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Magnetic structure of monatomic Fe chains on Re(0001): Emergence of chiral multispin interactions
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We present results of first-principles calculations of the magnetic properties of Fe chains deposited on
the Re(0001) surface. By increasing the length of the chain, a transition is found from an almost collinear
antiferromagnetic state for a five-atom-long chain to a spin spiral state with the rotational plane slightly tilted
from the surface of the substrate for the 15-atom-long chain. It is shown that a classical spin model derived
from the ab initio calculations containing only two-spin interactions supports opposite chirality of the spin spiral
compared to a direct optimization of the spin configuration within the ab initio method. The differences between
the results of the two methods can be understood by introducing chiral four-spin interactions in the spin model.

DOI: 10.1103/PhysRevB.99.184430

I. INTRODUCTION

The investigation of clusters of magnetic atoms on non-
magnetic surfaces has recently opened several intriguing
prospects for the storage and transfer of information on the
nanometer scale. The reduced dimensionality of the clusters
often leads to an enhancement of the magnetic anisotropy
energy [1], stabilizing the magnetic structure in one of two
states connected by time-reversal symmetry. These two states
can in turn be used for designing logic gates [2]. Besides
the anisotropy, the interactions between the magnetic adatoms
mediated by the substrate also crucially influence the mag-
netic state. One prominent type of these couplings is the
Dzyaloshinskii-Moriya (DM) interaction [3,4], the presence
of which can be attributed to the spin-orbit coupling and the
inversion-symmetry breaking caused by the surface. This in-
teraction leads to the formation of noncollinear structures with
a preferred chirality by which the information may be encoded
[5]. Linear chains of magnetic atoms on a superconducting
surface also offer a possibility for realizing Majorana bound
states [6] as fundamental elements of topological quantum
computing, the signatures of which have been investigated ex-
perimentally in chains both with collinear [7] and noncollinear
[8] magnetic ground states.

Determining the ground state for an interacting magnetic
system based on ab initio electronic structure calculations
remains a considerable challenge. Such computations can effi-
ciently be performed by mapping the energy or grand potential
of the system to a classical spin model. It was demonstrated
in Ref. [9] how Heisenberg exchange interactions between
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pairs of spins may be determined based on the derivatives of
the energy, that is, the torque acting on the spin directions.
The torque method has been generalized to tensorial two-spin
interactions appearing in the presence of spin-orbit coupling
[10,11], and it was validated for various systems over the last
decade [12–14]. A fully real-space calculation of the interac-
tions in a magnetic cluster is presented in Ref. [15]. However,
only considering two-spin interactions in the spin model is
not sufficient for describing all types of magnetic order. It was
demonstrated in various ultrathin film systems that isotropic
four-spin interactions may stabilize up-up-down-down states
[16–18], conical spin spirals [19,20], or nanoskyrmion lattices
[21].

The problem of finding a spin model which contains all
types of magnetic interactions relevant in the system may be
circumvented by updating the directions of the magnetic mo-
ments during the ab initio calculations. Because of the higher
number of degrees of freedom the computational complex-
ity increases dramatically, but such methods enable a more
accurate determination of the magnetic ground state. It was
proposed in Refs. [22,23] that the constrained local moment
method within density functional theory is applicable for per-
forming first-principles spin dynamics simulations. Using this
method, it was demonstrated in Ref. [24] that the reduction
of the symmetry leads to a canted magnetic configuration in
a finite Co chain along a step edge on the Pt(111) surface.
An alternative procedure for updating the spin directions
based on the Landau-Lifshitz-Gilbert equation [25,26] was
introduced in Ref. [27], where the torques acting on the spins
are determined directly from the electronic structure at each
time step within a fixed electronic potential.

In the present paper the magnetic properties of monatomic
Fe chains are investigated on the Re(0001) substrate.
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Spin-polarized scanning tunneling microscopy measurements
performed for a 40-atom-long Fe chain on superconducting
Re in Ref. [8] revealed a spin spiral ground state with both
in-plane and out-of-plane spin components and a period of
approximately four lattice constants.

