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Magnon-phonon interactions in magnetic insulators
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We address the theory of magnon-phonon interactions and compute the corresponding quasiparticle and
transport lifetimes in magnetic insulators, with a focus on yttrium iron garnet at intermediate temperatures
from anisotropy- and exchange-mediated magnon-phonon interactions, the latter being derived from the volume
dependence of the Curie temperature. We find in general weak effects of phonon scattering on magnon
transport and the Gilbert damping of the macrospin Kittel mode. The magnon transport lifetime differs from
the quasiparticle lifetime at shorter wavelengths.
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I. INTRODUCTION

Magnons are the elementary excitations of magnetic order,
i.e., the quanta of spin waves. They are bosonic and carry
spin angular momentum. Of particular interest are the magnon
transport properties in yttrium iron garnet (YIG) due to its
very low damping (α < 10−4), which makes it one of the best
materials to study spin-wave or spin caloritronic phenomena
[1–6]. For instance, the spin Seebeck effect (SSE) in YIG
has been studied intensely in the past decade [7–13]. Here,
a temperature gradient in the magnetic insulator injects a
spin current into attached Pt contacts that is converted into
a transverse voltage by the inverse spin Hall effect. Most
theories explain the effect by thermally induced magnons and
their transport to and through the interface to Pt [7,14–19].
However, phonons also play an important role in the SSE
through their interactions with magnons [20–22].

Magnetoelastic effects in magnetic insulators were ad-
dressed first by Abrahams and Kittel [23–25] and by Kaganov
and Tsukernik [26]. In the long-wavelength regime, the strain-
induced magnetic anisotropy is the most important contribu-
tion to the magnetoelastic energy, whereas for shorter wave-
lengths, the contribution from the strain dependence of the
exchange interaction becomes significant [27–29]. Rückriegel
et al. [28] computed very small magnon decay rates in thin
YIG films due to magnon-phonon interactions with quasi-
particle lifetimes τqp � 480 ns, even at room temperature.
However, these authors do not consider the exchange inter-
action and the difference between quasiparticle and transport
lifetimes.

Recently, it has been suggested that magnon spin transport
in YIG at room temperature is driven by the magnon chemical
potential [3,30]. Cornelissen et al. [3] assume that at room
temperature, magnon-phonon scattering of short-wavelength
thermal magnons is dominated by the exchange interaction
with a scattering time of τqp ∼ 1 ps, which is much faster than
the anisotropy-mediated magnon-phonon coupling considered

in Ref. [28] and efficiently thermalizes magnons and phonons
to equal temperatures without magnon decay. Recently, the
exchange-mediated magnon-phonon interaction [31] has been
taken into account in a Boltzmann approach to the SSE, but
this work underestimates the coupling strength by an order of
magnitude, as we will argue below.

In this paper, we present an analytical and numerical study
of magnon-phonon interactions in bulk ferromagnetic insula-
tors, where we take both the anisotropy- and the exchange-
mediated magnon-phonon interactions into account. By using
diagrammatic perturbation theory to calculate the magnon
self-energy, we arrive at a wave-vector-dependent expression
of the magnon scattering rate, which is the inverse of the
magnon quasiparticle lifetime τqp. The magnetic Grüneisen
parameter �m = ∂ ln TC/∂ ln V [32,33], where TC is the Curie
temperature and V is the volume of the magnet, gives direct
access to the exchange-mediated magnon-phonon interaction
parameter. We predict an enhancement in the phonon scat-
tering of the Kittel mode at the touching points of the two-
magnon energy (of the Kittel mode and a finite momentum
magnon) and the longitudinal and transverse phonon disper-
sions for YIG at around 1.3 and 4.6 T. We also emphasize the
difference in magnon lifetimes that broaden light and neutron
scattering experiments, and the transport lifetimes that govern
magnon heat and spin transport.

The paper is organized as follows: In Sec. II we briefly
review the theory of acoustic magnons and phonons in ferro–
/ferrimagnets, particularly in YIG. In Sec. III we derive
the exchange- and anisotropy-mediated magnon-phonon in-
teractions for a cubic Heisenberg ferromagnet with nearest-
neighbor exchange interactions in the long-wavelength limit.
In Sec. IV we derive the magnon decay rate from the imag-
inary part of the magnon self-energy in a diagrammatic ap-
proach, and in Sec. V we explain the differences between the
magnon quasiparticle and transport lifetimes. Our numerical
results for YIG are discussed in Sec. VI. Finally, in Sec. VII
we summarize and discuss the main results of the present
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work. The validity of our long-wavelength approximation is
analyzed in Appendix A, and in Appendix B we explain why
second-order magnetoelastic couplings may be disregarded.
In Appendix C we briefly discuss the numerical methods used
to evaluate the k-space integrals.

II. MAGNONS AND PHONONS IN
FERROMAGNETIC INSULATORS

Without loss of generality, we focus our treatment on
yttrium iron garnet (YIG). The magnon band structure of YIG
has been determined by inelastic neutron scattering [34–36]
and by ab initio calculation of the exchange constants [37].
The complete magnon spectral function has been computed
for all temperatures by atomistic spin simulations [38], taking
all magnon-magnon interactions into account, but not the
magnon-phonon scattering. The pure phonon dispersion is
known as well [29,39]. In the following, we consider the inter-
actions of the acoustic magnons from the lowest magnon band
with transverse and longitudinal acoustic phonons, which al-
lows a semianalytic treatment but limits the validity of our re-
sults to temperatures below 100 K. Since the low-temperature
values of the magnetoelastic constants, sound velocities, and
magnetic Grüneisen parameter are not available for YIG,
we use throughout the material parameters under ambient
conditions.

A. Magnons

Spins interact with each other via dipolar and exchange
interactions. We disregard the former since at the energy scale
Edip ≈ 0.02 meV [28] it is only relevant for long-wavelength
magnons with wave vectors k � 6 × 107 m−1 and energies
Ek/kB � 0.2 K, which are negligible for the thermal magnon
transport in the temperature regime in which we are inter-
ested. The lowest magnon band can then be described by a
simple Heisenberg model on a course-grained simple cubic
ferromagnet with exchange interaction J ,

Hm = −J

2

∑
〈i �= j〉

Si · S j −
∑

i

gμBBSz
i , (2.1)

where the sum is over all nearest neighbors and h̄Si is the
spin operator at lattice site Ri. The lattice constant of the
cubic lattice or YIG is a = 12.376 Å and the effective spin
per unit cell h̄S = h̄Msa3/(gμB) ≈ 14.2h̄ at room temperature
[28] (S ≈ 20 for T � 50 K [40]), where the g-factor g ≈ 2,
μB is the Bohr magneton, and Ms the saturation magneti-
zation. The parameter J is an adjustable parameter that can
be fitted to experiments or computed from first principles.
B is an effective magnetic field that orients the ground-state
magnetization vector to the z axis and includes the (for YIG
small) magnetocrystalline anisotropy field. The 1/S expansion
of the spin operators in terms of Holstein-Primakoff bosons
reads [41]

S+
i = Sx + iSy ≈

√
2S[bi + O(1/S)], (2.2)

S−
i = Sx − iSy ≈

√
2S[b†

i + O(1/S)], (2.3)

Sz
i = S − b†

i bi, (2.4)

FIG. 1. Dispersion relations of the acoustic phonons and
magnons in YIG at zero magnetic field.

where b†
i and bi are the magnon creation and annihilation

operators with boson commutation rule [bi, b†
j] = δi, j . Then

Hm →
∑

k

Ekb†
kbk, (2.5)

where the magnon operators b†
k and bk are defined by

bi = 1√
N

∑
k

eik·Ri bk, (2.6)

b†
i = 1√

N

∑
k

e−ik·Ri b†
k, (2.7)

and N is the number of unit cells. The dispersion relation

Ek = gμBB + 4SJ
∑

α=x,y,z

sin2(kαa/2) (2.8)

becomes quadratic in the long-wavelength limit ka 	 1:

Ek = gμBB + Eexk2a2, (2.9)

where Eex = SJ . With Eex = kB × 40 K = 3.45 meV, the lat-
ter is a good approximation up to k0 = 1/a ≈ 8 × 108 m−1

[34]. The effective exchange coupling is then J ≈ 0.24 meV.
The lowest magnon band does not depend significantly on
temperature [38], which implies that Eex = SJ does not
depend strongly on temperature. The temperature depen-
dence of the saturation magnetization and effective spin
S should therefore not affect the low-energy exchange
magnons significantly. By using Eq. (2.9) in the follow-
ing, our theory is valid for k � k0 (see Fig. 1) or temper-
atures T � 100 K. In this regime, the cutoff of an ultra-
violet divergence does not affect results significantly (see
Appendix A). We disregard magnetostatic interactions that
affect the magnon spectrum only for very small wave vec-
tors since at low temperatures the phonon scattering is not
significant.

