11 Smix

−B2 B2 Smix S22

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μe
1

μe
2

μ̃s
1

μ̃s
2

⎞
⎟⎟⎟⎠.

Here all spin currents and spin potentials point along the same
axis and thus require no extra indices to define their direction
in spin space.

The reciprocity requirements for the very same collinear
setup are given by Eq. (23). This equation and Eq. (E10)
impose the same symmetry constraints on conductance coef-
ficients for potentials of the same parity under time reversal:
those relating spin currents to spin potentials, and those re-
lating charge current to electric potentials. By contrast, the
constraints on the entries relating spin currents to electric
potentials and vice versa are different: Eq. (23) imposes sym-
metry, while Eq. (E10) demands antisymmetry—precisely
due to the opposite parity of spin and electric potentials with
respect to time reversal.

The resolution of this apparent contradiction hides in the
observation that Eq. (E10) relies only on the general ther-
modynamic properties of the global quantities Nt and Nst in
Appendix E, whereas the diffusion reciprocity relations ap-
peal to rather specific equations, Eqs. (1) and (2), for charge
and spin currents. In a normal-metal device B1,2 = 0 (see
Sec. II A), and both the Onsager reciprocity and diffusion
reciprocity are satisfied.

The vanishing of B coefficients results from the decoupling
of charge and spin currents in Eqs. (1) and (2). The latter
decoupling stems from our implicit disregard of spin-orbit
interaction (SOI), as is commonly done for lighter metals
such as Cu. In a normal metal with noticeable SOI, such as
Pt, charge current generates a transverse spin current—and
vice versa [24]. In a four-terminal device this effect induces
transverse spin current in response to longitudinal electric bias
and thus gives rise to nonzero conductance coefficients of the
B1,2 kind [25]. Hence, as shown in Appendix F, the diffusion
reciprocity breaks down, while the Onsager reciprocity holds
indeed. While the condition of vanishing SOI is quantitative,
one may turn it around and state that precision of the diffusion
reciprocity relations is limited by the ratio of the spin Hall
conductivity to the electric conductivity—for instance, as
done in a different context for platinum [26].

For devices with ferromagnetic elements, the microscopic
equations of motion are not time-reversal invariant. In this
case, Onsager’s principle [23] relates the entries of the con-
ductance matrix of a device to those of a different device that
has all the magnetization vectors reversed. By contrast, the
diffusion reciprocity connects the entries of the conductance
matrix of the very same device. In diffusive devices with fer-
romagnetic elements, both the Onsager’s reciprocity and the
diffusion reciprocity are valid, but their content is different,
and they do not follow from each other.

Onsager reciprocity hinges on the time-reversal symmetry
of microscopic equations of motion, a very general symme-
try. Diffusive reciprocity is valid in addition to that when
extra constraints are present. A somewhat similar situation
is described in Ref. [7] for materials with sublattice

symmetry: their conductance matrix is symmetric with respect
to a simultaneous interchange of contact and spin indices—
also in addition to the Onsager symmetry. Similarly, diffusive
reciprocity arises as a result of certain special properties,
such as absorption of transverse spin current due to strong
ferromagnetism, as encapsulated in Eqs. (12) and (13). These
conditions were essential for the arguments of Sec. II B.

VII. DISCUSSION

In this work, we established reciprocity relations for a class
of devices, with or without spin relaxation, where (a) both
spin and charge propagate diffusively, (b) the carrier spin
aligns itself with magnetization of a ferromagnetic element
over a vanishingly short distance, (c) the F/N interfaces are
Ohmic and spin inactive, and (d) spin-orbit interaction is
negligible. Together with charge conservation, the reciprocity
relations constrain the form of the conductance matrix—for
example, the 64 entries of an 8 × 8 conductance matrix of
a two-terminal element are reduced to only 28 independent
values.

We showed that diffusive reciprocity is different from
the more general Onsager reciprocity, and emerges as an
additional relation in a narrower class of systems. For normal-
metal elements, reciprocity relations prove the impossibility
of “geometric spin ratchets” [18,19] that would amplify spin
current or even transmit it differently in two directions. In fact,
this conclusion stems from the symmetry of the spin-sector
matrix Sαβ

tt ′ , protected by the Onsager principle even when
diffusive reciprocity fails.
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APPENDIX A: IDENTITIES

For two functions u(r) and v(r), the Gauss theorem gives∫
D

(u�v − v�u)dV =
∮

S
(u∇v − v∇u)dA, (A1)

with D being the integration volume with surface S. Further-
more, for an arbitrary a(r),∫

[u∇(a∇v) − v∇(a∇u)]dV =
∮

[ua∇v − va∇u]dA.

