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Magnetoelastic parametric instabilities of localized spin waves induced by traveling elastic waves
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A theory of parametric interaction between spin waves localized in a waveguide and traveling elastic waves
is developed for ferromagnetic thin films. The presented theoretical formalism takes into account an arbitrary
spatial distribution of the displacement field in the acoustic waves and an arbitrary magnetization in spin
waves. Using the theory, we examine interaction of forward-volume spin waves (FVSW) localized in a narrow
waveguide and Rayleigh surface acoustic waves traveling in a substrate underneath the waveguide. We show
that, in contrast to classical electromagnetic pumping, the symmetry of the magnetoelastic interaction allows for
the generation of first-order parametric instabilities in spin waves with circular precession, such as FVSW. At the
same time the localization of spin waves modifies the momentum conservation law for the parametric process to
include the transfer of momentum to the waveguide, which allows for a frequency separation of the interacting
counterpropagating spin waves. The frequency separation enables amplification of a localized spin wave without
generation of a traveling idler wave, which results in a greater amplification efficiency.
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I. INTRODUCTION

Parametric interaction of waves has been studied in a
broad range of physical systems, e.g., in nonlinear optics
[1], plasma physics [2], acoustics [3], and magnetism [4]
(for a review see Ref. [5]). The first-order parametric in-
teraction (or three-wave processes) in bulk media manifests
itself in the energy and momentum conservation laws [5]. The
conservation laws define selection rules constraining which
waves can parametrically interact. By Noether’s theorem, the
conservation of momentum derives from space-translational
symmetry. If the translational symmetry is broken, i.e., if
the area of the parametric interaction is limited in space
[6], the global momentum conservation law allows transfer
of momentum from the interacting waves to the confining
structure, analogous to the radiation pressure effect [7]. As a
consequence of the symmetry breaking, the selection rules for
parametrically interacting waves are relaxed. For example, a
localized electromagnetic pump allows parametric interaction
of copropagating spin waves, while such interaction is not
possible in the case of uniform pumping [6].

The translational symmetry is broken when the interacting
waves are localized in potential wells or waveguides. The fact
that the waves can propagate only in the directions allowed
by the waveguides is reflected in the momentum conservation
law for these waves. Since these momentum conservation
conditions are different from the bulk case, the wave localiza-
tion opens an additional degree of freedom for fine tuning of
the parametric interaction. As an example of such a system,
in this work we study the parametric interaction of spin
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waves, localized in a waveguide made of a magnetostrictive
ferromagnet, with traveling elastic waves [8–11].

The parametric pumping of spin waves in thin ferromag-
netic films by electromagnetic fields has been well studied
[4,6,12–17] and has been shown to be useful for sustaining
and amplifying spin-wave amplitudes. The nonlinear pro-
cesses of magnetic parametric pumping have also been shown
to find applications in analog signal processing [17].

The electromagnetic parametric pumping process is based
on the Zeeman interaction between the oscillating magnetic
field (typically in the microwave frequency range) and the
time-varying component of magnetization parallel to the equi-
librium magnetization. This is conventionally termed “parallel
pumping” since the pumping magnetic field is parallel to
the magnetization. In this geometry, the coupling between the
spin waves’ modes and the pumping field depends on the
precession ellipticity [12] and vanishes for the spin waves
with a circular precession. Therefore, the parallel pumping
works well for backward-volume spin waves (BVSWs) in
thin films, where the wave vector is parallel to the in-plane
equilibrium magnetization and the thin-film shape anisotropy
results in elliptical precession. However, the dispersion of
BVSWs is not a single-valued function of the frequency [12],
leading to instabilities for short and slow dipolar-exchange
spin waves [6]. These dipolar-exchange spin waves are usually
not usable in signal processing [16] because their wavelengths
are too short to pick up with conventional spin-wave antennas.
Forward-volume spin waves (FVSWs) propagate when the
film is magnetized perpendicular to its plane. FVSWs have
a single-valued dispersion function [12], but since the mag-
netization precession is circular in the long-wavelength limit,
they cannot be pumped electromagnetically.

