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Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability
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We present a computational study of antiferromagnetic transition in RuO2. The rutile structure with the
magnetic sublattices coupled with π/2 rotation leads to a spin-polarized band structure in the antiferromagnetic
state, which gives rise to a d-wave modulation of the Fermi surface in the spin-triplet channel. We argue a finite
spin conductivity that changes sign in the ab plane is expected in RuO2 because of this band structure. We analyze
the origin of the antiferromagnetic instability and link it to presence of a nodal line close to the Fermi level.
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I. INTRODUCTION

Antiferromagnetic (AFM) metals have been attracting
much interest recently because of their spintronic applications
based on coupling between magnetic moments and charge
current [1]. While ubiquitous among 3d transition metal
oxides, antiferromagnetism in this group is typical for Mott
insulators rather than metals. Metallic antiferromagnets can be
found either doping Mott insulators as in cuprates, by replac-
ing oxygen with more covalent ligands as in iron pnictides [2]
or CuMnAs [3], or by moving down the periodic table to less
correlated 4d transition metals. Itinerant antiferromagnetism,
with magnetism and transport governed by the same electronic
states, arises usually via the Slater mechanism [4]. Nesting
between parts of the Fermi surface (FS) produces an instabil-
ity that is resolved by an AFM state, which is stabilized by
gapping the nested parts of FS.

The simplest—collinear—antiferromagnets have two mag-
netic sublattices with magnetic moments pointing in oppo-
site directions. Reversing the sublattice magnetization, which
amounts to exchanging the magnetic sublattices, generates
a distinct AFM state which is typically indistinguishable by
macroscopic measurements. This is the case when the mag-
netic sublattices are symmetry connected by a microscopic
translation. In the reciprocal space, this is expressed by the
spin-up and spin-down band structures being identical. Mate-
rials with even number of magnetic atoms in the unit cell allow
AFM ordering without breaking of translation symmetry. The
magnetic sublattices are then connected with some point
group operation and spin-polarized band structure may arise.
The recently studied CuMnAs [3], where magnetic sublattices
are connected by inversion symmetry, is an example of such
an antiferromagnet. However, in this case the spin polarization
cannot be detected by inversion-invariant probes such as spin
conductivity. It would be therefore interesting to have an AFM
material with magnetic sublattices connected by rotation sym-
metry.

In this article, we show that rutile structure is suitable
for this purpose and that ruthenium dioxide RuO2, recently

observed to be a room-temperature antiferromagnet [5,6], is
a rare example of such a material. We report a computational
study of RuO2 using density functional theory plus dynamical
mean-field theory (DFT+DMFT) as well as static Hartree-
Fock (HF) techniques. We find that AFM order in RuO2 leads
to a spin-polarized band structure. The distinct spin-up and
spin-down FSs are rotated by π/2 along the crystallographic
c axis with respect to each other. The AFM order thus can be
viewed as a d-wave Pomeranchuk instability in the spin-triplet
channel [7]. We discuss the experimental implications and
trace the origin of the AFM instability to a nodal line in the
nonmagnetic (NM) band structure located in the vicinity of
Fermi level.

II. COMPUTATIONAL METHOD

Starting from DFT electronic structure in the P42/mnm
structure [5] obtained with WIEN2K package [8], we con-
structed Wannier orbitals spanning the Ru 4d t2g bands
[9,10]. The tight-binding model was augmented by intra-
atomic electron-electron interaction of the Slater-Kanamori
form [11,12]