(A2)

This may be generalized for tensors. For uα (r), vβ (r), and
symmetric Aαβ (r) = Aβα (r) one has∫

[uα∇(Aαβ∇vβ ) − vα∇(Aαβ∇uβ )]dV

=
∮

[uαAαβ∇vβ − vαAαβ∇uβ]dA, (A3)

with repeated index summation assumed.
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APPENDIX B: MATRIX CONDUCTIVITY
OF STRONG FERROMAGNETS

In a strong ferromagnet with constant magnetization direc-
tion mα , the vector spin potential satisfies μα (r) = mαμs(r),
and the spin current satisfies jαi (r) = mα js

i (r). Currents je
i , js

i
and potentials μe, μs are related by the equations

je
i = −σ (r)∇iμ

e − p(r)σ (r)∇i(μ
s/2),

js
i = −p(r)σ (r)∇μe − σ (r)∇i(μ

s/2).

Therefore

je
i = −σ (r)∇iμ

e − p(r)σ (r)mα∇i(μ
sα/2),

(B1)
jsα
i = −p(r)σ (r)mα∇μe − σ (r)∇i(μ

sα/2).

These equations can be combined into

ja
i = −
ab∇iμ̃

b, (B2)

with a = {e, x, y, z} = {0, 1, 2, 3}, rescaled potentials

μ̃b =
{
μe,

μsx

2
,
μsy

2
,
μsz

2

}
,

and a 4 × 4 matrix of generalized conductivity


ab =

⎛
⎜⎝

σ pσmx pσmy pσmz

pσmx σ 0 0
pσmy 0 σ 0
pσmz 0 0 σ

⎞
⎟⎠. (B3)

When defined in terms of μ̃a, the generalized conductivity
tensor is symmetric.

APPENDIX C: SYMMETRY CONSTRAINTS ON
CONDUCTANCE MATRICES OF COLLINEAR DEVICES

All of the constrains obtained in this Appendix rely on the
device being magnetically collinear. That is, magnetization in
all the ferromagnetic parts points along or opposite one and
the same direction, denoted as mα .

1. In a collinear device, Cx
N = Cy

N = Sxz
N = Syz

N = 0

In such a device, all the equations for the electric cur-
rent density je

i and for the component jsz
i = mα jsα

i of the
spin current are invariant with respect to uniform spin
rotation (μsx, μsy, μsz ) ⇒ (μsx cos ϕ − μsy sin ϕ,μsy cos ϕ +
μsx sin ϕ,μsz ) by an arbitrary angle ϕ around mα . This in-
cludes the continuity equations (3) and (4), expressions (7)
and (8) for the currents, and the boundary conditions (12),
(13), and (14) at the F/N interface. Therefore, both the electric
current Ie

N and the Isz
N component of the spin current are invari-

ant under such a rotation, accompanied by the corresponding
rotation (μsx

N , μ
sy
N , μsz

N ) ⇒ (μsx
N cos ϕ − μ

sy
N sin ϕ,μ

sy
N cos ϕ +

μsx
N sin ϕ,μsz

N ) of the boundary conditions. For the electric
current Ie

N , Eq. (28) yields

Ie
N = −Gμe

N + Cx
Nμsx

N + Cy
Nμ

sy
N + Cz

Nμsz
N .

This expression is invariant with respect to the rotation above
only if Cx

N = Cy
N = 0. The same argument for the component

Isz
N of the spin current

Isz
N = Cz

Nμe
N + Sxz

N μsx
N + Syz

N μ
sy
N + Sz

Nμsz
N

leads us to conclude that Sxz
N = Syz

N = 0. In a device with
noncollinear ferromagnetic parts, Cx

N , Cy
N , Sxz

N , and Syz
N are

generally nonzero.

2. Collinearity and no spin relaxation lead to G = −Sz
N

In a collinear device with no spin relaxation, an extra
symmetry guarantees that G = −Sz

N . To see this, we apply
potentials μe

N , μsz
N to the N terminal, while the remaining

components of spin potential are set to zero (μsx
N = μ

sy
N = 0).