The mechanism of acoustic parametric pumping is differ-
ent. The energy of spin-wave excitations depends on the mag-
netic anisotropy. Thus, in general, by modulating the magnetic
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anisotropy one can parametrically interact with spin waves.
In magnetostrictive materials, the magnetic anisotropy can be
modulated via the magnetoelastic interaction by deformation
of the sample. The energy of the magnetoelastic interaction
is quadratic in the magnetization [see (8) below], in contrast
to the energy of Zeeman interaction, which is linear with the
magnetization. The form of the magnetoelastic energy allows,
in particular, pumping of spin-wave modes with a circular
precession. The parametric pumping of spin waves by trav-
eling acoustic waves has been examined both experimentally
and theoretically in bulk magnetostrictive media [8–11] and in
infinitesimally thin films [18]. Recently, the parametric pump-
ing of BVSWs by bulk acoustic waves was demonstrated in
ferromagnetic films [19], proving the feasibility of spin-wave
parametric pumping via magnetostriction. We note here that
elastic waves have also been successfully employed to excite
ferromagnetic resonance and traveling spin waves in a linear
regime [20–22].

Typical dimensions of spin-wave devices employing elec-
tromagnetic pumping are much smaller than the electromag-
netic wavelength; thus, the phase of the pumping electromag-
netic field is practically uniform across the pumping region.
Therefore, the pumping electromagnetic waves are always
“seen” as being stationary by spin waves [6,15]. On the other
hand, the wavelengths of acoustic waves are on the same
order as typical spin-wave localization in modern magnonic
and spintronic devices [16,23–26]. The small wavelength of
the acoustic waves allows for studying parametric pumping of
spin waves by traveling waves.

In this work, we develop a general theory of parametric
interaction of acoustic waves and localized spin waves with
arbitrary distribution of the displacement field in the acoustic
wave and an arbitrary spin-wave mode. Employing the theory,
we show a possibility of parametric instabilities in FVSWs,
confined in a spin-wave waveguide, generated by Rayleigh
surface acoustic waves (SAWs). The instabilities can be either
convective or absolute for oblique or normal incidence of the
SAW, respectively. The absolute instability leads to generation
of FVSWs by SAWs. For convective instability, by selecting a
critical incident angle one can achieve a regime where spin
waves are amplified without generating a counterpropagat-
ing wave (idler), increasing the amplification efficiency. In
yttrium iron garnet (YIG), a commonly used magnetostric-
tive ferrimagnet, the thresholds of the SAW strain amplitude
for convective and absolute instabilities are less than ≈ 45
ppm, which is within the maximum experimentally achievable
strain [27].

II. PARAMETRIC COUPLING BETWEEN ACOUSTIC
AND SPIN WAVES

Theories for parametric magnetoelastic interactions
[18,28,29] developed in the past focused on waves in bulk
samples; that is, the localization of spin waves was not
considered. Here we develop a theory that captures the
physics of parametric interactions in a case of localized
spin waves in samples with an arbitrary direction of the
magnetization and acoustic wave modes with an arbitrary
distribution of the strain field.

At first, we consider the dynamics of magnetization vector
M(t, r) in a ferromagnetic sample without any deformation.
This dynamics is governed by the Landau-Lifshitz equation
[12]:

dM(t, r)

dt
= γ Beff(t, r) × M(t, r), (1)

where γ the gyromagnetic ratio and Beff is an effective mag-
netic field acting on the sample, including bias fields, shape,
and crystalline anisotropy. Restricting analysis to small-angle
precession dynamics (nonlinear terms can be added later in the
same fashion as in [30]), we expand the magnetization M(t, r)
to the static and dynamic parts:

M(t, r) = Ms[μ(r) + s(t, r)], (2)

where Ms is the saturation magnetization, μ(r) is the unit
vector pointing in the direction of equilibrium magnetization
(ground-state vector), and s(t, r) is the spin-wave excitation
vector. In the absence of high-order anisotropy, the Landau-
Lifshitz equation can be linearized by substituting (2) into (1)
[12,30–33]:

Ĵ(r) · ds(t, r)

dt
=

∫
�̂(r, r′) · s(t, r′)d3r′, (3)

where Ĵ(r) = ê · μ(r) is the angular momentum operator re-
moving all components parallel to the static magnetization
direction which are irrelevant to the magnetization dynamics,
ê is the Levi-Civita operator, �̂(r, r′) is the Hamiltonian
expressed in the frequency units of energy [30–32],

�̂(r, r′) = γ BÎδ(r − r′) + γ P̂(r) · D̂(r, r′) · P̂(r′), (4)

D̂(r, r′) is the self-adjoint operator describing the self-
interactions in the ferromagnet without any deformations,
P̂(r) = −Ĵ(r) · Ĵ(r) is the projector, and Î is an identity
matrix. The modulus of the internal magnetic field B and the
ground-state vector μ(r), entering (3), can be found from the
“static” part of the Landau-Lifshitz equation:

μ(r)B = Bext(r) −
∫

D̂(r, r′) · μ(r′)d3r′. (5)

See the Supplemental Material in Ref. [30] for more details
of this formalism. Additionally, higher-order anisotropy terms
can be introduced in a manner similar to that in [31].

Here Eq. (3) is a generalized eigenvalue problem; thus, its
solutions can be written as

s(t, r) =
∑

ν

cνe−iων t sν (r) + c.c., (6)

where cν is the dimensionless complex amplitude of the νth
mode. Here the eigenmodes sν (r) form an orthogonal basis
with an orthogonality condition [30,33]:

∫
s†
ν (r) · Ĵ(r) · sν ′ (r)d3r = −iAνδνν ′ , (7)

where Aν > 0 is the mode norm, † denotes Hermitian conju-
gation, and δν,ν ′ is the Kronecker delta.
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Deformation of a magnetic material changes the energy
density W of the magnetic subsystem by the value

Wme(t, r) = 1

M2
s

bi jklUi j (t, r)MkM l , (8)

where Ui j (t, r) is the induced strain, bi jkl is the tensor of mag-
netostriction, i jkl = {x, y, z}, and repetitive indices indicate
summation. The effect of the strain can be introduced into
(3)–(5) as a perturbation to the self-interaction operator

δD̂(t, r, r′) = 2

Ms
bi jklUi j (t, r)δ(r − r′)

= a(t )T̂ (r)δ(r − r′) + c.c., (9)

where Ui j (t, r) = a(t )ui j (r) + c.c., a(t ) and ui j (r) are the di-
mensionless complex amplitude and the complex mode profile
of the acoustic wave, and T̂ (r) = 2bi jkl ui j (r)/Ms. Here the
operator T̂ (r) can be seen as a tensor for an effective magnetic
anisotropy generated by the acoustic field. Substituting the
perturbation (9) into (5) and multiplying by μ(r), we find the
time-dependent correction to the internal magnetic field (we
assume that the strain has no static component):

δB(t, r) = −a(t )μ(r) · T̂ (r) · μ(r) + c.c. (10)

Adding perturbation to (3) leads to

Ĵ(r) · ds(t, r)

dt

=
∫

�̂(r, r′) · s(t, r′)d3r′ + γ δB(t, r)s(t, r)

+ [a(t )T̂ (r) + c.c.] · s(t, r) + [a(t )T̂ (r) · μ(r) + c.c.].