The paper is organized as follows. In Secs. II A and II B the
details of the ab initio calculations are discussed, performed
using the Vienna Ab initio Simulation Package (VASP) [28]
and the embedding technique within the KKR method [29],
respectively. In Sec. II C the spin model including two-spin
interactions is introduced. The results for the parameters
entering the spin model are discussed in Sec. III A. The
possible magnetic ground states of the chains obtained from
the spin model and from a direct optimization within the
ab initio method are compared in Sec. III B. The deviations
between the different methods observed for the chirality of
the spin structure for the 15-atom-long chain are resolved by
taking into account four-spin chiral interactions introduced in
Sec. III C. Finally, the results are summarized in Sec. IV.

II. METHODS

A. VASP calculations

To model the geometries of Fe atomic chains on the
Re(0001) surface, the equilibrium structure of an Fe adatom
on Re(0001) has been first calculated by using the VASP

method. The obtained structure corresponds to the total energy
minimum after geometry optimization. In the calculation the
generalized gradient approximation (GGA) within density
functional theory (DFT) has been used with the exchange-
correlation (XC) functional parametrized following the work
of Perdew, Burke, and Ernzerhof (PBE) [30]. The system has
been modeled as a 7 × 7 surface cell in a slab geometry con-
sisting of four atomic layers of Re (in total 4 × 7 × 7 = 196
Re atoms) and an Fe adatom in the hcp hollow position [8].
The chosen geometry ensures that the interactions between Fe
atoms in repetitive supercells are negligible due to their large
separation of ∼19.3 Å that corresponds to 7 aRe, where aRe =
2.761 Å is the in-plane lattice constant of Re. In the (0001)
direction a 10-Å-thick vacuum region has been considered to
avoid interaction between repetitive slabs. The Brillouin zone
was sampled by the Gamma point only due to the large size
of the supercell. The Re atoms in the bottom three layers of
the slab have been fixed to their hcp bulk positions, and the
vertical positions of all Re atoms in the topmost layer and the
Fe adatom have been optimized by using a force convergence
criterion of 0.01 eV/Å acting on the individual atoms. The Fe
adatom is found to have a spin magnetic moment of 2.61 μB,
and it pulls out its three nearest-neighbor (NN) Re atoms
slightly from the top Re layer, arriving at a Fe-Re vertical
distance of 1.85 Å with respect to these nearest neighbors.
We also find that the top Re layer relaxes toward the substrate
which leads to a vertical Re-Re distance of 2.16 Å between
the above-mentioned three NN Re atoms of the Fe adatom
and the Re atoms in the subsurface layer, which is smaller
than the bulk Re interlayer distance of 2.228 Å. These Fe-Re
and Re-Re vertical distances were used in the subsequent
KKR calculations for the Fe adatom and the atomic chains
on Re(0001).

B. KKR calculations

We used the Green’s function embedding technique based
on the KKR multiple scattering theory [29] to determine the
electronic and magnetic properties of the Fe clusters. The
Re(0001) surface has been modeled as an interface region
between semi-infinite bulk Re and vacuum consisting of
eight atomic layers of Re and four atomic layers of empty
spheres (vacuum). The energy integrals were performed using
16 points along a semicircle contour in the upper complex
semiplane and a sampling of up to 3282 �k points in the
Brillouin zone was used to calculate the Green’s function
of the host. The Ceperley-Alder-type of exchange-correlation
functionals [31] as parametrized by Perdew and Zunger [32]
and an angular momentum cutoff of lmax = 2 was considered
in the KKR calculations, similarly to Ref. [33]. A single Fe
adatom and chains consisting of five, 10, and 15 Fe atoms
were calculated by embedding them in the first vacuum layer
with the layer relaxations described in the previous section.

Three different methods have been used to investigate
the magnetic properties of the systems. First, the relativistic
torque method [10,11] was applied to determine parameters of
a classical spin model restricted to two-spin interactions. The
energies of magnetic configurations within this description
were compared by atomistic spin model simulations. The
spin model is discussed in Sec. II C, while the method for
fitting the parameters is given in Appendix A. Second, the
energies of selected spin configurations were compared, such
as collinear states with different magnetic orientations or spin
spirals with different periods. In the spirit of the magnetic
force theorem (MFT) [9], these energy differences between
magnetic configurations are calculated with fixed electronic
potentials based on the band energy, which is obtained by
using Lloyd’s formula [34]. Third, the ground state of the
Fe chain was also determined completely within the ab initio
formalism, by updating the spin directions based on the torque
acting on them and also performing self-consistent calcula-
tions in the obtained spin configurations. This method enables
finding local energy minima, ideally the ground state, in the
whole configuration space of the spin directions [35]. It should
be noted that in the second and third methods there is no
restriction on the possible types of magnetic interactions apart
from those enforced by the symmetry of the system.