Using the notation μ̃s ≡ μs/2 [cf. Eq. (9)], Eqs. (7) and (8)
yield

je
i = − σ

e2
(∇iμ

e + p∇iμ̃
sz ), (C1)

jsz
i = − σ

e2
(∇iμ̃

sz + p∇iμ
e). (C2)

In the normal part, Eqs. (1) and (2) yield

je
i = − σ

e2
∇iμ

e, (C3)

jsz
i = − σ

e2
∇iμ̃

sz. (C4)

We observe that the system of Eqs. (C1)–(C4) is invariant
under the transmutation μ̃e ↔ μ̃sz, je

i ↔ jsz
i . Spin relaxation

breaks this invariance, since the continuity equations (3) and
(4) for spin and charge are different. However, as τs → ∞
in Eq. (4), the symmetry is restored, and the full problem
becomes symmetric under the replacement μ̃e ↔ μ̃sz, je

i ↔
jsz
i , completed by interchanging the driving potentials μe

N and
μsz

N at the N terminal. All the equations describing the element,
including the boundary conditions (12) and (13) at the F/N
interface, are invariant under this transformation.

For the total currents Ie
N and Isz

N , Eq. (28) implies

Ie
N = −Gμe

N + Cz
Nμsz

N ,

Isz
N = Cz

Nμe
N + Sz

Nμsz
N .

Upon the symmetry transformation above (μe
N ↔ μsz

N , Ie
N ↔

Is
N ), these two equations turn into

Ie
N = Sz

Nμe
N + Cz

Nμsz
N ,

Isz
N = Cz

Nμe
N − Gμsz

N .

At the same time, the two equations must remain intact for
any μe

N and μsz
N . This is the case only if Sz

N = −G.

APPENDIX D: CONDUCTANCE OF
A DIFFUSIVE F/N ELEMENT

1. Equations and boundary conditions

Here we consider an F/N element, comprising a thin
ferromagnetic wire of length LF in series with a normal wire
of length LN , as shown in Fig. 5. All quantities thus depend
only on the coordinate x along the wire, with the origin at
the F/N boundary. In the absence of spin-orbit coupling, the
spin and coordinate spaces are decoupled. Thus, without loss
of generality, we will assume that the magnetization of the F
wire points along the z axis.
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Electric and spin potentials are assumed to take zero values
at the ferromagnetic terminal:

μe(−LF ) = 0 ,

μsα (−LF ) = 0 .

At the normal terminal,

μe(LN ) = μe
N ,

μsα (LN ) = μsα
N .

Our goal is to find the currents je
x (LN ) ≡ je

N and jsα
x (LN ) ≡

jsα
N at the normal terminal. To do this, one has to find po-

tentials μe(x) and μsα (x) on the interval [−LF , LN ]. The spin
potential obeys equations [10,11]

λ2
N,F

d2μsα (x)

dx2
= μsα (x), (D1)

with λN,F being the spin-diffusion lengths in the N and F
wires. General solutions of these equations can be written in
the form

μsα (x) = X α
F ex/λF + Y α

F e−x/λF (−LF < x � 0),

μsα (x) = X α
N ex/λN + Y α

N e−x/λN (0 � x < LN ),

with coefficients to be determined from the continuity of
μe, μs, je, and jsz at x = 0 [13,14] and from the values of
potentials at the terminals.

2. General solutions

Since the F wire is assumed to be a strong ferromagnet, in
addition to (D1), the spin potential satisfies μsα (x) = mαμs(x)
in the ferromagnetic part of the element, with mα being the
unit vector along the magnetization. Thus we seek the spin
potential in the F wire in the form

μsx(x) = 0,

μsy(x) = 0, (−LF < x � 0)

μsz(x) = A sinh
x + LF

λF
.

The last expression is written so that it automatically satisfies
the boundary condition at x = −LF . The spin potential in the
N wire can be sought in the form

μsx(x) = ax sinh
x

λN
,

μsy(x) = ay sinh
x

λN
, (0 � x < LN )

μsz(x) = az sinh
x

λN
+ bz cosh

x

λN
,

with unknown ax,y,z and bz. The first two equations ensure
the continuity of μsx and μsy at x = 0. Matching the spin
potentials at the normal terminal we get

ax sinh
LN

λN
= μsx

N , (D2)

ay sinh
LN

λN
= μ

sy
N , (D3)

az sinh
LN

λN
+ bz cosh

LN

λN
= μsz

N . (D4)

From the continuity of spin potential on the F/N boundary,

A sinh
LF

λF
= bz . (D5)

To shorten the expressions in the remainder of this section, we
introduce the following notation:

sh = sinh(L/λ),

ch = cosh(L/λ),

th = tanh(L/λ).