(11)

We solve the perturbed equation (11) by substituting s(t, r) =∑
ν cν (t )sν (r) + c.c. and multiplying by s†

ν ′ (r). Using condi-
tion (7) and retaining only “parametric” terms [6], we obtain

dcν (t )

dt
+ iωcν (t ) + �νcν (t ) = a(t )

∑
ν ′

Vνν ′c†
ν ′ (t ), (12)

where �ν is the phenomenological damping term and Vνν ′ is
the coupling coefficient, which can be calculated as

Vνν ′ = V 1
νν ′ + V 2

νν ′

= −i
γ

Aν

∫
[s†

ν ′ (r) · s†
ν (r)][μ(r) · T̂ (r) · μ(r)]d3r

+ i
γ

Aν

∫
[s†

ν ′ (r) · T̂ (r) · s†
ν (r)]d3r. (13)

This expression is the central result of this work; it enables
one to calculate the parametric coupling between arbitrary
spin waves and acoustic waves. Using this result with the
well-developed theory of parallel pumping [4,6,15,16], we
can investigate the dynamics of spin waves under acoustic
pumping.

The mode profiles in (13) [the distribution of magnetiza-
tion s(r) for spin waves and the distribution of strain û(r)
for acoustic waves] can either be calculated analytically or
extracted from numerical simulations for acoustic waves and
spin waves. Importantly, we have not used an explicit form
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FIG. 1. Sketch showing the geometry of the confined spin-wave
waveguide located on a substrate.

of the self-interaction operator D̂(r, r′). Thus, the presented
theory is not restricted to a particular configuration of the
problem, i.e., a direction of the equilibrium magnetization, a
specific type of an acoustic wave, or a particular geometry
of the magnetic sample, as was the case in previous methods
[8,18,34,35].

We note also that a general expression similar to (13),
but for linear magnetoelastic interactions, was obtained in
Ref. [36].

III. SELECTION RULES AND A MOMENTUM
CONSERVATION LAW

To discuss the physical meaning of the terms entering the
coupling coefficient Vνν ′ , we consider a simple case: a rectan-
gular magnetic waveguide placed atop a solid nonmagnetic
substrate (see Fig. 1). The waveguide is infinite in the x̂
direction and constrained in the ŷ and ẑ directions. The width
of the waveguide is w, and the height is h. The magnetic
waveguide is uniformly magnetized with the magnetic ground
state μ.

The spin waves can travel along the x direction in the
waveguide and are constrained in the y and z directions (see
Fig. 1). In this situation we consider the interaction of three
waves: two spin waves with wave numbers ks and ki (tradi-
tionally termed “signal” and “idler” waves) and an acoustic
wave propagating in the x, y plane with wave vector ka (see
Fig. 1).

A spin excitation vector for each wave (signal and idler)
can be written as

sk = s̃k fk (y, z)eikx, (14)

where k = ks, ki, fk (y, z) is the spin-wave mode profile across
the waveguide, i.e., the distribution of the spin-wave mode
amplitude within the waveguide, and s̃k is the polarization
of the spin-wave mode. The polarization s̃k depends on the
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direction of the equilibrium magnetization μ and ellipticity of
precession. In a coordinate system where the z′ axis is oriented
with the equilibrium magnetization (μ = ẑ′) the polarization
can be written as (see Fig. 1)

s̃′
k =

⎛
⎝ 1

iεk

0

⎞
⎠, (15)

where εk is the ellipticity of the precession. For simplicity we
take the ellipticity to not depend on the spatial coordinates in
the waveguide. The mode norm can be calculated as

Ak = 2εk

∫∫
S
| fk (y, z)|2dydz = 2εkAS

k , (16)

where S is the cross-sectional area of the waveguide (see
Fig. 1).

Let us also choose that the acoustic wave is uniform in the
entire space and propagates in the plane of the waveguide,

ui j = ũi je
ika·r = ũi je

i(k||x+k⊥y), (17)

where k|| and k⊥ are the projections of the acoustic wave
vector on the x and y axes, respectively.

Substituting the assumed mode profiles into (13), we have

Vks,ki = γ
(
Ṽ 1

ks,ki
+ Ṽ 2

ks,ki

)
Fks,kiδ(ks + ki − k||), (18)

where

Fks,ki = 1

AS
ks

∫∫
S

fks (y, z) fki (y, z)eik⊥ydydz (19)

is the overlap integral between two spin waves and one
acoustic wave.