First, we performed self-consistent calculations for an Fe
adatom in hcp position on the top of the Re(0001) substrate
with the embedded cluster KKR technique. We considered
clusters of different sizes and concluded that the spin magnetic
moment of Fe, mFe = 2.46 μB, changes by less than 1% when
increasing the size of the cluster from 13 lattice sites including
three Re atoms and nine empty spheres in the first NN shell
to 122 lattice sites including the first three neighbor shells
around the Fe adatom. Note that the obtained spin moment of
Fe is about 6% less than the value of 2.61 μB from the VASP

calculations. The magnetic moment of the Fe atom induces a
small (<0.1 μB) magnetic moment in the Re atoms directly
below it, while the induced moments of farther Re atoms are
negligible.

We determined the anisotropy energy of the adatom in the
spirit of the MFT by calculating the energy difference �E
between the cases where the Fe spin is pointing in-plane (E‖)
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and normal to the plane (E⊥). Due to the small value of the
induced Re moments the exchange-correlation field was set to
zero at the Re sites while calculating the energy differences,
and we obtained that the single Fe adatom has easy-plane
anisotropy with �E = E⊥ − E‖ = 0.905 meV. We confirmed
that taking into account the exchange-correlation field on the
Re sites leads to a change within about 5% in the magnetic
anisotropy energy; therefore, in all calculations of the Fe
chains in terms of the MFT we chose the above approach for
simplicity.

We considered close-packed monatomic chains of five,
10, and 15 Fe atoms along the nearest-neighbor direction on
the top of Re(0001). In the following this direction will be
denoted by x, the in-plane direction perpendicular to x by y,
and the normal-to-plane direction by z. Based on our investi-
gations for the adatom, we considered clusters containing the
atomic positions in a NN environment relative to the Fe atoms,
including 11, 21, and 31 Re atoms, as well as 25, 45, and 65
empty spheres for the chains of five, 10, and 15 Fe atoms,
respectively.

For the five-atom-long Fe chain we first performed self-
consistent calculations with ferromagnetic (FM) order and
used the torque method to generate a spin model. As will
be discussed in Sec. III A, the NN isotropic couplings are
strongly antiferromagnetic (AFM), implying that an alternat-
ing AFM order is considerably lower in energy than the FM
state. In order to check the preference for the AFM state,
we recalculated the potentials with the AFM order of the
spins and, by using these potentials, we calculated the energy
difference between the AFM and FM states within the MFT.
Indeed, the AFM state was by 15.7 meV/Fe atom lower in
energy than the FM state. Based on the above results, for all
the Fe chains under consideration we used the self-consistent
potentials obtained from alternating AFM configurations to
generate the spin-model parameters.

C. Spin model

The adiabatic decoupling of the electronic and spin degrees
of freedom and the rigid spin approximation [36] make it
possible to characterize the energy of a magnetic system by
a set of unit vectors {�e} ≡ {�e1,�e2, . . .�eN } describing the di-
rections of atomic magnetic moments, where N is the number
of magnetic atoms in the system. Since the metallic substrate
acts as a particle reservoir for the clusters considered in the
calculations, instead of the energy E we will consider the
grand potential � = E − εFNe at zero temperature, with εF

and Ne being the Fermi energy of the reservoir and the number
of electrons in the cluster, respectively. Taking into account
one-spin terms and two-spin magnetic interactions, the spin
model can be written as

�({�e}) = �0 +
N∑

i=1

�eiKi
�ei − 1

2

N∑
i, j=1
i �= j

�eiJi j
�e j, (1)

where �0 is a constant, the K
i

are traceless and diagonal
second-order single-ion anisotropy matrices, and the J

i j
are

tensorial exchange interactions [10]. The matrices J
i j

can be

decomposed into three parts,

J
i j

= JI
i j I + JS

i j
+ JA

i j
, (2)

where

JI
i j = 1

3 Tr(J
i j

) (3)

is the isotropic exchange interaction,

JS
i j

= 1
2

(
J

i j
+ JT

i j

) − JI
i j I (4)

is the traceless symmetric part of the matrix, with T denoting
the transpose. This is known to contribute to the so-called two-
ion magnetic anisotropy of the system. The antisymmetric part
of the matrix,