The coefficients ax and ay are then expressed as

ax = μsx
N

shN
, ay = μ

sy
N

shN
.

To find A, az, and bz, the conditions of continuity for μe, je,
and jsz have to be invoked.

3. Electric current continuity

Electric potential in the N wire obeys the equation

d2μe(x)

dx2
= 0 (0 � x < LN ) .

Its solutions are linear functions, so

μe(x) = μe
N

x

LN
+ μe(0)

(
1 − x

LN

)
(0 � x < LN )

with yet unknown μe(0).
The electric potential equation in the F wire is more

complicated and couples electric and spin potentials. How-
ever, its use can be avoided because in the present 1D case
the conservation of electric current means je

x = const = je
N .

Equation (7) then gives a relation for potentials in the F wire:

−e2 je
N

σF
= dμe

dx
+ p

2

dμsz

dx
(−LF < x � 0).

Integrating it from x = −LF to x = 0, and using μe(−LF ) =
0, gives

μe(0) = − p

2
μs(0) − e2LF je

N

σF
= − p bz

2
− e2LF je

N

σF
. (D6)

Electric current flowing through the element can be alter-
natively expressed by applying formula (1) to the N wire:

je
N = −σN

e2

μe
N − μe(0)

LN
. (D7)

Following Ref. [20], we introduce the notation

1

R
= σ

e2L
.

Combining Eqs. (D6) and (D7), we find

μe(0) = RF

RN + RF
μe

N − RN

RN + RF

p

2
bz ,

je
N = − 1

RN + RF

(
μe

N + p

2
bz

)
. (D8)
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4. Spin current continuity

Finally, we use the continuity of jsz at the F/N boundary.
Combining Eqs. (7) and (8), we find in the ferromagnet

jsz(x) = p je − σF (1 − p2)

2e2

dμsz

dx
(−LF < x � 0).

In the normal metal, Eq. (2) gives

jsz(x) = − σN

2e2

dμsz

dx
(0 � x � LN ).

Expressing the derivatives of μsz if F and N wires at x = 0
in terms of the unknown coefficients, we get the continuity
condition

− σN

e2λN

az

2
= p je

N − σF

e2λF
(1 − p2)

chF

2
A .

Substituting the electric current from (D8), we recast the
preceding equation in the final form:

LN

λN RN

az

2
= p

(
μe

N + pbz/2
)

RN + RF
+ LF (1 − p2)

λF RF

chF

2
A. (D9)

5. Solving for unknown coefficients

Equations (D4), (D5), and (D9) can now be solved to give
the unknown coefficients. The results can be presented in a
more compact way using the notation

t = λ

L
tanh

L

λ
, s = λ

L
sinh

L

λ
,

1

Reff
= 1

RNtN
+ p2

RN + RF
+ 1 − p2

RFtF
.

This gives

az = 2pReff

RN + RF

μe
N

thN
+

(
1 − Reff

tN RN

)
μsz

N

shN
,

(D10)

bz = − 2pReff

RN + RF
μe

N + Reff

sN RN
μsz

N .

6. Currents at the normal terminal

Spin currents at the normal terminal (x = LN ) are given by

jsx
N = − LN

2λN RN
axchN ,

jsy
N = − LN

2λN RN
aychN ,

jsz
N = − LN

2λN RN
(azchN + bzshN ).

Substituting the expressions for ax,y,z and bz into the equations
above, we get

jsx
N = − 1

RNtN

μsx
N

2
,

jsy
N = − 1

RNtN

μ
sy
N

2
, (D11)

jsz
N = − 1

RN

(
1

tN
− Reff

s2
N RN

)
μsz

N

2
− pReff

sN RN (RN + RF )
μe

N .

Electric current is obtained by substituting expression (D10)
for bz into Eq. (D8):

je
N =− 1

RN + RF

(
1− p2Reff

RN + RF

)
μe

N − pReff

sN RN (RN + RF )

μsz
N

2
.

(D12)

For completeness, we also give an expression for

μe(0)=
(

RF

RN + RF
+ p2RN Reff

(RN + RF )2

)
μe

N − pReff

sN (RN + RF )

μs
N

2
.