B. Phonons

We expand the displacement Xi of the position ri of unit
cell i from the equilibrium position Ri,

Xi = ri − Ri, (2.10)
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into the phonon eigenmodes Xqλ,

X α
i = 1√

N

∑
q,λ

eα
qλXqλeiq·Ri , (2.11)

where α ∈ {x, y, z} and q is a wave vector. We define polariza-
tions λ ∈ {1, 2, 3} for the elastic continuum [42],

eq1 = (cos θq cos φq, cos θq sin φq,− sin θq), (2.12)

eq2 = i(− sin φq, cos φq, 0), (2.13)

eq3 = i(sin θq cos φq, sin θq sin φq, cos θq), (2.14)

where the angles θq and φq are the spherical coordinates of

q = q(sin θq cos φq, sin θq sin φq, cos θq), (2.15)

which is valid for YIG up to 3 THz (12 meV) [29,39]. The
phonon Hamiltonian then reads

Hp =
∑
qλ

[
P−qλPqλ

2m
+ m

2h̄2 ε2
qλX−qλXqλ

]
,

=
∑
qλ

εqλ

(
a†

qλaqλ + 1

2

)
, (2.16)

where the canonical momenta Pqλ obey the commutation rela-
tions [Xqλ, Pq′λ′] = ih̄δq,−q′δλλ′ and the mass of the YIG unit
cell m = ρa3 = 9.8 × 10−24 kg [27]. The phonon dispersions
for YIG then read

εqλ = h̄cλ|q|, (2.17)

where c1,2 = ct = 3843 m/s is the transverse sound velocity
and c3 = cl = 7209 m/s is the longitudinal velocity at room
temperature [27]. In terms of phonon creation and annihilation
operators,

Xqλ = aqλ + a†
−qλ√

2mεqλ/h̄2
, Pqλ = 1

i

√
mεqλ

2
(aqλ − a†

−qλ),

(2.18)

and [aqλ, a†
q′λ′] = δq,q′δλ,λ′ .

In Fig. 1 we plot the longitudinal and transverse phonon
and the acoustic magnon dispersion relations for YIG at zero
magnetic field. The magnon-phonon interaction leads to an
avoided level crossing at points where magnon and phonon
dispersion cross, as discussed in Refs. [27] and [28].

III. MAGNON-PHONON INTERACTIONS

We derive in this section the magnon-phonon interactions
due to the anisotropy and exchange interactions for a cubic
lattice ferromagnet.

A. Phenomenological magnon-phonon interaction

In the long-wavelength/continuum limit (k � k0), the mag-
netoelastic energy to lowest order in the deviations of magne-

tization and the lattice from equilibrium reads [23–26,28]

Eme = n

M2
s

∫
d3r

∑
αβ

[
BαβMα (r)Mβ (r)

+ B′
αβ

∂M(r)

∂rα

· ∂M(r)

∂rβ

]
Xαβ (r), (3.1)

where n = 1/a3. The strain tensor Xαβ is defined in terms of
the lattice displacements Xα ,

Xαβ (r) = 1

2

[
∂Xα (r)

∂rβ

+ ∂Xβ (r)

∂rα

]
, (3.2)

with, for a cubic lattice [28],

Bαβ = δαβB‖ + (1 − δαβ )B⊥, (3.3)

B′
αβ = δαβB′

‖ + (1 − δαβ )B′
⊥. (3.4)

Bαβ is caused by magnetic anisotropies and B′
αβ by the

exchange interaction under lattice deformations. For YIG at
room temperature [27,33],

B‖ = kB × 47.8 K = 4.12 meV, (3.5)

B⊥ = kB × 95.6 K = 8.24 meV, (3.6)

B′
‖/a2 = kB × 2727 K = 235 meV, (3.7)

B′
⊥/a2 ≈ 0. (3.8)

We discuss the values for B′
‖ and B′

⊥ in Sec. III C.

B. Anisotropy-mediated magnon-phonon interaction

The magnetoelastic anisotropy (3.1) is described by the
Hamiltonian [28]

Han
mp =

∑
qλ

[�qλb−qXqλ + �∗
−qλb†

qXqλ]

+ 1√
N

∑
q,k,k′

δk−k′−q,0

∑
λ

�an
kk′,λb†

kbk′Xqλ

+ 1√
N

∑
q,k,k′

δk+k′+q,0

∑
λ

�bb
kk′,λbkbk′Xqλ

+ 1√
N

∑
q,k,k′

δk+k′−q,0

∑
λ

�b̄b̄
kk′,λb†

kb†
k′Xqλ, (3.9)

with interaction vertices

�qλ = B⊥√
2S

[
iqze

x
qλ + qze

y
qλ + (iqx + qy)ez

qλ

]
, (3.10)

�an
kk′,λ = Uk−k′,λ, (3.11)

�bb
kk′,λ = V−k−k′,λ, (3.12)

�b̄b̄
kk′,λ = V ∗

−k−k′,λ, (3.13)

and

Uq,λ = iB‖
S

[
qxex

qλ + qyey
qλ − 2qze

z
qλ

]
, (3.14)

Vq,λ = iB‖
S

[
qxex

qλ − qyey
qλ

] + B⊥
S

[
qyex

qλ + qxey
qλ

]
. (3.15)
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The one-magnon–two-phonon process is of the same or-
der in the total number of magnons and phonons as the
two-magnon–one-phonon processes, but its effect on magnon
transport is small, as shown in Appendix B.

C. Exchange-mediated magnon-phonon interaction

The exchange-mediated magnon-phonon interaction is ob-
tained under the assumption that the exchange interaction
Ji j between two neighboring spins at lattice sites ri and r j

depends only on their distance, which leads to the expansion
to leading order in the small parameter (|ri − r j | − a),

Ji j = J (|ri − r j |) ≈ J + J ′ · (|ri − r j | − a), (3.16)

where a is the equilibrium distance and J ′ = ∂J/∂a. With ri =
Ri + XRi , the Heisenberg Hamiltonian (2.1) is modulated by

Hex
mp = −J ′ ∑

i

∑
α=x,y,z

(
X α

Ri+aeα
− X α

Ri

)
SRi · SRi+aeα

, (3.17)

where eα is a unit vector in the α direction. Expanding the
displacements in terms of the phonon and magnon modes

Hex
mp = 1√

N

∑
q,k,k′

δk−k′−q,0

∑
λ

�ex
kk′,λb†

kbk′Xqλ, (3.18)

with interaction

�ex
kk′,λ = 8iJ ′S

∑
α

eα
k−k′,λ sin

(
kαa

2

)
sin

(
k′
αa

2

)

× sin

(
(kα − k′

α )a

2

)

≈ iJ ′a3S
∑

α

eα
k−k′,λkαkα′ (kα − k′

α ), (3.19)

where the last line is the long-wavelength expansion. The
magnon-phonon interaction

�b̄b
k,k′,λ = �ex

k,k′,λ + �an
k,k′,λ (3.20)

conserves the magnon number, while (3.12) and (3.13) do not.
Phonon numbers are not conserved in either case.

The value of J ′ for YIG is determined by the magnetic
Grüneisen parameter [32,33]

�m = ∂ ln TC

∂ ln V
= ∂ ln J

∂ ln V
= J ′a

3J
, (3.21)

where V = Na3 is the volume of the magnet. The only as-
sumption here is that the Curie temperature TC scales linearly
with the exchange constant J [43]. �m has been measured for
YIG via the compressibility to be �m = −3.26 [32], and via
thermal expansion, �m = −3.13 [33], so we set �m = −3.2.
For other materials, the magnetic Grüneisen parameter is
also of the order of unity and in many cases �m ≈ −10/3
[32,33,44]. A recent ab initio study of YIG finds �m = −3.1
[45].

Comparing the continuum limit of Eq. (3.17) with the
classical magnetoelastic energy (3.1)

B′
‖ = 3�mJS2a2/2, (3.22)

FIG. 2. Feynman diagrams of interactions between magnons
(solid lines) and phonons (dashed lines). The arrows indicate
the energy-momentum flow. (a) Magnon-phonon interconversion,
(b) magnon number-conserving magnon-phonon interaction, (c) and
(d) magnon number nonconserving magnon-phonon interactions.

where for YIG B′
‖/a2 ≈ 235 meV. We disregard B′

⊥ since
it vanishes for nearest-neighbor interactions by cubic lattice
symmetry.