JA
i j

= 1
2

(
J

i j
− JT

i j

)
, (5)

is related to the DM interaction [3,4],

�eiJ
A
i j
�e j = �Di j (�ei × �e j ) (6)

with the DM vector Dα
i j = 1

2εαβγ Jβγ
i j , εαβγ being the Levi-

Civita symbol and α, β, γ denoting Cartesian components.
Following Ref. [33], site-resolved easy-axis directions and

anisotropy energies have been determined for the monatomic
chains from the spin model, taking into account both single-
ion and two-ion contributions. Since the nearest-neighbor
isotropic interactions are found to be antiferromagnetic (see
Sec. III A), in order to characterize the magnetic anisotropy
we consider alternating local moments �ei = (−1)i�e. The
grand potential of the system can then be expressed as

�(�e) = �′
0 +

N∑
i=1

�eA
i
�e, (7)

with

�′
0 = �0 − 1

2

∑
i �= j

JI
i j (−1)i+ j, (8)

and the effective anisotropy matrices

A
i
= K

i
− 1

2

N∑
j=1

JS
i j

(−1)i+ j . (9)

The normalized eigenvectors of the symmetric matrices
in Eq. (9), �ee

i , �ei
i, and �eh

i correspond in order to the easy,
intermediate, and hard directions, with the respective energy
eigenvalues ke

i � ki
i � kh

i . For illustrating the site-specific
easy directions together with the magnetic anisotropy ener-
gies, we will use the following vector:

�ki = (
kh

i − ke
i

)�ee
i . (10)

The ground state of the spin model was determined by
zero-temperature Landau-Lifshitz-Gilbert (LLG) spin dynam-
ics simulations where only the damping term was kept. This
is described by the time integration step

�e′
k (tn+1) = �ek (tn) − λ�ek (tn) × (�ek (tn) × �Beff

k (tn)
)
, (11)

where

�Beff
k =

∑
j

J
k j

�e j − 2K
k
�ek (12)
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FIG. 1. Nearest-neighbor (NN) and next-nearest-neighbor (NNN) isotropic interactions JI
i j in the Fe chains of three different lengths. The

interaction strengths between pairs of atoms connected by bonds are presented in the yellow boxes in units of meV. Positive and negative signs
correspond to FM and AFM couplings, respectively.

is the effective magnetic field, and a small damping parameter,
λ ∼ 10−4 meV−1, was chosen. The new spin vectors were
normalized after each step to preserve the unit length of the
vectors. The simulations were stopped when the spin com-
ponents changed less than 10−6 in 5 × 105 subsequent LLG
steps. For each system ten runs with independently chosen
random initial configurations were performed which all led to
the same final state, providing a strong indication that this is
the actual ground state of �({�e}) instead of a local minimum.

III. RESULTS

A. Spin-model parameters for the Fe chains

In this section we discuss the parameters of the spin
model containing two-spin interactions described in Sec. II C,
calculated in terms of the KKR method and the relativistic
torque method detailed in Sec. II B and in Appendix A,
respectively. The variation of NN and next-nearest-neighbor
(NNN) isotropic interactions JI

i j from Eq. (3) along the chains
can be seen in Fig. 1. For all chains, the NN isotropic
interactions are the strongest, and their negative sign means
AFM coupling. The isotropic interactions become more and
more homogeneous at the middle of the chain as the length
of the chain is increased. It is also apparent from Fig. 1
that the isotropic NN interactions are considerably smaller in
magnitude at the edges of the chain than inside the chain for
all chain lengths.