7. Conductance matrix

Using (D11) and (D12), we can write down the entries
of the 4 × 4 sector Gab

NN , Eq. (18). Recall here that they are
defined so that currents are positive when they flow out of the
element. The nonzero entries are

G = 1

RN + RF

(
1 − p2Reff

RN + RF

)
, (D13)

Cz
N = − pReff

sN RN (RN + RF )
, (D14)

Sx
N = Sy

N = − 1

tN RN
, (D15)

Sz
N = − 1

RN

(
1

tN
− Reff

s2
N RN

)
. (D16)

The remaining ones are equal to zero, in accordance with the
explanations of Appendix C.

8. Limit of zero spin dissipation

The limit of zero spin dissipation corresponds to infinite
spin-diffusion lengths λN,F → ∞. In this limit, sN,F → 1,
tN,F → 1, and thus

1

Reff
→ 1

RN
+ p2

RN + RF
+ 1 − p2

RF

or

Reff → RN RF (RN + RF )

(RN + RF )2 − p2R2
N

.

Using these properties we find that conductances G and −Sz
N

indeed approach the same limit (see Fig. 8):

−Sz
N , G → Glim = (RN + RF ) − p2RN

(RN + RF )2 − p2R2
N

. (D17)

This expression for Glim reproduces the results of Refs. [1] and
[13], where spin-diffusion length was set to infinity from the
outset and thus completes the correspondence between Gab

NN
and Gab, as discussed in Sec. V.

APPENDIX E: ONSAGER RELATIONS FOR A
TWO-TERMINAL ELEMENT

Consider a two-terminal element of arbitrary shape with
internal magnetic regions. This Appendix applies the On-
sager argument to derive relations between the spin currents
flowing through its contacts. Two restrictive assumptions are
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FIG. 8. Conductances G/G0 of Eq. (D13) (red/gray), −Sz
N/G0

of Eq. (D16) (green/gray-dashed), and their limiting value Glim/G0

of Eq. (D17) (black) normalized to G0 ≡ G|p=0 = 1/(RF + RN ) and
plotted as a function of λN/LN . For illustrative purposes, other
parameters are set to λF /LF = 0.1(λN/LN ) and RF = 0.1RN .

made: first, that the applied spin potentials and the magne-
tization directions in the element are collinear, and second,
that the regions of the element adjacent to the contacts are
nonmagnetic.

The textbook derivation [23] of the Onsager relations starts
by considering a closed system with partial equilibria defined
by thermodynamic parameters xi. At the global equilibrium all
xi = 0, and the entropy is maximized. Near that equilibrium
the entropy is given by

S = S0 − 1
2 Ai jxix j . (E1)

Thermodynamic forces are defined as Yi = Ai jx j . If the
thermodynamic parameters satisfy the phenomenological
equations

ẋi = −γi jYj , (E2)

then the matrix γi j obeys the Onsager relations.
To recast spin currents in the framework above, imagine

two large diffusive normal-metal reservoirs connected by the
element in question. The system consisting of the element
and the reservoirs is closed. The key feature of this thought
experiment is that the reservoirs are assumed to have no spin
relaxation. In the absence of the connecting element, a state
with spin imbalance in either of the reservoirs will not relax
to zero spin density. All spin relaxation is due to electrons
flowing through the connecting element. Consequently, spin
currents through the element can be related to the time deriva-
tives Ṅ↑ and Ṅ↓ of the numbers N↑ and N↓ of spin-up- and
spin-down electrons in the reservoirs. The N↑ and N↓ thus
play the role of thermodynamic parameters xi. Reservoirs
without spin relaxation were previously considered [27] in the
derivation of Onsager relations through the Landauer-Büttiker
approach.

An important subtlety is that for this approach to work,
there must be no spin relaxation at the contacts between the
reservoirs and the element. If the reservoirs are connected
to the normal-metal parts of the element, this requirement is
automatically satisfied.

It will be further assumed that the spin-polarized state of
each reservoir is spatially uniform. In the present thought
experiment this can be guaranteed by assuming sufficiently

fast diffusion in each of them. A spatially uniform, spin-
polarized state of a reservoir is specified either by electric
and spin potentials (μe, μs) or by the numbers of up and
down electrons N↑ and N↓. In the latter case we can use a
picture of two noninteracting Fermi gases. The state of each
gas is a thermal equilibrium characterized by the Fermi-Dirac
distribution function nσ (p) = nF [(ε(p) − μσ )/T ], where σ =
↑,↓ = ±1, μσ = μe + σμs/2, and ε(p) is the band energy
of electrons. In our thought experiment we can neglect the
electrostatic potential energy eφ because (a) the reservoirs
are not connected to external electric batteries and (b) they
are assumed to be so large that electron transfer from one to
the other changes φ by a negligible amount (limit of infinite
capacity).