The coupling strength of the exchange-mediated magnon-
phonon interaction can be estimated from the exchange energy
SJ ′a ≈ Eex = SJ [31,46] following Akhiezer et al. [47,48].
Our estimate of SJ ′a = 3�mSJ is larger by 3�m, i.e., one
order of magnitude. Since the scattering rate is proportional
to the square of the interaction strength, our estimate of
the scattering rate is a factor 100 larger than previous ones.
The assumption J ′a ≈ J is too small to be consistent with
the experimental Grüneisen constant [32,33]. In Ref. [3], an
educated guess was made of J ′a ≈ 100J, which we now judge
to be too large.

D. Interaction vertices

The magnon-phonon interactions in the Hamiltonian (3.9)
are shown in Fig. 2 as Feynman diagrams. Figure 2(a) il-
lustrates magnon and phonon interconversion, which is re-
sponsible for the magnon-phonon hybridization and level
splitting at the crossing of magnon and phonon dispersions
[27,28]. The divergence of this diagram at the magnon-
phonon crossing points is avoided by either direct diago-
nalization of the magnon-phonon Hamiltonian [42] or by
cutting off the divergence by a lifetime parameter [31]. This
process still generates enhanced magnon transport that is
observable as magnon polaron anomalies in the spin Seebeck
effect [22] or spin-wave excitation thresholds [49,50], but
these are strongly localized in phase space and disregarded
in the following, where we focus on the magnon scattering
rates to leading order in 1/S of the scattering processes in
Figs. 2(b)–2(d).

IV. MAGNON SCATTERING RATE

Here we derive the magnon reciprocal quasiparticle
lifetime τ−1

qp = γ as the imaginary part of the
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wave-vector-dependent self-energy, caused by acoustic
phonon scattering [28],

γ (k) = −2

h̄
Im�(k, Ek/h̄ + i0+). (4.1)

This quantity is in principle observable by inelastic neutron
scattering. The total decay rate

γ = γ c + γ nc + γ other (4.2)

is the sum of the magnon number conserving decay rate γ c

and the magnon number nonconserving decay rate γ nc, which
are related to the magnon-phonon scattering time τmp and the
magnon-phonon dissipation time τmr by

τmp = 1

γ c
, τmr = 1

γ nc
. (4.3)

γ other is caused by magnon-magnon and magnon disorder
scattering, therefore it is beyond the scope of this work.

The self-energy to leading order in the 1/S expansion is of second order in the magnon-phonon interaction [28],

�2(k, iω) = 1

N

∑
k′λ

h̄2
∣∣�b̄b

k,k′,λ

∣∣2

2mεk−k′,λ

[
nB(εk−k′,λ) − nB(Ek′ )

ih̄ω + εk−k′,λ − Ek′
+ 1 + nB(εk−k′,λ) + nB(Ek′ )

ih̄ω − εk−k′,λ − Ek′

]

− 1

N

∑
k′λ

h̄2
∣∣�bb

k,k′,λ

∣∣2

2mεk−k′,λ

[
1 + nB(εk+k′,λ) + nB(Ek′ )

ih̄ω + εk+k′,λ + Ek′
+ nB(εk+k′,λ) − nB(Ek′ )

ih̄ω − εk+k′,λ + Ek′

]
, (4.4)

where the magnon number conserving magnon-phonon scattering vertex �b̄b
k,k′,λ = �ex

k,k′,λ + �an
k,k′,λ and the Planck (Bose)

distribution function nB(ε) = (eβε − 1)−1 with inverse temperature β = 1/(kBT ). The Feynman diagrams representing the
magnon number conserving and nonconserving contributions to the self-energy are shown in Fig. 3.

We write the decay rate in terms of four contributions,

γ (k) = γ c
out(k) + γ nc

out(k) − γ c
in(k) − γ nc

in (k), (4.5)

where “out” and “in” denote the out-scattering and in-scattering parts. The contributions to the decay rate read [28]

γ c
out(k) = π h̄

mN

∑
q,λ

∣∣�b̄b
k,k−q,λ

∣∣2

εqλ

{[1 + nB(Ek−q)]nB(εqλ)δ(Ek − Ek−q + εqλ) + [1 + nB(Ek−q)][1 + nB(εqλ)]δ(Ek − Ek−q − εqλ)},

(4.6)

γ c
in(k) = π h̄

mN

∑
q,λ

∣∣�b̄b
k,k−q,λ

∣∣2

εqλ

{nB(Ek−q)[1 + nB(εqλ)]δ(Ek − Ek−q + εqλ) + nB(Ek−q)nB(εqλ)δ(Ek − Ek−q − εqλ)}, (4.7)

γ nc
out(k) = π h̄

mN

∑
q,λ

∣∣�bb
k,q−k,λ

∣∣2

εqλ

{nB(Eq−k )[1 + nB(εqλ)]δ(Ek + Eq−k − εqλ)}, (4.8)

γ nc
in (k) = π h̄

mN

∑
q,λ

∣∣�bb
k,q−k,λ

∣∣2

εqλ

{[1 + nB(Eq−k )]nB(εqλ)δ(Ek + Eq−k − εqλ)}, (4.9)

where the sum is over all momenta q in the Brillouin zone.
Here the magnon/phonon annihilation rate is proportional
to the boson number nB, while the creation rate scales with

FIG. 3. Feynman diagrams representing the self-energy Eq. (4.4)
due to (a) magnon number-conserving magnon-phonon interac-
tions and (b) magnon number nonconserving magnon-phonon
interactions.

1 + nB. For example, in the out-scattering rate γ c
out(k) the

incoming magnon with momentum k gets scattered into the
state k − q and a phonon is either absorbed with probability
∼nB or emitted with probability ∼(1 + nB). The out- and
in-scattering rates are related by the detailed balance

γ c
in(k)/γ c

out(k) = γ nc
in (k)/γ nc

out(k) = e−βEk . (4.10)

For high temperatures kBT � Ek, we may expand the Bose
functions nB(Ek ) ∼ kBT/Ek and we find γin ∼ γout ∼ T 2 and
γ = γout − γin ∼ T . For low temperatures kBT 	 Ek, the out-
scattering rate γout → const and the in-scattering rate γin ∼
e−βEk → 0. The scattering processes (c) and (d) in Fig. 2
conserve energy and linear momentum, but not angular mo-
mentum. A loss of angular momentum after integration over
all wave vectors corresponds to a mechanical torque on the
total lattice that contributes to the Einstein–de Haas effect
[51].
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V. MAGNON TRANSPORT LIFETIME

In this section, we compare the transport lifetime τt and
the magnon quasiparticle lifetime τqp that can be very different
[52–54], but, to the best of our knowledge, has not yet been ad-
dressed for magnons. The magnon decay rate is proportional
to the imaginary part of the self-energy, as shown in Eq. (4.1).
On the other hand, the transport is governed by transport life-
time τt in the Boltzmann equation that agrees with τqp only in
the relaxation time approximation. The stationary Boltzmann
equation for the magnon distribution can be written as [3,42]

∂ fk(r)

∂r
· ∂Ek

∂ (h̄k)
= �in[ f ] − �out[ f ], (5.1)

where fk(r) is the magnon distribution function. The “in” and
“out” contributions to the collision integral are related to the
previously defined in- and out-scattering rates by

�in[ f ] = (1 + fk )γin[ f ], (5.2)

�out[ f ] = fkγout[ f ], (5.3)

where the equilibrium magnon distribution nB(Ek ) is replaced
by the nonequilibrium distribution function fk. The factor
(1 + fk ) corresponds to the creation of a magnon with mo-
mentum k in the in-scattering process and the factor fk to
the annihilation in the out-scattering process. The phonons are
assumed to remain at thermal equilibrium, so we disregard the
phonon drift contribution that is expected in the presence of a
phononic heat current.

Magnon transport is governed by three linear-response
functions, i.e., spin and heat conductivity and the spin Seebeck
coefficient [42]. These can be obtained from the expansion of
the distribution function in terms of temperature and chemical
potential gradients, and they correspond to two-particle Green
functions with vertex corrections that reflect the nonequilib-
rium in-scattering processes, captured by a transport lifetime
τt that can be different from the quasiparticle (dephasing)
lifetime τqp defined by the self-energy. We define the transport
lifetime of a magnon with momentum k in terms of the
collision integral

�out[ f ] − �in[ f ] = 1

τk,t [ f ]
[ fk(r) − f0,k], (5.4)

with f0,k = nB(Ek ), and we assume a thermalized quasiequi-
librium distribution function

fk(r) = nB

(
Ek − μ(r)

kBT (r)

)
, (5.5)

where μ is the magnon chemical potential. We linearize the
function fk in terms of small deviations δ fk from equilibrium
f0,k,

δ fk = fk − f0,k (5.6)

leading to [3]

δ fk = τk,t [ f ]
∂ f0,k

∂Ek

∂Ek

∂ (h̄k)
·
(

∇μ + Ek − μ

T
∇T

)
, (5.7)

where the gradients of chemical potential ∇μ and temperature
∇T drive the magnon current. In the relaxation time approx-

imation, we disregard the dependence of τk,t [ f ] on δ f and
recover the quasiparticle lifetime τk,t → τk,qp.