HU = U
∑

α

nα↑nα↓ +
∑

α>β,σσ ′
(U − 2J − Jδσσ ′ )nασ nβσ ′

+ γ J
∑
α �=β

(c†
α↑c†

β↓cα↓cβ↑ + c†
α↑c†

α↓cβ↓cβ↑ + H.c.),

where the indices α, β run over the orbital flavors on the same
atom, whose site index was dropped for simplicity. The result-
ing Hubbard model was studied with DMFT and HF meth-
ods. The DMFT calculations employed the strong-coupling
continuous-time quantum Monte Carlo method [13–16] and
the density-density approximation (γ = 0) to HU . HF calcu-
lations with spin-orbit coupling (SOC), included a posteriori
to the mean-field Hamiltonian, were performed to determine
the orientation of the local moments in the AFM state. The
impact of SOC on the band structure was found to be only
minor, in line with the conclusions of Ref. [17].
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The calculations covered a wide range of U , J parameters
and temperatures, as summarized in the Supplemental Mate-
rial (SM) [18]. While size of the ordered moment varies with
these parameters and among the two methods, the general
observations presented here are shared by all calculations.
Quantitatively, the DMFT and HF electronic structures corre-
sponding to the same ordered moment agree with each other
and as well as with DFT+U calculations, as shown in the SM
[18]. This observation suggests that staggered Weiss field due
to the AFM order, a feature shared by all methods, is the
dominant effect. In the following, we present HF (DMFT)
results for U = 1.7 (1.7) eV and J = 0.2 (0.45) eV at T =
300 (100) K.

III. RESULTS AND DISCUSSION

A. Spin-polarized band structure

In Fig. 1(a), we show the AFM band structure obtained
with DMFT. The band structure throughout the Brillouin zone
(BZ) is spin polarized, giving rise to a spin contrast shown
in Fig. 1(b). Special high-symmetry planes, discussed below,
are an exception where spin-up and spin-down bands are
degenerate. In Fig. 1(c), we present NM and AFM bands
obtained with the HF method. The ordered moment in the
Wannier basis is ≈0.8 μB in both cases. Apart from notice-
able dynamical bandwidth renormalization absent in the HF
spectra, we observe overall a good agreement between the
HF and DMFT results. This suggests that the weak-coupling

A Γ X M Γ Z R A Z
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FIG. 1. (a) DFT+DMFT band structure, the spectral function
A↑↑(ω) + A↓↓(ω), along the high-symmetry lines in BZ. (b) The spin
polarization of the band structure is calculated as A↑↑(ω) − A↓↓(ω).
(c) HF band structure: paramagnetic (black) and AFM (↑ red; ↓
blue). The energy is measured from the Fermi level.

HF approach provides a reasonable description of the physics
of RuO2 and we can use its simple structure to analyze the
observed behavior.

Since both Ru1 and Ru2 sites with the antiparallel spin
moments fit in the rutile unit cell, the AFM order does not
affect the translation symmetry. It reduces the point symmetry,
however. The operations connecting the magnetic sublattices
(mapping Ru1 to Ru2), e.g., the 42 screw rotation, belong
no more to the symmetry group. To do so, they must be
augmented with spin inversion. As a result, the AFM band
structure is spin polarized with the two spin channels being
coupled by π/2 rotation. This distinguishes RuO2 from other
antiferromagnets with spin-polarized bands, such as tetrago-
nal CuMnAs [3], where the magnetic sublattices, and thus the
spin-polarized bands, are connected by inversion symmetry.
The spin-up and spin-down bands of RuO2 are degenerate
(cross) along the ka = 0, π planes, which are invariant under
the glide plane xa = 0 connecting the magnetic sublattices.
The same applies for kb = 0, π planes and xb = 0 glide plane.

The spin polarized band structure gives rise to the FS
shown in Fig. 2(b). The deformation of fourfold symmetric FS
in Fig. 2(a) into a pair of two-fold symmetric FS connected
by π/2 rotation and spin inversion can be classified as d-
wave spin-triplet Pomeranchuk instability of the α type in the
notation of Ref. [7]. This type of spin-polarized FS implies a
finite longitudinal spin conductivity σ↑ − σ↓ in the ab plane,
with opposite signs in the (1,1,0) and (1,−1,0) directions,
which vanishes along the crystallographic axes.

FIG. 2. (a) Fermi surface of paramagnetic RuO2 obtained with
HF method. The color codes the atomic polarization (difference of
the Ru1 and Ru2 contributions to the wave function at a given k
point). (b) Spin-polarized Fermi surface of the AFM state. (c) Crys-
tal structure of RuO2 with global, a, b, c, and local coordinates
indicated.
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FIG. 3. (a) Paramagnetic and (b) antiferromagnetic band struc-
ture obtained with the HF method. Here the SOC is included. The
color map shows simulated ARPES spectra. Lorentzian broadening
of half-width 0.05 eV and Fermi-Dirac distribution at 300 K are
included.