From the properties of an ideal Fermi gas, we know that
the parameters μ↑,↓ are the actual chemical potentials of
gases in the reservoirs, i.e., the energy of each gas obeys
dEσ r = −T dSσ r + Pσ rdVr + μσ rdNσ r , where r = 1, 2 is the
reservoir index. Since the system of two connected reservoirs
is closed, the relation

∑
σ r dEσ r = 0 is satisfied. Furthermore,

the reservoir volumes stay constant, dVr = 0. Heat exchange
between the reservoirs is allowed so that their temperatures
remain equal. Under these conditions, the total change of the
entropy in reservoirs is given by the expression

dS ≡
∑
σ r

dSσ r = − 1

T

∑
σ r

μσ rdNσ r . (E3)

Neglecting the changes of entropy in the element, we can use
(E3) to specify the coefficients Ai j in formula (E1) for the
closed system considered in our thought experiment.

In the state of global equilibrium N↑,r = N↓,r = Neq,r

(r = 1, 2), and μσ r = μ0 for all σ and r. Away from the
global equilibrium the chemical potentials depend on the
electron concentrations nσ r in each gas: μσ r = μFr (nσ r, T ) =
μFr (Nσ r/Vr, T ), where μFr (n, T ) is the thermodynamic func-
tion characterizing the ideal Fermi gas in it, taking into
account all the properties of electron spectrum ε(p) in the
reservoir material. Expanding μFr (nσ r, T ) in Taylor series,
one gets

μσ r = μ0 +
(

∂μFr

∂n

)
eq

Nσ r − Neq,r

Vr
+ · · · . (E4)

An expression for entropy S can be now obtained by
integrating Eq. (E3). Recall that the deviations �Nσ r = Nσ r −
Neq,r are assumed to be small. We will see below that it is
sufficient to use Eq. (E4) truncated to two terms to get the
leading-order contribution to S. Integration gives

S = S0 − 1

T

∑
σ r

∫ Nσ r

Neq,r

[
μ0 +

(
∂μFr

∂n

)
eq

�Nσ r

Vr

]
dNσ r .

Using conservation of the total number of electrons∑
σ r dNσ r = 0, one gets

S = S0 − 1

2T

∑
σ r

(
∂μFr

∂n

)
eq

(�Nσ r )2

Vr
. (E5)

With the identification xi ↔ �Nσ r , Eq. (E5) looks similar to
the relation (E1) of the Onsager approach. However, it cannot
yet be identified with (E1) for two reasons. First, only three of
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four variables �Nσ r are independent, since these numbers are
still connected by the electron number conservation relation.
Second, the validity of the Onsager relations requires each
xi to have definite parity with respect to time reversal T̂ .
However, variables �Nσ r do not satisfy this property; time
reversal changes the direction of spin, so T̂ [�N↑] = �N↓ and
vice versa.

Both difficulties can be overcome by introducing new
variables,

�Nr = �N↑r + �N↓r ,

�Nsr = �N↑r − �N↓r ,

which do have definite parities with respect to T̂ : �Nr is even,
and �Nsr is odd. Furthermore, by rewriting Eq. (E5) in terms
of �Nr and �Nsr , one gets

S = S0 − 1

2T

∑
r

(
∂μFr

∂n

)
eq

�N2
r + �N2

sr

2Vr
,

where the summation over σ is already performed. The
particle conservation condition �N1 = −�N2 allows one to
rewrite the above as

S = S0 − 1

2T

{[∑
r

(
∂μFr

∂n

)
eq

1

Vr

]
�N2

1

+
(

∂μF1

∂n

)
eq

�N2
s1

2V1
+

(
∂μF2

∂n

)
eq

�N2
s2

2V2

}
. (E6)

Now the three variables x1 = �N1, x2 = �Ns1, and x3 =
�Ns2 have all the required properties of Onsager thermo-
dynamic coordinates, and Eq. (E6) can be identified with
(E1). The corresponding thermodynamic forces are then
calculated as

Y1 = 1

T

[∑
t

(
∂μFr

∂n

)
eq

1

Vr

]
�N1 ,

Y2 = 1

T

(
∂μF1

∂n

)
eq

�Ns1

2V1
,

Y3 = 1

T

(
∂μF2

∂n

)
eq

�Ns2

2V2
.