The ferromagnetic NNN interactions are more than one
order of magnitude smaller than the NN ones as shown in
Fig. 1. This also holds true for the interactions for farther
neighbors as can be seen in Fig. 2(a), where calculated values
for the middle spin 8 in the 15-atom-long chain are displayed.
However, if one summarizes the effect of farther interactions,
it turns out that they play an important role in determining the
ground state. This is demonstrated by introducing the Fourier
transform of the isotropic interactions as

Jk (q) =
k∑

j=1

JI
8,8+ j cos( jaq), q ∈

[
−π

a
,
π

a

]
, (13)

where k is the number of neighbors taken into account. If
one assumes that the interactions in the middle of the chain
will no longer be significantly modified as the chain length
is increased, then Jk (q) may be used as an approximation
for the energy contribution of the isotropic interactions to

homogeneous spin spiral states in infinitely long chains,
where q = 0 corresponds to the FM and q = π

a to the AFM
state. The most favorable state is given by the maximum
of Jk (q). It can be seen in Fig. 2(b) that up to k = 5 this
corresponds to the collinear AFM state. However, considering
more shells (k > 5) in the sum in Eq. (13) a spin spiral
state becomes the most favorable, which can be regarded as
a long-wavelength modulation of the AFM state. This is a
consequence of the frustration of the isotropic interactions,
which in the AFM state is indicated by the fact that the
isotropic interaction between atoms at the distance of an odd
multiple j of the lattice constant becomes FM and at an
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FIG. 2. (a) Isotropic couplings in the 15-atom-long Fe chain
between the atom at the middle of the chain indexed by 8 (see the
bottom panel of Fig. 1) and the Fe atoms at positions 8 + j ( j =
2, . . . , 7). (b) Fourier transform of the isotropic couplings, Eq. (13),
where k labels the number of neighbors taken into account in the
sum.
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FIG. 3. Side view of the NN and NNN DM vectors �Di j from Eq. (6) in the Fe chains of three different lengths. With respect to the direction
parallel to the chains, the arrows are placed at the centers of the lines between the corresponding pairs of Fe atoms, where at the left side of
the line is the atom number i and at the right side is the atom number j in the vector �Di j . The lengths of the arrows are scaled according to the
magnitude of the DM vectors. The numerical values of the components of the DM vectors for the 15-atom-long chain can be found in Table I.

even j it becomes AFM, although the spins at odd and even
j positions should be antiparallel and parallel in the AFM
state, respectively. It is shown in Fig. 2(a) that such kind of
frustration occurs for j � 4, explaining how the spin spiral
state is formed as the number of shells is increased.

The NN and NNN DM vectors in the chains, see Eq. (6),
are drawn in Fig. 3. Similarly to the isotropic exchange
interactions, the DM vectors at the middle of the chain be-
come stabilized as the chain length is increased. The DM
vectors between the three atoms at the edges of the chains
significantly differ from those in the middle of the chains,
while these DM vectors are similar between the five-, 10-, and
15-atom-long chains. The obtained DM interactions satisfy
the symmetry rules of Moriya [4] with respect to the only
crystal symmetry of the system, namely the mirroring at the
yz plane intersecting the middle of the chain. Since the DM
vector transforms as an axial vector, this symmetry implies(

Dx
i j, Dy

i j, Dz
i j

) = (
Dx

σ (i),σ ( j),−Dy
σ (i),σ ( j),−Dz

σ (i),σ ( j)

)
, (14)

where σ (i) = N + 1 − i is the mirror image of site i in the
chain of length N . Note that in Fig. 3 the vectors are displayed
for i < j and �Di j = −�Dji by definition.

In the case of the 15-atom-long chain, the numerical values
for the components of the NN and NNN DM vectors are
given in Table I. It can be seen that the NNN DM vectors
are the largest in magnitude and they are almost parallel
to the −y direction. Although the y components of the NN
DM vectors have the same sign, these are actually competing
with the NNN vectors due to the short-range AFM order (see
Sec. III B), similarly how the alternating isotropic interactions

TABLE I. Components of the NN and NNN DM vectors, �Di,i+1

and �Di,i+2, respectively, for the 15-atom-long chain, given in units of
meV. The components of the DM vectors for i > 7 can be obtained
by the symmetry relations Eq. (14) and are illustrated in Fig. 3.