The δ function in (18) postulates a momentum conserva-
tion law:

ks + ki = k||. (20)

This conservation law is modified in the comparison to the
bulk case [29], ks + ki = ka, i.e., when the spin waves are
not localized in the waveguide. In the localized case the
translational symmetry holds in the x direction and breaks
in the y direction. Therefore, as a consequence of Noether’s
theorem, the x component of momentum is conserved for
three interacting waves, but the y component is not. The
momentum conservation law acts as a selection rule, defining
the wave numbers of the interacting spin waves.

Expression (20) corresponds to the case of the electro-
magneticlike spin-wave pumping [4,6] when the acoustic
wave has no x component k|| = 0 and to the “optical”-like
copropagating wave pumping [1] for ka = k||x̂.

The overlap integral Fks,ki contains profiles of both spin
waves and an oscillating function eik⊥x. The overlap integral
defines another selection rule for interacting spin waves based
on the precession amplitude spatial distribution fks (y, z) and
fki (y, z). In general, the calculation of mode spatial profiles is
nontrivial and frequently requires numerical solutions. How-
ever, under reasonable assumptions we can analyze the be-
havior of the overlap integral analytically. If the cross-section
distribution of both waves is uniform, fks (y, z) = fki (y, z) = 1,

the overlap integral can easily be calculated as

Fks,ki = sin(k⊥w/2)

k⊥w/2
. (21)

From the above equation, one can conclude that the coupling
coefficient drops with the width of the waveguide and the
parametric interaction becomes inefficient when w � 1/k⊥.

In the case of thin waveguides, h � w (see Fig. 1), we can
consider fk (y, z) to be harmonic functions depending on the y
coordinate [37–39]. Here we consider two practically impor-
tant cases, when the magnetization is pinned and unpinned at
the waveguide boundaries in the y direction. Also, we assume
that the profiles are identical for signal and idler waves,
fks (y, z) = fki (y, z) = fk (y, z). Thus, the spatial profiles can be
written as

fk = cos

(
πN (y + w/2)

w

)
,

fk = sin

(
πN (y + w/2)

w

)
(22)

for unpinned and pinned magnetization, respectively, where
N = 1, 2, . . . is the mode number. Substituting the expres-
sions for spatial profiles into (19), we find expressions for the
overlap integral in two cases:

F u
kk = 4(2N2π2 − k2

⊥w2) sin(k⊥w/2)

4π2k⊥wN2 − k3
⊥w3

, (23)

F p
kk = 8N2π2 sin(k⊥w/2)

4π2k⊥wN2 − k3
⊥w3

(24)

for unpinned and pinned magnetization, respectively. Similar
to (21), these functions have a global maximum at k⊥w → 0.
However, they also exhibit a local maximum at w = 2πN/k⊥:
F u

kk = F u
kk = ±1/2, allowing for interaction of high-order

modes, N > 0, in wide waveguides w > 1/k⊥.
Finally, we consider terms of Ṽ 1

ks,ki
and Ṽ 2

ks,ki
. These terms

define selection rules based on the vector structure of the
magnetization precession, elastic deformations, and magne-
tostrictive tensor bi jkl . The first term can be written in the form

Ṽ 1
ks,ki

= −i
1 − ε2

2ε
b̃p, (25)

where we consider the ellipticity of both idler and signal spin
waves to be identical, εks = εki = ε. The term b̃p = μ · T̂ · μ,
with T̂ = bi jkl ũi j , describes the projection of an effective
magnetic field, generated by the inverse magnetostriction
effect on the direction of the static magnetization. The sym-
metry of the term Ṽ 1

ks,ki
is identical to the symmetry of the

coupling coefficient to an rf magnetic field for the parallel
pumping mechanism [12]. Therefore, this term vanishes for
a spin wave with circular precession, i.e., ε = 1.