Using Eq. (E4) and �N1 = −�N2, these expressions can be
transformed to

Y1 = μe
1 − μe

2

T
,

Y2 = μ↑1 − μ↓1

T
= μs

1

2T
, (E7)

Y3 = μ↑2 − μ↓2

T
= μs

2

2T
.

The Onsager theory predictions for γi j depend on whether
(a) the microscopic evolution of the system is invariant under
time reversal and (b) thermodynamic variables xi and x j have
the same or opposite parities under time reversal T̂ .

Condition (a) is satisfied if the connecting element is made
only of normal metals. We discuss this case first—elements
with magnetic regions will be discussed later. The kinetic
coefficients in Eq. (E2) obey γi j = γ ji when the variables

xi and x j have the same parity under time reversal. This
is the case for �Ns1 and �Ns2. When the two variables
have different parity—as for �N1 and �Ns1,2—the Onsager
relations demand γi j = −γ ji. Writing out an explicit matrix
equation [minus signs are introduced for easier comparison
with Eq. (23)]⎛

⎝�Ṅ1

�Ṅs1

�Ṅs2

⎞
⎠ = −

⎛
⎝ G −C1 −C2

−B1 −S1 −S12

−B2 −S21 −S2

⎞
⎠

⎛
⎝μe

1 − μe
2

μs
1/2

μs
2/2

⎞
⎠, (E8)

we can state that Bi = −Ci and S12 = S21 ≡ Sc. Here the
constant factor of 1/T in thermodynamic forces (E7) was
absorbed into the definition of matrix entries.

Due to the assumed absence of spin relaxation in the
reservoirs, the currents through the contacts are related to
time derivatives of the particle numbers as per Ie

1 = �Ṅ1, Is
r =

�Ṅsr , where we used the current sign definition of Sec. II A.
We then find⎛

⎜⎝
Ie
1

Is
1

Is
2

⎞
⎟⎠ =

⎛
⎜⎝

−G C1 C2

−C1 S1 Sc

−C2 Sc S2

⎞
⎟⎠

⎛
⎜⎝

μe
1 − μe

2

μs
1/2

μs
2/2

⎞
⎟⎠. (E9)

Equation (E9) can be recast in a form allowing direct com-
parison with Eq. (23) for collinear systems in Sec. III A.
Introducing the notation μs

r/2 = μ̃s
r as in Sec. II B, we find

⎛
⎜⎜⎜⎝

Ie
1

Ie
2

Is
1

Is
2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−G G C1 C2

G −G −C1 −C2

−C1 C1 S1 Sc

−C2 C2 Sc S2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μe
1

μe
2

μ̃s
1

μ̃s
2

⎞
⎟⎟⎟⎠. (E10)

We see that the requirement for the S entries coincides with
those of Eq. (23), while for the B entries one finds antisym-
metry rather than symmetry.

For a device with ferromagnetic elements, the time-reversal
property (a) is not satisfied. The standard arguments [23] show
that in this case the Onsager reciprocity relates the coefficients
γi j for two different systems. If {M} denotes magnetizations of
all the regions, the Onsager relations for the matrix in Eq. (E8)
read Bi({−M}) = −Ci({M}) and S12({−M}) = S21({M}).

APPENDIX F: CONDUCTANCE MATRIX OF A NORMAL
ELEMENT WITH SPIN-ORBIT INTERACTION

Here we derive Onsager relations directly from the dif-
fusion equations rather than from general principles. The
derivation uses the approach analogous to that employed in
Sec. II for diffusive reciprocity. It is instructive to see how the
presence of SOI invalidates the derivation of Sec. II, but not
that of this Appendix.

Diffusive currents in centrosymmetric metals with SOI
were discussed in Ref. [24]. Equations (5) and (6) of this paper
are valid for arbitrary spin accumulation, including that found
in a nonlinear regime. In a metal, spin accumulation is small,
and the equations can be linearized:

je
i = − σ

e2
(∇iμ̃

e + γ εi jα∇ jμ̃
sα ) ,

(F1)
jsα
i = − σ

e2
(∇iμ̃

sα − γ εiα j∇ jμ̃
e) ,
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where γ is a dimensionless coefficient characterizing the
relative strength of the spin-orbit interaction.