To first order in the phonon operators and second order
in the magnon operators, the collision integral for magnon
number nonconserving processes is

�nc
out[ f ] − �nc

in [ f ]

= π h̄

mN

∑
qλ

∣∣�bb
k,q−k,λ

∣∣2

εqλ

δ(Ek + Eq−k − εqλ)

× [(1 + nqλ) fk fq−k − nqλ(1 + fq−k )(1 + fk )], (5.8)

where the interaction vertex �bb
k,k′,λ is given by Eq. (3.12) and

nqλ = nB(εqλ). By using the expansion (5.6) in the collision
integral that vanishes at equilibrium,

�out[ f0] − �in[ f0] = 0, (5.9)

we arrive at

1

τ nc
k,t

= π h̄

mN

∑
qλ

∣∣�bb
k,q−k,λ

∣∣2

εqλ

δ(Ek + Eq−k − εqλ)

×
[

nB(Ek−q) − nqλ + δ fq−k

δ fk
[nB(Ek ) − nqλ]

]
.

(5.10)

For the magnon number conserving process, the derivation is
similar and we find

1

τ c
k,t

= π h̄

mN

∑
qλ

∣∣�b̄b
k,k−q,λ

∣∣2

εqλ

[
δ(Ek − Ek−q + εqλ)

×
(

nqλ − nB(Ek−q) − δ fk−q

δ fk
[nB(Ek ) + nqλ + 1]

)

+ δ(Ek − Ek−q − εqλ)

×
(

1 + nB(Ek−q) + nqλ + δ fk−q

δ fk
[nB(Ek ) − nqλ]

)]
,

(5.11)

with the interaction vertex �b̄b
k,k′,λ given by Eq. (3.20). Due

to the δ fk−q/δ fk term, this is an integral equation. It can
be solved iteratively to generate a geometric series referred
to as vertex correction in diagrammatic theories. By sim-
ply disregarding the in-scattering with terms δ fk−q/δ fk, the
transport lifetime reduces to the quasiparticle lifetime of the
self-energy. We leave the general solution of this integral
equation for future work, but we argue in Sec. VI D that the
vertex corrections are not important in our regime of interest.

VI. NUMERICAL RESULTS

A. Magnon decay rate

In the following, we present and analyze our results for
the magnon decay rates in YIG. We first consider the case of
a vanishing effective magnetic field (B = 0) and discuss the
magnetic field dependence in Sec. VI C. Since our model is
only valid in the long-wavelength (k < 8×108 m−1) and low-
temperature (T � 100 K) regime, we focus first on T = 50 K
and discuss the temperature dependence in Sec. VI B.
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FIG. 4. Magnon decay rate in YIG due to magnon-phonon in-
teractions for magnons propagating along various directions at T =
50 K and B = 0. We denote the propagation direction by (lmn), i.e.,
lex + mey + nez. The inset shows the relative deviation δγ c/γ c from
the (100) direction.

In Fig. 4 we show the magnon number conserving decay
rate γ c(k), which is on the displayed scale dominated by
the exchange-mediated magnon-phonon interaction and is
isotropic for long-wavelength magnons.

In Fig. 5 we compare the contribution from the exchange-
mediated magnon-phonon interaction (γ c ∼ k4) and from the
anisotropy-mediated magnon-phonon interaction (γ c ∼ k2).
We observe a crossover at k ≈ 4 × 107 m−1: for much smaller
wave numbers, the exchange contribution can be disregarded
and for larger wave numbers the exchange contribution be-
comes dominant.

The magnon number nonconserving decay rate γ nc in
Fig. 6 is much smaller than the magnon conserving one. This
is consistent with the low magnetization damping of YIG,
i.e., the magnetization is long-lived. We observe divergent
peaks at the crossing points (shown in Fig. 1) with the ex-
ception of the (001) direction. These divergences occur when
magnons and phonons are degenerate at k = 0.48 × 109 m−1

(1.2 meV) and k = 0.9 × 109 m−1 (4.3 meV), respectively, at
which the Boltzmann formalism does not hold; a treatment in

FIG. 5. Comparison of the contributions from exchange-
mediated and anisotropy-mediated magnon-phonon interactions to
the magnon number conserving scattering rate γ c at T = 50 K and
B = 0.

FIG. 6. Magnon decay rate in YIG due to magnon number non-
conserving magnon-phonon interactions for magnons propagating
along various directions at T = 50 K and B = 0.

the magnon-polaron basis [42] or a broadening parameter [31]
would get rid of the singular behavior. The divergences are
also suppressed by arbitrarily small effective magnetic fields
(see Sec. VI C). There are no peaks along the (001) direction
because in the (001) direction the vertex function Vq,λ [see
Eq. (3.15)] vanishes for q = (0, 0, kz ). For k > h̄cl/[D(

√
8 −

2)] = 1.085 × 109 m−1 the decay rate γ nc vanishes because
the decay process does not conserve energy [δ(Ek + Eq−k −
εqλ) = 0].

B. Temperature dependence

Above we focused on T = 50 K and explained that we
expect a linear temperature dependence of the magnon de-
cay rates at high but not low temperatures. Figure 7 shows
our results for the temperature dependence at kx = 108 m−1.
Deviations from the linear dependence at low temperatures
occur when quantum effects set in, i.e., the Rayleigh-Jeans
distribution does not hold anymore,

1

eε/(kBT ) − 1
�≈ kBT

ε
. (6.1)

FIG. 7. Temperature dependence of the magnon decay rates γ nc

and γ c at B = 0, kx = 108 m−1, and ky = kz = 0, i.e., along (100).
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FIG. 8. Magnetic field dependence of the magnon number non-
conserving magnon decay rate in YIG at T = 50 K with magnon
momentum along (100).

C. Magnetic field dependence

The numerical results presented above are for a mon-
odomain magnet in the limit of small applied magnetic fields.
A finite magnetic field B along the magnetization direction
induces an energy gap gμBB in the magnon dispersion, which
shifts the positions of the magnon-phonon crossing points
to longer wavelengths. The magnetic field suppresses the
(unphysical) sharp peaks at the crossing points (see Fig. 8)
that are caused by the divergence of the Planck distribution
function for a vanishing spin wave gap.

In the magnon number conserving magnon-phonon in-
teractions, the magnetic field dependence cancels in the δ

function and enters only in the Bose function via nB (magnetic
freeze-out). Figure 9 shows that the magnetic field mainly
affects magnons with energies �2gμBB = 0.23(B/T) meV.

As shown in Fig. 10, the magnon decay by phonons does
not vanish for the k = 0 Kittel mode, but only in the presence
of a spin wave gap E0 = gμBB. Both magnon conserving and
nonconserving scattering processes contribute. The divergent
peaks at B ≈ 1.3 T and B ≈ 4.6 T in γ nc are caused by energy
and momentum conservation in the two-magnon–one-phonon

FIG. 9. Relative deviation δγ c/γ c from the B = 0 result of the
magnon number conserving magnon decay rate in YIG at T = 50 K
with magnon momentum along (100).

FIG. 10. Magnetic field dependence of the magnon decay rates
in YIG at k = 0 and T = 50 K.

scattering process,

δ(Ek=0 + Eq − εqλ) = δ(2gμBB + Eexq2a2 − h̄cλq), (6.2)

when the gradient of the argument of the δ function vanishes,

∇q(Ek=0 + Eq − εqλ) = 0, (6.3)

i.e., the two-magnon energy Ek=0 + Eq touches either the
transverse or longitudinal phonon dispersion εqλ. The total
energy of the two magnons is equivalent to the energy of a
single magnon with momentum q but in a field 2B, resulting in
the divergence at fields that are half of those for the magnon-
polaron observed in the spin Seebeck effect [31,42]. The two-
magnon touching condition can be satisfied in all directions
of the phonon momentum q, which therefore contributes to
the magnon decay rate when integrating over the phonon
momentum q. For k �= 0 this two-magnon touching condition
can only be fulfilled for phonons along a particular direction
and the divergence is suppressed.