The second term, V 2
ks,ki

, is different: Here the operator T̂
acts directly on the spin-wave mode profiles, and the coupling
coefficient can be nonzero even for modes with circular pre-
cession:

Ṽ 2
ks,ki

= i
sks · T̂ · ski

2εk
. (26)
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FIG. 2. Top view of a setup for spin-wave and surface acoustic
wave parametric interaction. A Rayleigh surface acoustic wave ex-
cited, for example, by an interdigitated transducer (IDT), propagates
in the substrate, while a spin wave propagates in the magnetic
waveguide (green). The magnetic field B is applied perpendicular
to the plane.

The particular form of this term depends on the deformation
introduced by the acoustic wave and the symmetry of the
tensor of magnetostriction. Physically, this term represents
perturbations of the precession trajectory made by the mod-
ulation of the effective magnetic anisotropy. We note here
that similar terms were obtained for the parametric pumping
of spin waves with voltage-controlled magnetic anisotropy
[40,41].

IV. INTERACTION BETWEEN SURFACE ACOUSTIC
WAVES AND FORWARD-VOLUME SPIN WAVES

As an illustration of our theory, we calculate the parametric
interactions between forward-volume spin waves traveling
in a YIG waveguide and a Rayleigh SAW traveling in the
gadolinium gallium garnet substrate (velocity cR ≈ 5 km/s;
see Fig. 2). The parameters for YIG are taken as follows: Satu-
ration magnetization [12] is Ms = 135 kA/m, exchange con-
stant [42] Aex = 3.7 fJ/m, the magnetostrictive tensor com-
ponents for a cubic crystal [12] biiii = B1 = 0.35 MJ/m3 and
bi ji j = B2 = 0.7 MJ/m3, i �= j, and the damping decrement
�/(2π ) = γ δH/2 = 1.5 MHz.

The calculation of the acoustic field in a YIG waveguide
placed atop a substrate is nontrivial [34]. To simplify our
analytical calculations, we will consider a thin and narrow
ferromagnetic waveguide with h � λR and w < Lg, where
λR = 2πkR is the SAW wavelength, kR is the SAW wave
number, h is the thickness, w is the width, and Lg is the length
of the interaction region (see Fig. 2). Also for simplicity, we
assume that the strain is uniformly distributed in the waveg-
uide and equal to the surface strain created by the SAW [43]
and that the substrate is isotropic. Thus, the acoustic mode
has the form û = (kR ⊗ kR/k2

R + iuzzz ⊗ z)eikR·r, where uzz is
the ratio between the vertical and lateral stresses. We also
consider the pumping to be coherent in time as a(t ) = ae−iωpt .

Spin-wave modes in perpendicular magnetized waveguides
are typically pinned to the lateral edges. The spin excitation
vector for the fundamental mode can be written as sk = (x̂ +
iεk ŷ) sin(πy/w)eikx−iωt , where ε is the precession ellipticity
and the precession is almost circular (|1 − |εk|| � 1) for
perpendicularly magnetized samples and small k.

First, we consider the case of an infinitely long pumping
region Lg. Using the above-described formalism in Sec. III
in (13), we obtain expressions of the coupling coefficient
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FIG. 3. (a) Parametric interaction coefficient V0 for the surface
acoustic waves and spin waves in a rectangular waveguide as a func-
tion of the waveguide width w and the projection of the SAW wave
vector perpendicular to the waveguide k⊥. (b) Numerically calculated
spin-wave spectrum in a rectangular YIG waveguide. (c) Amplitude
of spin waves under a parametric pumping for an obliquely (blue
solid line) and normally (orange dashed line) incident SAW; vertical
dotted lines enclose the pumping region. The amplitude of the strain
in the acoustic wave is selected as a = 31 ppm > ath(φ). See text for
the parameters of the waveguide and materials.

between the signal and idler waves:

Vks,ki = V0(φ) = γ B1

Ms

[cos φ − iεk sin(φ)]2 − iuzz
(
1 − ε2

k

)
2εk

×

F p
kkδ(ks + ki − kR sin φ) ≈ γ B1

2Ms
F p

kkδ(ks + ki − kR sin φ)eiφ.