In a steady state in the absence of external magnetic field,
the charge and spin continuity equations read [24]

∇i je
i = 0 , ∇i jsα

i = −νμsα

τ
. (F2)

Expressions (F1) can be written in a compact form:

ja
i = −
ab

i j ∇ jμ̃
b .

Compared with the zero-SOI case as in Eq. (B2) of
Appendix B, now the conductivity matrix 
ab

i j acquired ad-
ditional spatial indices (i, j), and, more importantly, became
asymmetric.

In this Appendix we wish to derive relations between the
elements of the conductance matrix Gab

tt ′ in the presence of SOI
by appropriately modifying the arguments of Sec. II. Contrary
to the zero-SOI case, for an asymmetric 
ab

i j expressions such
as (A3) are no longer valid. However, by trial and error, one
can arrive at an analog of the quantity Q in Eq. (10). The
integral

Q12 =
∫ (

μ̃e(1)∇i je
i (2) − μ̃sα (1)∇i jsα

i (2)
)
dV

has the sought properties. On the one hand, from Eqs. (F2)
one immediately finds

Q12 = −
∫

μ̃sα (1)μ̃sα (2)

τ
dV. (F3)

On the other hand, integrating by parts, one finds

Q12 =
∮ [

μ̃e(1) je
i (2) − μ̃sα (1) jsα

i (2)
]
dAi

−
∫ [∇iμ̃

e(1) je
i (2) − ∇iμ

sα (1) jsα (2)
]
dV.

On the assumptions of Sec. II, the surface integral is expressed
as a sum

∑
t [μ̃e

t (1)Ie
t (2) − μ̃sα

t (1)Isα
t (2)]. After a few trans-

formations, recasting currents in the volume integral via (F1),

we find

Q12 =
∑

t

[
μ̃e

t (1)Ie
t (2) − μ̃sα

t (1)Isα
t (2)

]

+ σ

e2

∫
{[∇iμ̃

e(1)∇iμ̃
e(2) − ∇iμ

sα (1)∇iμ
sα (2)]

+ γ εi jα[∇iμ̃
e(1)∇ jμ̃

sα (2) + ∇iμ̃
e(2)∇ jμ̃

sα (1)]}dV.

(F4)

Upon defining a complementary quantity

Q21 =
∫ (

μ̃e(2)∇i je
i (1) − μ̃sα (2)∇i jsα

i (1)
)
dV ,

from (F3) it follows that Q12 − Q21 = 0, while (F4) shows that
the volume integrals in Q12 and Q21 are equal, so

0 = Q12 − Q21 =
∑

t

[
μ̃e

t (1)Ie
t (2) − μ̃sα

t (1)Isα
t (2)

]
− [

μ̃e
t (2)Ie

t (1) − μ̃sα
t (2)Isα

t (1)
]
. (F5)

This equation is the sought analog of Eq. (15) in Sec. II,
and we will now use it to relate the elements of conductance
matrix Gab

tt ′ in the presence of SOI.
Electric and spin currents can be written in the form

Ie
t = Gee

tt ′μ̃
e
t ′ + Aeα

tt ′ μ̃
sα
t ′ , (F6)

Isα
t = Bαe

tt ′ μ̃
e
t ′ + Sαβ

tt ′ μ̃
sβ
t ′ , (F7)

where Gee
tt ′ , Aeα

tt ′ , Bαe
tt ′ , and Sαβ

tt ′ are the blocks of Gab
tt ′ .

Substituting this into (F5) yields

0 = μ̃e
t (1)μ̃e

t ′ (2)
[
Gee

tt ′ − Gee
t ′t

] − μ̃sα
t (1)μ̃sβ

t ′ (2)
[
Sαβ

tt ′ − Sβα

t ′t

]
+ μ̃e

t (1)μ̃sα
t ′ (2)

[
Aeα

tt ′ + Bαe
t ′t

] + μ̃sα
t (1)μ̃e

t ′ (2)
[
Bαe

tt ′ + Aeα
t ′t

]
.

This identity should hold for arbitrary sets (μ̃e
t (1), μ̃sα

t (1)) and
(μ̃e

t (2), μ̃sα
t (2)), which is only possible if all combinations in

square brackets vanish, i.e.,

Gee
tt ′ = Gee

t ′t , Sαβ

tt ′ = Sβα

t ′t , Aeα
tt ′ = −Bαe

t ′t . (F8)

Requirements (F8) are precisely the Onsager relations, mani-
fest in the right-hand side of Eq. (E10).
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