The magnon decay rate is related to the Gilbert damping αk
as h̄γk = 2αkEk [55]. We find that phonons contribute only
weakly to the Gilbert damping, αnc

0 = h̄γ nc
0 /(2E0) ∼ 10−8

at T = 50 K, which is much smaller than the total Gilbert
damping α ∼ 10−5 in YIG, but the peaks at 1.3 and 4.6 T
might be observable. The phonon contribution to the Gilbert
damping scales linearly with temperature, so it is twice as
large at 100 K. At low temperatures (T � 100 K), Gilbert
damping in YIG has been found to be caused by two-level
systems [56] and impurity scattering [40], while for higher
temperatures magnon-phonon [57] and magnon-magnon scat-
tering involving optical magnons [34] have been proposed
to explain the observed damping. Enhanced damping as a
function of magnetic field at higher temperatures might reveal
other van Hove singularities in the joint magnon-phonon
density of states.

D. Magnon transport lifetime

We do not attempt a full solution of the integral equations
(5.10) and (5.11) for the transport lifetime. However, we can
still estimate its effect by the observation that the ansatz τ−1

k,t ∼
kn can be an approximate solution of the Boltzmann equation
with in-scattering.
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FIG. 11. Inverse of the magnon transport lifetime in YIG [with
magnon momentum along (100)] due to magnon number conserving
magnon-phonon interactions at T = 50 K and B = 0 for magnons
along the (100) direction.

Our results for the magnon number conserving interaction
are shown in Fig. 11 (for ∇T = 0 and finite ∇μ||ex), where
γt = τ−1

t . We consider the cases n = 0, 2, 4, where n = 0 or
τk,t = const would be the solution for a short-range scattering
potential. For very long wavelengths (k � 4 × 107 m−1) the
inverse quasiparticle lifetime τ−1

k,qp ∼ k2, and for shorter wave-

lengths τ−1
k,qp ∼ k4. n = 2 is a self-consistent solution only for

very small k � 4 × 107 m−1, while τ−1
k,qp ∼ k4 is a good ansatz

up to k � 0.3 × 109 m−1. We see that the transport lifetime
approximately equals the quasiparticle lifetime in the regime
of the validity of the n = 4 power law.

For the magnon number nonconserving processes in
Fig. 12, the quasiparticle lifetime behaves as τ−1

k,qp ∼ k2. The
ansatz n = 2 turns out to be self-consistent and we see devi-
ations of the transport lifetime from the quasiparticle lifetime
for k � 5 × 107 m−1. The plot only shows our results for k <

1 × 108 m−1 because our assumption of an isotropic lifetime
is not valid for higher momenta in this case.

We conclude that for YIG in the long-wavelength regime
the magnon transport lifetime (due to magnon-phonon
interactions) should be approximately the same as the

FIG. 12. Inverse of the magnon transport lifetime in YIG [with
magnon momentum along (100)] due to magnon number noncon-
serving interactions at T = 50 K and B = 0.

quasiparticle lifetime, but deviations at shorter wavelengths
require more attention.

VII. SUMMARY AND CONCLUSION

We calculated the decay rate of magnons in YIG in-
duced by magnon-phonon interactions in the long-wavelength
regime (k � 1 × 109 m−1). Our model takes only the acoustic
magnon and phonon branches into account and is there-
fore valid at low to intermediate temperatures (T � 100 K).
The exchange-mediated magnon-phonon interaction has been
recently identified as a crucial contribution to the overall
magnon-phonon interaction in YIG at high temperatures
[3,29,45]. We emphasize that its coupling strength can be
derived from experimental values of the magnetic Grüneisen
parameter �m = ∂ ln TC/∂ ln V [32,33]. In previous works this
interaction has been either disregarded [28], underestimated
[29,46], or overestimated [3].

In the ultra-long-wavelength regime, the wave-vector-
dependent magnon decay rate γ (k) is determined by
the anisotropy-mediated magnon-phonon interaction with
γ (k) ∼ k2, while for shorter wavelengths k � 4 × 107 m−1

the exchange-mediated magnon-phonon interaction becomes
dominant, which scales as γ (k) ∼ k4. The magnon number
nonconserving processes are caused by spin-orbit interaction,
i.e., the anisotropy-mediated magnon-phonon interaction, and
are correspondingly weak.

In a finite magnetic field, the average phonon scattering
contribution, from the mechanism under study, to the Gilbert
damping of the k = 0 macrospin Kittel mode is about three
orders of magnitude smaller than the best values for the
Gilbert damping α ∼ 10−5. However, we predict peaks at 1.3
and 4.6 T, that may be experimentally observable in high-
quality samples.

The magnon transport lifetime, which is given by the
balance between in- and out-scattering in the Boltzmann
equation, is in the long-wavelength regime approximately
the same as the quasiparticle lifetime. However, the magnon
quasiparticle and transport lifetime differ more significantly at
shorter wavelengths. A theory for magnon transport at room
temperature should therefore include the “vertex corrections.”

A full theory of magnon transport at high temperature
requires a method that takes the full dispersion relations
of acoustic and optical phonons and magnons into account.
This would also require a full microscopic description of the
magnon-phonon interaction, since the magnetoelastic energy
used here only holds in the continuum limit.
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FIG. 13. Dependence the magnon decay rate along (100) on the high magnon momentum cutoff kc for the (a) magnon number conserving
(γ c) and (b) nonconserving (γ nc) contributions at T = 50 K and B = 0.

APPENDIX A: LONG-WAVELENGTH APPROXIMATION

The theory is designed for magnons with momentum
k < 0.8 × 109 m−1 and phonons with momentum q < 2.5 ×
109 m−1 (corresponding to phonon energies/frequencies �
12 meV/3 THz), but relies on high-momentum cutoff pa-
rameters kc because of the assumption of quadratic/linear
dispersion of magnon/phonons. We see in Fig. 13 that the
scattering rates only weakly depend on kc.

The dependence of the scattering rate on the phonon mo-
mentum cutoff qc is shown in Fig. 14. qc = 3.15 × 109 m−1

corresponds to an integration over the whole Brillouin zone,
approximated by a sphere. From these considerations we
estimate that the long-wavelength approximation is reliable
for k � 8 × 108 m−1. Optical phonons (magnons) that are
thermally excited for T � 100 K (300 K) are not considered
here.

APPENDIX B: SECOND-ORDER MAGNETOELASTIC
COUPLING

The magnetoelastic energy is usually expanded only to first
order in the displacement fields. Second-order terms can be-
come important, e.g., when the first-order terms vanish. This
is the case for one-magnon two-phonon scattering processes.
The first-order term∑

qλ

[�qλb−qXqλ + �∗
−qλb†

qXqλ] (B1)

only contributes when phonon and magnon momenta and
energies cross, giving rise to magnon polaron modes [42].
In other areas of reciprocal space, the second-order term

should therefore be considered. Eastman [58,59] derived the
second-order magnetoelastic energy and determined the cor-
responding coupling constants for YIG. In momentum space,
the relevant contribution to the Hamiltonian is of the form

H2p1m = 1√
N

∑
k,q1,λ1,q2,λ2

(
δq1+q2+k,0�

b
q1λ1,q2λ2

Xq1λ1 Xq2λ2 bk

+ δq1+q2−k,0�
b̄
q1λ1,q2λ2

Xq1λ1 Xq2λ2 b†
k

)
, (B2)

where the interaction vertices are symmetrized,

�b
q1λ1,q2λ2

= 1

2

(
�̃b

q1λ1,q2λ2
+ �̃b

q2λ2,q1λ1

)
, (B3)

and obey

�b
q1λ1,q2λ2

= (
�b̄

−q1λ1,−q2λ2

)∗
. (B4)

The nonsymmetrized vertex function is

�̃b
q1λ1,q2λ2

= 1

a2
√

2S
[B144(iI1 − I1,x↔y) + B155(iI2 − I2,x↔y)

+ B456(iI3 − I3,x↔y)], (B5)

with

I1 = a2ex
q1λ1

qx
1

[
ey

q2λ2
qz

2 + ez
q2λ2

qy
2

]
, (B6)

I2 = a2
[
ey

q1λ1
qy

1 + ez
q1λ1

qz
1

][
ey

q2λ2
qz

2 + ez
q2λ2

qy
2

]
, (B7)

I3 = a2
[
ex

q1λ1
qz

1 + ez
q1λ1

qx
1

][
ex

q2λ2
qy

2 + ey
q2λ2

qx
2

]
, (B8)

FIG. 14. Dependence the magnon decay rate along (100) on the high phonon momentum cutoff qc for the (a) magnon number conserving
(γ c) and (b) nonconserving (γ nc) contributions at T = 50 K and B = 0.
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FIG. 15. Feynman diagram representing the self-energy
Eq. (B12) due to one-magnon–two-phonon processes.

and x ↔ y denotes an exchange of x and y. The relevant
coupling constants in YIG are [58,59]

B144 = −6 ± 48 meV, (B9)

B155 = −44 ± 6 meV, (B10)