Apart from spin polarization, the AFM order causes
changes of the band structure that can be detected with angle-
resolved photoemission spectroscopy (ARPES). In Ref. [17],
soft x-ray ARPES spectra obtained with p-polarized light
were reported. We have simulated p-polarized ARPES spec-
tra, assuming that the scattering plane is perpendicular to the
c axis. The resulting spectra in the NM and AFM states are
shown in Fig. 3. The spectra along AM and M	 directions
agree well with those of Fig. S3 of Ref. [17], while the weaker
signal observed observed halfway between 	 and Z should
be silent according to our simulation [19]. Comparison of
the NM and AFM bands reveals a sizable shift of the FS
crossing point on MA with the onset of AFM order, while
the crossing point on 	M moves only slightly. The sharp
experimental band observed along MA line does not produce
any spin contrast. On the other hand, well-separated spin
polarized bands predicted along the AZ line by the present
calculation have vanishing cross section for the p polarization
of incoming photons.

B. Origin of AFM instability

Similarity between the DMFT and HF results allows us
to use the simpler HF approach to analyze the origin of
AFM instability. The grand potential in the HF approach with
mean-field 
 is given by the sum of the eigenenergies ε


nk,σ of
occupied single-particle states of the mean-field Hamiltonian
(measured from the chemical potential) and a positive 
-
dependent constant 〈�MF〉 = ∑

nk,σ ε

nk,σ fnk,σ + C(
), where

fnk,σ is the occupation number. The AFM state is stabilized if
lowering of the first term overcomes the increase of the second
one relative to the NM solution. To assess how different parts
of BZ contribute to stabilization of the AFM order, we plot the
difference η(k) = ∑

n,σ (εNM
nk,σ − εAFM

nk,σ ) fnk,σ in Fig. 4. We find
a hot spot around the point marked K2, which extends hor-
izontally toward the zone center. This observation contrasts

FIG. 4. The contribution η(k) (defined in the text) to the conden-
sation energy along several cuts through BZ.

with the result of Ref. [5] where a point on the RX line was
identified as a hot spot destabilizing the paramagnetic phase.
Large contributions to condensation energy are expected from
regions where gaps open at the Fermi level. This is the case of
the vicinity of K2, analyzed in Fig. 5.

At the point K2 the nodal line NDL1 of Ref. [17] reaches
the edge of BZ. Together with the band sticking along vertical
faces of BZ, this gives rise to a fourfold degenerate point,
which happens to be very close to the Fermi level. The band
structure in the vicinity of MA line has a simple explanation
in terms of interatomic hopping. The relevant electronic states
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FIG. 5. Band structures along K1K2 line of the HF model with
(a) the paramagnetic (green) and (b) the AFM (↑ red; ↓ blue)
phase. The effect of SOC is represented with dashed (black) lines.
(c) Paramagnetic band structure in the horizontal K1K2K3 plane
obtained with dominant nn hopping. (d) The same as in panel (c) with
a staggered potential.
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are formed by zx and yz orbitals in the local coordinates shown
in Fig. 2(c). Along the MA line the two Ru sites as well as zx
and yz orbitals are decoupled and the dispersion is governed
by hopping along chains of edge sharing RuO6 octahedra
stretching along the c axis. The opposite sign of zx-zx and
yz-yz hopping results in the crossing of the corresponding
bands at K2. The different parity of the zx and yz bands with
respect to c-axis inversion explains their appearance and/or
absence in the ARPES spectrum of Ref. [17].

The dispersion in K1K2K3 plane is governed by the inter-
sublattice Ru1-Ru2 hopping (see SM [18] for details). The
nodal line NDL1 that is flat connecting K1 and K2 points in
the nn approximations, Fig. 5(c), acquires some corrugation
when long-range hopping and x2 − y2 orbitals are included;
see Fig. 5(a) and Ref. [17]. The AFM order introduces a
staggered potential with opposite sign in each spin channel.
Its effect on HF bands along K1K2 line is shown in Fig. 5(b)
(both spin channels) and on the model bands in Fig. 5(d) (one
spin channel). The gap opening by the staggered potential can
be illustrated by expanding the tight-binding Hamiltonian to
linear order around K2 = (π, π, z),

h(k)