(27)

The factor V0(φ) defines the “strength” of the parametric
interaction. The modulus of V0(φ) is plotted in Fig. 3(a) for
parameters of YIG. A parametric instability in a waveguide
with an infinitely long pumping region occurs when pumping
overcomes the damping in the system. The threshold ampli-
tude of the SAW is defined by the expression (assuming that
ωks and ωki fall within the spin-wave spectra)

|ath(φ)| = �/|V0(φ)|, (28)

where � is the damping decrement of the fundamental mode.
For φ = π/2, i.e., when all three waves travel collinearly,
the threshold value is equal to the threshold value obtained
when ignoring the spin-wave localization [12,18]. For the
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selected parameters the threshold value is |amin
th | ≈ 21 ppm,

which is lower than the typical failure strain (300 ppm) of Al
transducers [27]. If φ �= π/2, the existence of the spin-wave
localization increases the threshold for the spin-wave instabil-
ity. The particular type of instability (absolute or convective,
in other words, developing in time or space, respectively) is
defined by the relative signs of the group velocities υgr(ks)
and υgr(ki ) [6].

The threshold (28) is directly proportional to the damp-
ing in the magnetic material and inversely proportional to
the coefficient of magnetostriction. Therefore, it is feasible
to consider materials with higher damping rates but, at the
same time, stronger magnetoelastic interaction as a sub-
stitute for YIG. For example, recently, linear [44–46] and
parametric [47] magnetoelastic interactions were observed
in relatively lossy Ni films. Using (28) and parameters for
Ni films [36] (αG = 0.045, B1 ≈ B2 ≈ 10 MJ/m3, μ0Ms =
0.66 T, ω/(2π ) = 1.5 GHz), we can estimate the strain
threshold as |amin

th, Ni| ≈ 260 ppm, which is at the limit of the
commonly used Al SAW transducers but easily obtainable
with optical techniques of SAW excitation [46,48].

V. PARAMETRIC INSTABILITIES IN A SPATIALLY
LIMITED PUMPING REGION

Experimentally, the pumping region is always limited in
space. A localized pumping region increases the threshold
for absolute instabilities and prevents the development of
convective instabilities [15,49]. Absolute instabilities lead to
generation of detectable spin waves from thermal fluctuations,
which is often a problem in amplifiers and active delay lines,
where the parasitic generation can cause undesired cross talk.
On the other hand, a special case of convective instability
when the group velocity of the idler wave becomes zero is
important for spin-wave amplifiers. Since the idler then cannot
“leak” outside the pumping region, the parametric interaction
is very effective [49]. Such a situation is difficult to implement
for electromagnetic pumping because the frequency and group
velocities for both signal and idler spin waves are the same.
For acoustic pumping, the modified momentum conservation
law (20) allows parametric interaction of spin waves with
different wave numbers and, as a consequence, with different
frequencies, ωks �= ωki and ωks + ωki = ωp. To achieve a con-
vective instability we select the idler wave with a zero group
velocity υgr(ki ) = 0 at ki = 0. Thus, for a signal wave with
the frequency ωks the pumping frequency is ωp = ωks + ωki=0,
and sin φ = ks/kR.

In our example we take the waveguide with geometrical
parameters h = 100 nm and w = 1 μm, which can be fab-
ricated experimentally [50], and the interaction region has
length Lg = 60 μm (see Fig. 2). The spin-wave spectrum in
the waveguide biased by normal magnetic field B = 20 mT
is shown in Fig. 3(b). Since the waveguide is limited in the
lateral direction, the spin-wave group velocity drops with the
wave number approaching zero. The spectrum was calculated
numerically using the MUMAX3 micromagnetics simulator
[51].