B456 = −32 ± 8 meV. (B11)

The magnon self-energy (see Fig. 15) reads

�2p1m(k, iω) = − 2

N

∑
q1,λ1,q2,λ2

1

β

∑
�

δq1+q2+k,0

× ∣∣�b
q1λ1,q2λ2

∣∣2
Fλ1 (q1,�)Fλ2 (q2,−� − ω)

(B12)

with phonon propagator

Fλ(q,�) = h̄2

m

1

h̄2�2 + ε2
qλ

(B13)

and it leads to a magnon decay rate

γ nc
2p (k) = −2

h̄
Im�2p1m(k, iω → Ek/h̄ + i0+)

= π h̄3

m2N

∑
q1,λ1,q2,λ2

δq1+q2+k,0
1

ε1ε2

∣∣�b
q1λ1,q2λ2

∣∣2

× {2δ(Ek + ε1 − ε2)[n1 − n2]

+ δ(Ek − ε1 − ε2)[1 + n1 + n2]}, (B14)

where

n1 = nB
(
εq1λ1

)
, n2 = nB

(
εq2λ2

)
, (B15)

ε1 = εq1λ1 , ε2 = εq2λ2 . (B16)

The first term in curly brackets on the right-hand side of
Eq. (B14) describes annihilation and creation of a phonon as
a sum of out-scattering minus in-scattering contributions,

n1(1 + n2) − (1 + n1)n2 = n1 − n2, (B17)

while the second term can be understood in terms of out-
scattering by the creation of two phonons and the in-scattering

FIG. 16. Two-phonon contribution to the magnon number non-
conserving magnon scattering rate with magnon momentum along
(100) for different values of the phonon momentum cutoff qc at
T = 50 K and B = 0.

by annihilation of two phonons,

(1 + n1)(1 + n2) − n1n2 = 1 + n1 + n2. (B18)

For this one-magnon–two-phonon process, the quasiparticle
and the transport lifetimes are the same,

τt = τqp, (B19)

since this process involves only a single magnon that is
either annihilated or created. The collision integral is then
independent of the magnon distribution of other magnons, and
the transport lifetime reduces to the quasiparticle lifetime.

The two-phonon contribution to the magnon scattering
rate in YIG at T = 50 K and along the (100) direction as
shown in Fig. 16 is more than two orders of magnitude
smaller than that from one-phonon processes and therefore
disregarded in the main text. The numerical results depend
strongly on the phonon momentum cutoff qc, even in the long-
wavelength regime, which implies that the magnons in this
process dominantly interact with short-wavelength, thermally
excited phonons. Indeed, the second-order magnetoelastic
interaction (B5) is quadratic in the phonon momenta, which
favors scattering with short-wavelength phonons. Our long-
wavelength approximation therefore becomes questionable,
and the results may not be accurate at T = 50 K, but this
should not change the main conclusion that we can disregard
these diagrams.

Our finding that the two-phonon contributions are so small
can be understood in terms of the dimensionful prefactors of
the decay rates [Eqs. (4.8), (4.9), and (B14)]: The one-phonon
decay rate is proportional to h̄/(ma2) ≈ 7 × 106 s−1, while
the two-phonon decay rate is proportional to h̄3/(m2a4ε) ≈
33 s−1, where ε ≈ 1 meV is a typical phonon energy. The
coupling constants for the magnon number nonconserving
processes are B‖,⊥ ∼ 5 meV, while the strongest two-phonon
coupling enhances the two-phonon process by about a fac-
tor 100, but does not nearly compensate the prefactor. The
two-phonon process is therefore three orders of magnitudes
smaller than the contribution of the one-phonon process. The
physical reason appears to be the large mass density of YIG,
i.e., the heavy yttrium atoms.
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APPENDIX C: NUMERICAL INTEGRATION

The magnon decay rate is given be the weighted density of
states

I =
∫

BZ
d3q f (q)δ(ε(q)), (C1)

which contains the Dirac delta function δ(ε) that can be
eliminated to yield

I =
∑

qi

∫
Ai

d2q
f (q)

|∇ε(q)| , (C2)

where the qi are the zeros of ε(q), and Ai are the surfaces
inside the Brillouin zone with ε(q) = ε(qi ). The calculation of
these integrals is a standard numerical problem in condensed-
matter physics.

For a spherical Brillouin zone of radius qc and spherical
coordinates (q, θ, φ),

I =
∫ π

0
dθ

∫ 2π

0
dφ

∫ qc

0
dq q2 sin(θ ) f (q, θ, φ)δ(ε(q, θ, φ)).

(C3)

When ε(qi, θ, φ) = 0,

δ(ε(q, θ, φ)) =
∑

qi (θ,φ)

δ(q − qi(θ, φ))
|ε′(qi(θ, φ), θ, φ)| , (C4)

where ε′ = ∂ε/∂q and

I =
∫ π

0
dθ

∫ 2π

0
dφ

∑
qi (θ,φ)<qc

q2
i (θ, φ) sin(θ )

× f (qi(θ, φ), θ, φ)
|ε′(qi(θ, φ), θ, φ)| , (C5)

which is particularly useful when the zeros of ε(q, θ, φ) can
be calculated analytically for linear and quadratic dispersion
relations.

We can also evaluate the integral I fully numerically by
broadening the δ function [60], e.g., replacing it by a Gaussian
[60],

δ(ε) → 1√
πσ

exp

(
− ε2

σ 2

)
, (C6)

where σ is the broadening parameter. An alternative is the
Lorentzian (Cauchy-Lorentz distribution),

δ(ε) → 1

πσ

σ 2

ε2 + σ 2
, (C7)

which has fat tails that are helpful in finding the zeros of
the δ function for an adaptive integration grid. Here we use
the cubature package by Johnson [61], which implements an
adaptive multidimensional integration algorithm over hyper-
rectangular regions [62,63].

[1] A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D 43,
264002 (2010).

[2] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M.
Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi,
S. Maekawa, and E. Saitoh, Nature (London) 464, 262
(2010).

[3] L. J. Cornelissen, K. J. H. Peters, G. E. W. Bauer, R. A. Duine,
and B. J. van Wees, Phys. Rev. B 94, 014412 (2016).

[4] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11,
391 (2012).

[5] J. Li, Y. Xu, M. Aldosary, C. Tang, Z. Lin, S. Zhang, R. Lake,
and J. Shi, Nat. Commun. 7, 10858 (2016).

[6] L. J. Cornelissen, J. Liu, R. A. Duine, J. B. Youssef, and B. J.
van Wees, Nat. Phys. 11, 1022 (2015).

[7] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T.
Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S.
Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010).

[8] K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa, and
E. Saitoh, Appl. Phys. Lett. 97, 172505 (2010).

[9] T. Kikkawa, K. Uchida, Y. Shiomi, Z. Qiu, D. Hou, D. Tian,
H. Nakayama, X.-F. Jin, and E. Saitoh, Phys. Rev. Lett. 110,
067207 (2013).

[10] G. Siegel, M. C. Prestgard, S. Teng, and A. Tiwari, Sci. Rep. 4,
4429 (2014).

[11] H. Jin, S. R. Boona, Z. Yang, R. C. Myers, and J. P. Heremans,
Phys. Rev. B 92, 054436 (2015).

[12] A. Kehlberger, U. Ritzmann, D. Hinzke, E.-J. Guo, J.
Cramer, G. Jakob, M. C. Onbasli, D. H. Kim, C. A. Ross,
M. B. Jungfleisch, B. Hillebrands, U. Nowak, and M. Kläui,
Phys. Rev. Lett. 115, 096602 (2015).

[13] R. Iguchi, K.I. Uchida, S. Daimon, and E. Saitoh, Phys. Rev. B
95, 174401 (2017).

[14] J. Xiao, G. E. W. Bauer, K.C. Uchida, E. Saitoh, and S.
Maekawa, Phys. Rev. B 81, 214418 (2010).

[15] H. Adachi, J.-i. Ohe, S. Takahashi, and S. Maekawa, Phys. Rev.
B 83, 094410 (2011).

[16] C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, R. C.
Myers, and J. P. Heremans, Phys. Rev. Lett. 106, 186601
(2011).

[17] H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, Rep. Prog.
Phys. 76, 036501 (2013).

[18] M. Schreier, A. Kamra, M. Weiler, J. Xiao, G. E. W. Bauer,
R. Gross, and S. T. B. Goennenwein, Phys. Rev. B 88, 094410
(2013).

[19] S. M. Rezende, R. L. Rodríguez-Suárez, R. O. Cunha, A. R.
Rodrigues, F. L. A. Machado, G. A. Fonseca Guerra, J. C. Lopez
Ortiz, and A. Azevedo, Phys. Rev. B 89, 014416 (2014).