=

⎛
⎜⎜⎜⎝


 + αkc 0 0 γ (ka − kb)

0 
 − βkc γ (ka + kb) 0

0 γ ∗(ka + kb) −
 + αkc 0

γ ∗(ka − kb) 0 0 −
 − βkc

⎞
⎟⎟⎟⎠,

(1)

in the basis formed by yz(1), zx(1), yz(2), and zx(2) orbitals.
To open a gap by the staggered potential 
, we need a

(approximate) band crossing close to the Fermi level and
hybridization between the magnetic sublattices (Ru1-Ru2)
so that the band crossing is not just shifted to a different
position in BZ. Such a band structure, described by Eq. (1),
is found in the vicinity of NDL1. In the NM state, such k
regions are characterized by rapid changes in the Ru1/Ru2

sublattice composition of the wave functions. In Fig. 2(a),
we show the NM FS colored by the sublattice polarization
(difference between Ru1 and Ru2 weight) of the correspond-
ing wave functions. The hot spots in Fig. 4 correlate with
red and blue boundaries in Fig. 2(a), where sublattice po-
larized bands meet. The sublattice polarization descends to
a spin polarization in the AFM phase [Fig. 2(b)]. On the
other hand, the regions with 50:50 sublattice participation
are insensitive to the staggered potential, e.g., in the 	XM
plane, and NM and AFM FS essentially coincide with each
other.

Finally, we discuss the role of SOC. The band structure
calculations of Ref. [17] found a minor modifications of
the band structure in the form of avoided band crossings.
We find that gapping NDL1 due to SOC has only minor
effect on the AFM instability. The impact on the HF band
structure depends strongly on the type of mean-field decou-
pling, a deficiency that is not present in DMFT treatment.
In the present work, we have added SOC a posteriori to
the converged HF, which has the similar effect as in DFT
calculation [17]. The band structures with and without SOC
are compared in Fig. 5. The main effect of SOC is to break

the spin isotropy reflected in magnetocrystalline anisotropy.
The HF+SOC calculations yield Ru moments parallel to the c
axis.

The rutile structure of RuO2 gives rise to several inter-
esting phenomena. Šmejkal et al. [20] recently suggested
realization of crystalline Hall effect in this material. The d-
wave modulation of FS results in a finite longitudinal spin
conductivity with a sign change between (1,1,0) and (1,−1,0)
directions. Another interesting question is the response of
the AFM structure to the external magnetic field. Using the
weak-coupling approach, the authors of Ref. [7] concluded
that the order parameter (staggered moment in this case)
aligns parallel to the external field. This is associated with an
expansion of FS for the parallel spin component and shrinking
of the antiparallel one, with the consequence of breaking
the fourfold symmetry in the charge channel. Such behavior
of an antiferromagnet would be rather unusual and require
extremely soft magnetic moments. We have investigated this
possibility with HF calculations (without SOC) but found the
conventional behavior with moments turning perpendicular
to the external field with a small tilt into the field direction,
in which case the π/2 symmetry between the spin-up and
spin-down FS is reserved.

IV. CONCLUSIONS

We have studied the antiferromagnetism of RuO2 using
combinations of DFT band structure with HF and DMFT
treatment of intra-atomic interaction. The AFM ordering in
RuO2 has the symmetry of a spin-triplet d-wave Pomeranchuk
instability of FS. Unique among common antiferromagnets,
the band structure of RuO2 is spin polarized with the spin-up
and spin-down bands connected by π/2 rotation. This leads to
a finite longitudinal spin-conductivity in the ab plane, which
has maximal values of opposite signs along the (1,1,0) and
(1,−1,0) and zeros along the (1,0,0) and (0,1,0) directions.
Reversing the sublattice magnetization switches the sign of
the longitudinal spin conductivity and thus can be used to
distinguish the antiferromagnetic states with opposite Néel
vector.

The origin of AFM instability was traced to a nodal line
that accidentally appears close to the Fermi level, gapping
of which stabilizes the AFM state. The spin-orbit coupling
gives rise to a magnetocrystalline anisotropy, which favors
local Ru moments parallel to the c axis, in agreement with
the experiment.