We select the signal frequency ωks/(2π ) = 1.46 GHz,
which corresponds to ks ≈ 2 μm−1 [marked by the symbol s
in Fig. 3(b)]. The spectrum minimum with k = 0 corresponds

to the frequency ωki = 1.37 GHz [symbol i in Fig. 3(b)]. To
satisfy the conservation laws we select the pumping frequency
ωp ≈ 2.48 GHz [see Fig. 3(b)]. To satisfy (20) we shall select
an appropriate incident angle, φ0 ≈ 23.5◦. The parametric
coefficient for this angle is V0(φ0) ≈ 50 kHz/ppm.

We use a standard “slow-envelope” technique to find the
spin-wave amplitude distribution [4,6,15]. However, in our
case, the group velocity of the idler spin waves vanishes; thus,
we need to take into account the spin-wave diffusion of the
idler waves [49]:

υgr
dbs(x)

dx
+ �bs(x) = V0θP(x)b†

i (x)a,

i
D

2

d2b†
i (x)

dx2
+ �b†

i (x) = −V †
0 θP(x)bs(x)a, (29)

where bs,i(x) are the amplitudes of the signal and idler
envelopes (see Ref. [15] for definition), υgr ≈ 0.38 km/s
is the group velocity of the signal wave, D = d2ωk/dk2 ≈
2.24 cm2/s is the diffusion coefficient, and θP(x) is a function
which equals 1 inside the interaction region and 0 otherwise.
The values of D and υgr were calculated numerically using
MUMAX3.

The amplitude of the signal wave found by a numerical
solution of (29) is plotted in Fig. 3(c) with the blue line
for the in-plane SAW strain amplitude a0 = 31 ppm. This
value is above the threshold (28), and the energy coming
from the acoustic wave overcomes damping in the system.
The amplitude of the signal and idler (not shown) waves
exponentially increases in the x > 0 direction. The growth of
the amplitude is limited by the finite length of the interaction
region.

The induced idler wave can interact, in its turn, with a
“secondary” idler wave with frequency ωks and wave number
−ks, marked as i2 in Fig. 3(b). This interaction, however, can
be effective only in a nonadiabatic case [6], ksLg � 1. For the
considered geometry this interaction is negligibly small.

The dashed orange line in Fig. 3(c) represents a solution
for a normally incident SAW (φ = 0). In this case both signal
and idler waves have the same frequency [ωp/2 × 1/(2π ) ≈
1.42 GHz] and group velocity υgr ≈ 0.38 km/s. In order to
make a comparison with the previous case we increase the
pumping amplitude a1 = 34 ppm to compensate for the drop
in the pumping efficiency. Now the idler wave leaks out of the
interaction region, and the spin waves cannot be effectively
amplified [6]. Therefore, the power of the signal spin wave
at the end of the pumping region is more than ten times less
than in the oblique SAW case. We want to emphasize that
the difference in the spin-wave output comes not from greater
parametric coupling with the SAW but from the group velocity
of the idler spin wave being zero.

However, in the case of φ = 0 an absolute instabil-
ity is possible with a threshold acoustic amplitude ath ≈
45 ppm for Lg = 60 μm. After exceeding this threshold, ther-
mal fluctuations are pumped and increase their amplitudes
exponentially.

VI. CONCLUSION

We developed a perturbation theory of parametric interac-
tion between localized spin waves and acoustic waves. With
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the theory we demonstrated that (i) the localization of spin
waves modifies the momentum conservation law for paramet-
ric pumping, (ii) the symmetry of the magnetoelastic coupling
allows an efficient interaction between the Rayleigh surface
acoustic waves and forward-volume spin waves with circular
precession, and (iii) both convective and absolute parametric
instabilities can develop for spin waves under experimentally
achievable amplitudes of surface acoustic waves, which re-

sults in efficient amplification of spin waves in ferromagnetic
waveguides.
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