[20] H. Adachi, K. Uchida, E. Saitoh, J. Ichiro Ohe, S. Takahashi,
and S. Maekawa, Appl. Phys. Lett. 97, 252506 (2010).

[21] K. Uchida, T. Ota, H. Adachi, J. Xiao, T. Nonaka, Y. Kajiwara,
G. E. W. Bauer, S. Maekawa, and E. Saitoh, J. Appl. Phys. 111,
103903 (2012).

[22] T. Kikkawa, K. Shen, B. Flebus, R. A. Duine, K. I. Uchida,
Z. Qiu, G. E. W. Bauer, and E. Saitoh, Phys. Rev. Lett. 117,
207203 (2016).

[23] E. Abrahams and C. Kittel, Phys. Rev. 88, 1200 (1952).
[24] C. Kittel and E. Abrahams, Rev. Mod. Phys. 25, 233 (1953).
[25] C. Kittel, Phys. Rev. 110, 836 (1958).
[26] M. I. Kaganov and V. M. Tsukernik, Sov. Phys. JETP 9, 151

(1959).

184442-12

https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1038/nature08876
https://doi.org/10.1038/nature08876
https://doi.org/10.1038/nature08876
https://doi.org/10.1038/nature08876
https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/nmat3301
https://doi.org/10.1038/ncomms10858
https://doi.org/10.1038/ncomms10858
https://doi.org/10.1038/ncomms10858
https://doi.org/10.1038/ncomms10858
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/nphys3465
https://doi.org/10.1038/nmat2856
https://doi.org/10.1038/nmat2856
https://doi.org/10.1038/nmat2856
https://doi.org/10.1038/nmat2856
https://doi.org/10.1063/1.3507386
https://doi.org/10.1063/1.3507386
https://doi.org/10.1063/1.3507386
https://doi.org/10.1063/1.3507386
https://doi.org/10.1103/PhysRevLett.110.067207
https://doi.org/10.1103/PhysRevLett.110.067207
https://doi.org/10.1103/PhysRevLett.110.067207
https://doi.org/10.1103/PhysRevLett.110.067207
https://doi.org/10.1038/srep04429
https://doi.org/10.1038/srep04429
https://doi.org/10.1038/srep04429
https://doi.org/10.1038/srep04429
https://doi.org/10.1103/PhysRevB.92.054436
https://doi.org/10.1103/PhysRevB.92.054436
https://doi.org/10.1103/PhysRevB.92.054436
https://doi.org/10.1103/PhysRevB.92.054436
https://doi.org/10.1103/PhysRevLett.115.096602
https://doi.org/10.1103/PhysRevLett.115.096602
https://doi.org/10.1103/PhysRevLett.115.096602
https://doi.org/10.1103/PhysRevLett.115.096602
https://doi.org/10.1103/PhysRevB.95.174401
https://doi.org/10.1103/PhysRevB.95.174401
https://doi.org/10.1103/PhysRevB.95.174401
https://doi.org/10.1103/PhysRevB.95.174401
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.81.214418
https://doi.org/10.1103/PhysRevB.83.094410
https://doi.org/10.1103/PhysRevB.83.094410
https://doi.org/10.1103/PhysRevB.83.094410
https://doi.org/10.1103/PhysRevB.83.094410
https://doi.org/10.1103/PhysRevLett.106.186601
https://doi.org/10.1103/PhysRevLett.106.186601
https://doi.org/10.1103/PhysRevLett.106.186601
https://doi.org/10.1103/PhysRevLett.106.186601
https://doi.org/10.1088/0034-4885/76/3/036501
https://doi.org/10.1088/0034-4885/76/3/036501
https://doi.org/10.1088/0034-4885/76/3/036501
https://doi.org/10.1088/0034-4885/76/3/036501
https://doi.org/10.1103/PhysRevB.88.094410
https://doi.org/10.1103/PhysRevB.88.094410
https://doi.org/10.1103/PhysRevB.88.094410
https://doi.org/10.1103/PhysRevB.88.094410
https://doi.org/10.1103/PhysRevB.89.014416
https://doi.org/10.1103/PhysRevB.89.014416
https://doi.org/10.1103/PhysRevB.89.014416
https://doi.org/10.1103/PhysRevB.89.014416
https://doi.org/10.1063/1.3529944
https://doi.org/10.1063/1.3529944
https://doi.org/10.1063/1.3529944
https://doi.org/10.1063/1.3529944
https://doi.org/10.1063/1.4716012
https://doi.org/10.1063/1.4716012
https://doi.org/10.1063/1.4716012
https://doi.org/10.1063/1.4716012
https://doi.org/10.1103/PhysRevLett.117.207203
https://doi.org/10.1103/PhysRevLett.117.207203
https://doi.org/10.1103/PhysRevLett.117.207203
https://doi.org/10.1103/PhysRevLett.117.207203
https://doi.org/10.1103/PhysRev.88.1200
https://doi.org/10.1103/PhysRev.88.1200
https://doi.org/10.1103/PhysRev.88.1200
https://doi.org/10.1103/PhysRev.88.1200
https://doi.org/10.1103/RevModPhys.25.233
https://doi.org/10.1103/RevModPhys.25.233
https://doi.org/10.1103/RevModPhys.25.233
https://doi.org/10.1103/RevModPhys.25.233
https://doi.org/10.1103/PhysRev.110.836
https://doi.org/10.1103/PhysRev.110.836
https://doi.org/10.1103/PhysRev.110.836
https://doi.org/10.1103/PhysRev.110.836


MAGNON-PHONON INTERACTIONS IN MAGNETIC … PHYSICAL REVIEW B 99, 184442 (2019)

[27] A. G. Gurevich and G. A. Melkov, Magnetization Oscillations
and Waves (CRC, Boca Raton, FL, 1996).

[28] A. Rückriegel, P. Kopietz, D. A. Bozhko, A. A. Serga, and B.
Hillebrands, Phys. Rev. B 89, 184413 (2014).

[29] S. F. Maehrlein, I. Radu, P. Maldonado, A. Paarmann, M.
Gensch, A. M. Kalashnikova, R. V. Pisarev, M. Wolf, P. M.
Oppeneer, J. Barker, and T. Kampfrath, Sci. Adv. 4, eaar5164
(2018).

[30] R. A. Duine, A. Brataas, S. A. Bender, and Y. Tserkovnyak,
Universal Themes of Bose-Einstein Condensation (Cambridge
University Press, Cambridge, UK, 2017).

[31] R. Schmidt, F. Wilken, T. S. Nunner, and P. W. Brouwer,
Phys. Rev. B 98, 134421 (2018).

[32] D. Bloch, J. Phys. Chem. Solids 27, 881 (1966).
[33] I. K. Kamilov and K. K. Aliev, Sov. Phys. Usp. 41, 865 (1998).
[34] V. Cherepanov, I. Kolokolov, and V. L’vov, Phys. Rep. 229, 81

(1993).
[35] S.-i. Shamoto, T. U. Ito, H. Onishi, H. Yamauchi, Y. Inamura,

M. Matsuura, M. Akatsu, K. Kodama, A. Nakao, T. Moyoshi,
K. Munakata, T. Ohhara, M. Nakamura, S. Ohira-Kawamura,
Y. Nemoto, and K. Shibata, Phys. Rev. B 97, 054429 (2018).

[36] A. J. Princep, R. A. Ewings, S. Ward, S. Tóth, C. Dubs, D.
Prabhakaran, and A. T. Boothroyd, npj Quantum Mater. 2, 63
(2017).

[37] L.-S. Xie, G.-X. Jin, L. He, G. E. W. Bauer, J. Barker, and K.
Xia, Phys. Rev. B 95, 014423 (2017).

[38] J. Barker and G. E. W. Bauer, Phys. Rev. Lett. 117, 217201
(2016).

[39] S. Maehrlein, Ph.D. thesis, Freie Universität Berlin, 2017.
[40] H. Maier-Flaig, S. Klingler, C. Dubs, O. Surzhenko, R. Gross,

M. Weiler, H. Huebl, and S. T. B. Goennenwein, Phys. Rev. B
95, 214423 (2017).

[41] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
[42] B. Flebus, K. Shen, T. Kikkawa, K.-i. Uchida, Z. Qiu, E. Saitoh,

R. A. Duine, and G. E. W. Bauer, Phys. Rev. B 95, 144420
(2017).

[43] S. Blundell, Magnetism in Condensed Matter (Oxford Univer-
sity Press, New York, 2001).

[44] G. A. Samara and A. A. Giardini, Phys. Rev. 186, 577
(1969).

[45] Y. Liu, L.-S. Xie, Z. Yuan, and K. Xia, Phys. Rev. B 96, 174416
(2017).