ACKNOWLEDGMENTS

The authors thank W. E. Pickett, J. Železný, L. Šme-
jkal, and K. Yamagami for valuable discussions. K.H.A.
and K.W.L. are supported by National Research Foundation
(NRF) of Korea Grants No. NRF-2016R1A2B4009579 and
No. NRF-2019R1A2C1009588. A.H. and J.K. are supported
by the European Research Council (ERC) under the European
Union Horizon 2020 research and innovation programme
(Grant Agreement No. 646807-EXMAG). Access to comput-
ing and storage facilities provided by the Vienna Scientific
Cluster (VSC) is greatly appreciated.

184432-4



ANTIFERROMAGNETISM IN RuO2 AS d-WAVE … PHYSICAL REVIEW B 99, 184432 (2019)

[1] P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills,
R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S.
Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y.
Mokrousov, J. Kuneš, J. S. Chauhan, M. J. Grzybowski, A. W.
Rushforth, K. Edmond, B. L. Gallagher, and T. Jungwirth,
Science 351, 587 (2016).

[2] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am.
Chem. Soc. 130, 3296 (2008).

[3] P. Wadley, V. Novák, R. P. Campion, C. Rinaldi, X. Martí, H.
Reichlová, J. Zelezný, J. Gazquez, M. A. Roldan, M. Varela,
D. Khalyavin, S. Langridge, D. Kriegner, F. Máca, J. Masek,
R. Bertacco, V. Holý, A. W. Rushforth, K. W. Edmonds,
B. L. Gallagher, C. T. Foxon, J. Wunderlich, and T. Jungwirth,
Nat. Commun. 4, 2322 (2013).

[4] J. C. Slater, Phys. Rev. 82, 538 (1951).
[5] T. Berlijn, P. C. Snijders, O. Delaire, H.-D. Zhou, T. A. Maier,

H.-B. Cao, S.-X. Chi, M. Matsuda, Y. Wang, M. R. Koehler,
P. R. C. Kent, and H. H. Weitering, Phys. Rev. Lett. 118, 077201
(2017).

[6] Z. H. Zhu, J. Strempfer, R. R. Rao, C. A. Occhialini, J.
Pelliciari, Y. Choi, T. Kawaguchi, H. You, J. F. Mitchell,
Y. Shao-Horn, and R. Comin, Phys. Rev. Lett. 122, 017202
(2019).

[7] C. Wu, K. Sun, E. Fradkin, and S.-C. Zhang, Phys. Rev. B 75,
115103 (2007).

[8] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and
J. Luitz, WIEN2K, An Augmented Plane Wave + Local Or-
bitals Program for Calculating Crystal Properties (Karlheinz
Schwarz, Technische Universität Wien, Wien, Austria, 2001).

[9] J. Kuneš, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K.
Held, Comput. Phys. Commun. 181, 1888 (2010).

[10] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D.
Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309
(2014).

[11] J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill, New York, 1960).

[12] J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).
[13] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.

Millis, Phys. Rev. Lett. 97, 076405 (2006).
[14] L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O.

Parcollet, Phys. Rev. B 84, 075145 (2011).
[15] H. Hafermann, K. R. Patton, and P. Werner, Phys. Rev. B 85,

205106 (2012).
[16] A. Hariki, A. Yamanaka, and T. Uozumi, J. Phys. Soc. Jpn. 84,

073706 (2015).
[17] V. Jovic, R. J. Koch, S. K. Panda, H. Berger, P. Bugnon, A.

Magrez, K. E. Smith, S. Biermann, C. Jozwiak, A. Bostwick, E.
Rotenberg, and S. Moser, Phys. Rev. B 98, 241101(R) (2018).

[18] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.99.184432 for computational details, mag-
netic moment in a wide range of U and J parameters, compari-
son of DFT+U, HF and DMFT approaches, and intersublattice
Ru1-Ru2 hopping, which includes Refs. [21–26].

[19] This discrepancy could arise from complexities of the matrix-
element effects (e.g., photon energy dependence) in ARPES
spectra or surface effects. In the present simulation, the selec-
tion rule for the orbital excitation under the scattering plane
perpendicular to the c axis and p-polarized x-rays is taken into
account.

[20] L. Šmejkal, R. González-Hernández, T. Jungwirth, and J.
Sinova, arXiv:1901.00445.

[21] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[22] V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyżyk,
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