[46] V. A. Shklovskij, V. V. Mezinova, and O. V. Dobrovolskiy,
Phys. Rev. B 98, 104405 (2018).

[47] A. I. Akhiezer, V. G. Bar’yakhtar, and M. I. Kaganov,
Sov. Phys. Usp. 3, 567 (1961).

[48] A. I. Akhiezer, V. G. Bar’yakhtar, and M. I. Kaganov,
Sov. Phys. Usp. 3, 661 (1961).

[49] E. H. Turner, Phys. Rev. Lett. 5, 100 (1960).
[50] A. G. Gurevich and A. N. Asimov, Sov. Phys. JETP 41, 336

(1975).
[51] J. J. Nakane and H. Kohno, Phys. Rev. B 97, 174403 (2018).
[52] G. D. Mahan, Many-particle Physics (Springer Science & Busi-

ness Media, New York, 2013).
[53] S. Das Sarma and F. Stern, Phys. Rev. B 32, 8442 (1985).
[54] E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 195412

(2008).
[55] S. A. Bender, R. A. Duine, A. Brataas, and Y. Tserkovnyak,

Phys. Rev. B 90, 094409 (2014).
[56] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and

Y. Nakamura, Phys. Rev. Lett. 113, 083603 (2014).
[57] T. Kasuya and R. C. LeCraw, Phys. Rev. Lett. 6, 223 (1961).
[58] D. E. Eastman, Phys. Rev. 148, 530 (1966).
[59] D. E. Eastman, J. Appl. Phys. 37, 996 (1966).
[60] C. Illg, M. Haag, N. Teeny, J. Wirth, and M. Fähnle, J. Theor.

Appl. Phys. 10, 1 (2016).
[61] S. G. Johnson, Cubature package for adaptive multidimensional

integration of vector-valued integrands over hypercubes, v1.0.3,
https://github.com/stevengj/cubature.

[62] A. Genz and A. Malik, Comput. Appl. Math. 6, 295 (1980).
[63] J. Berntsen, T. O. Espelid, and A. Genz, ACM Trans. Math.

Softw. 17, 437 (1991).

184442-13

https://doi.org/10.1103/PhysRevB.89.184413
https://doi.org/10.1103/PhysRevB.89.184413
https://doi.org/10.1103/PhysRevB.89.184413
https://doi.org/10.1103/PhysRevB.89.184413
https://doi.org/10.1126/sciadv.aar5164
https://doi.org/10.1126/sciadv.aar5164
https://doi.org/10.1126/sciadv.aar5164
https://doi.org/10.1126/sciadv.aar5164
https://doi.org/10.1103/PhysRevB.98.134421
https://doi.org/10.1103/PhysRevB.98.134421
https://doi.org/10.1103/PhysRevB.98.134421
https://doi.org/10.1103/PhysRevB.98.134421
https://doi.org/10.1016/0022-3697(66)90262-9
https://doi.org/10.1016/0022-3697(66)90262-9
https://doi.org/10.1016/0022-3697(66)90262-9
https://doi.org/10.1016/0022-3697(66)90262-9
https://doi.org/10.1070/PU1998v041n09ABEH000440
https://doi.org/10.1070/PU1998v041n09ABEH000440
https://doi.org/10.1070/PU1998v041n09ABEH000440
https://doi.org/10.1070/PU1998v041n09ABEH000440
https://doi.org/10.1016/0370-1573(93)90107-O
https://doi.org/10.1016/0370-1573(93)90107-O
https://doi.org/10.1016/0370-1573(93)90107-O
https://doi.org/10.1016/0370-1573(93)90107-O
https://doi.org/10.1103/PhysRevB.97.054429
https://doi.org/10.1103/PhysRevB.97.054429
https://doi.org/10.1103/PhysRevB.97.054429
https://doi.org/10.1103/PhysRevB.97.054429
https://doi.org/10.1038/s41535-017-0067-y
https://doi.org/10.1038/s41535-017-0067-y
https://doi.org/10.1038/s41535-017-0067-y
https://doi.org/10.1038/s41535-017-0067-y
https://doi.org/10.1103/PhysRevB.95.014423
https://doi.org/10.1103/PhysRevB.95.014423
https://doi.org/10.1103/PhysRevB.95.014423
https://doi.org/10.1103/PhysRevB.95.014423
https://doi.org/10.1103/PhysRevLett.117.217201
https://doi.org/10.1103/PhysRevLett.117.217201
https://doi.org/10.1103/PhysRevLett.117.217201
https://doi.org/10.1103/PhysRevLett.117.217201
https://doi.org/10.1103/PhysRevB.95.214423
https://doi.org/10.1103/PhysRevB.95.214423
https://doi.org/10.1103/PhysRevB.95.214423
https://doi.org/10.1103/PhysRevB.95.214423
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRevB.95.144420
https://doi.org/10.1103/PhysRevB.95.144420
https://doi.org/10.1103/PhysRevB.95.144420
https://doi.org/10.1103/PhysRevB.95.144420
https://doi.org/10.1103/PhysRev.186.577
https://doi.org/10.1103/PhysRev.186.577
https://doi.org/10.1103/PhysRev.186.577
https://doi.org/10.1103/PhysRev.186.577
https://doi.org/10.1103/PhysRevB.96.174416
https://doi.org/10.1103/PhysRevB.96.174416
https://doi.org/10.1103/PhysRevB.96.174416
https://doi.org/10.1103/PhysRevB.96.174416
https://doi.org/10.1103/PhysRevB.98.104405
https://doi.org/10.1103/PhysRevB.98.104405
https://doi.org/10.1103/PhysRevB.98.104405
https://doi.org/10.1103/PhysRevB.98.104405
https://doi.org/10.1070/PU1961v003n04ABEH003309
https://doi.org/10.1070/PU1961v003n04ABEH003309
https://doi.org/10.1070/PU1961v003n04ABEH003309
https://doi.org/10.1070/PU1961v003n04ABEH003309
https://doi.org/10.1070/PU1961v003n05ABEH003318
https://doi.org/10.1070/PU1961v003n05ABEH003318
https://doi.org/10.1070/PU1961v003n05ABEH003318
https://doi.org/10.1070/PU1961v003n05ABEH003318
https://doi.org/10.1103/PhysRevLett.5.100
https://doi.org/10.1103/PhysRevLett.5.100
https://doi.org/10.1103/PhysRevLett.5.100
https://doi.org/10.1103/PhysRevLett.5.100
https://doi.org/10.1103/PhysRevB.97.174403
https://doi.org/10.1103/PhysRevB.97.174403
https://doi.org/10.1103/PhysRevB.97.174403
https://doi.org/10.1103/PhysRevB.97.174403
https://doi.org/10.1103/PhysRevB.32.8442
https://doi.org/10.1103/PhysRevB.32.8442
https://doi.org/10.1103/PhysRevB.32.8442
https://doi.org/10.1103/PhysRevB.32.8442
https://doi.org/10.1103/PhysRevB.77.195412
https://doi.org/10.1103/PhysRevB.77.195412
https://doi.org/10.1103/PhysRevB.77.195412
https://doi.org/10.1103/PhysRevB.77.195412
https://doi.org/10.1103/PhysRevB.90.094409
https://doi.org/10.1103/PhysRevB.90.094409
https://doi.org/10.1103/PhysRevB.90.094409
https://doi.org/10.1103/PhysRevB.90.094409
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.6.223
https://doi.org/10.1103/PhysRevLett.6.223
https://doi.org/10.1103/PhysRevLett.6.223
https://doi.org/10.1103/PhysRevLett.6.223
https://doi.org/10.1103/PhysRev.148.530
https://doi.org/10.1103/PhysRev.148.530
https://doi.org/10.1103/PhysRev.148.530
https://doi.org/10.1103/PhysRev.148.530
https://doi.org/10.1063/1.1708555
https://doi.org/10.1063/1.1708555
https://doi.org/10.1063/1.1708555
https://doi.org/10.1063/1.1708555
https://doi.org/10.1007/s40094-015-0193-5
https://doi.org/10.1007/s40094-015-0193-5
https://doi.org/10.1007/s40094-015-0193-5
https://doi.org/10.1007/s40094-015-0193-5
https://github.com/stevengj/cubature
https://doi.org/10.1016/0771-050X(80)90039-X
https://doi.org/10.1016/0771-050X(80)90039-X
https://doi.org/10.1016/0771-050X(80)90039-X
https://doi.org/10.1016/0771-050X(80)90039-X
https://doi.org/10.1145/210232.210233
https://doi.org/10.1145/210232.210233
https://doi.org/10.1145/210232.210233
https://doi.org/10.1145/210232.210233