�D12 �D23 �D34 �D45 �D56 �D67 �D78

x −0.60 0.64 0.23 0.42 0.18 −0.03 −0.03
y −3.95 −0.71 −0.98 −1.24 −1.76 −1.62 −1.43
z −1.24 2.96 1.61 1.80 1.34 1.48 1.49

�D13 �D24 �D35 �D46 �D57 �D68 �D79

x 0.05 −0.25 −0.30 −0.04 −0.02 −0.07 0.00
y −4.06 −4.47 −5.12 −5.13 −4.92 −4.96 −5.03
z 0.44 0.84 0.73 1.16 1.16 1.13 1.12

in Fig. 2(a) are competing with the NN interaction. The z
components of the NN and NNN DM vectors are mostly
positive; they only change sign for the NN atoms at the edge of
chain (Dz

12 < 0). In general, Dz
i j is larger for the NNs than for

the NNNs, but at the middle of the chain they become roughly
similar in size. The x components of the DM vectors are
very small and they should disappear in the limit of infinitely
long chains due to the mirror symmetry with respect to the
yz plane. For the 15-atom-long chain, the mirror symmetry
implies Dx

79 = 0.
The site-resolved anisotropy vectors defined in Eq. (10)

are visualized in Fig. 4, where the arrows point along the
easy directions and their magnitude is proportional to the
energy difference between hard and easy axes at the given
site. At all sites the easy axis is almost parallel to the y
direction, while the hard axis is roughly along the z direction.
With increasing chain length the magnitude of the �ki vectors
gets quite homogeneous with the maxima of 7.79, 9.03, and
8.92 meV at the middle of the five-, 10-, and 15-atom-long
chains, respectively. However, since the site-resolved mag-
netic anisotropy energy drops at the edge of the chains, the
average length of the anisotropy vectors is 6.25, 7.60, and
7.91 meV for the three chains in order. These values are
close to the average anisotropy energies, (�(ẑ) − �(ŷ))/N
calculated from Eq. (7), 5.79, 7.37, and 7.76 meV/Fe, re-
spectively, since as noted the local easy and hard axes are
very close to the y and z axes for all the Fe atoms in the
chains.

B. Ground state

Here the ground states of the magnetic clusters will be
discussed, focusing on the chirality of spin rotation inside
the structures. We will use the convention that the rotation
of the spins in the xz plane is locally right handed at site i
if the projection of �ei+1 on this plane may be obtained from
the projection of �ei via a right-handed rotation by an angle
smaller than 180◦ around the positive y axis, meaning that
the angle between the projections is smaller than 180◦ when
rotating from the positive z towards the positive x direction.
The opposite chirality is called left handed, in agreement with
previous definitions of the chirality for spin spirals close to
the ferromagnetic state in Ref. [37]. Analogously, we call the
rotation in the xy plane locally right handed if the projections
of the spins rotate from the positive x towards the positive y
direction.
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FIG. 4. Site-resolved anisotropy vectors according to Eq. (10). The length of the arrows scales with the magnitude of the anisotropy vectors.
The largest magnitude of �ki is 7.79, 9.03, and 8.92 meV for the five-, 10-, and 15-atom-long chains, respectively.

First we determined the ground states of the chains from
the spin model following the method described in Sec. II C.
The obtained configurations can be seen in Figs. 5(a)–5(c).
The five-atom-long chain prefers AFM ordering due to the
strong AFM coupling between the NN spins. The z component
of the DM vectors is responsible for a slight noncollinearity in
the AFM state. The negative Dz

12 value in Fig. 3 causes a slight

left-handed rotation between spins 1 and 2, while the positive
Dz

23 causes a right-handed rotation between spins 2 and 3. The
ground state is tilted away from the xy plane through a rotation
around the x axis by about 12.8◦, so the spins with positive y
component now have positive z component, too. The tilting is
caused by the competition of the easy y axis anisotropy (see
Fig. 4) and the large y components of the DM vectors (similar

FIG. 5. Top view of the ground state spin configurations of the chains obtained for different chain lengths and by using different calculation
methods: (a) 5 Fe, spin model, (b) 10 Fe, spin model, (c) 15 Fe, spin model, (d) 15 Fe, homogeneous spin spirals, and (e) 15 Fe, ab initio spin
dynamics. The z component of the normalized spin vectors is visualized by color coding according to the color bar below the figures.
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to those in Table I) preferring a rotation of the spins in the xz
plane.

The ground state of the 10-atom-long chain in Fig. 5(b)
is again almost collinear AFM due to the strong NN AFM
coupling between the spins. The z components of the DM
vectors shown in Fig. 3 cause a rotation of the spins around
the z axis along the whole chain, but no full period of a spin
spiral state can be observed. The ground state is now tilted
from the xy plane through a rotation around the x axis by
−6.2◦.

In both the five- and 10-atom-long chains, the strong
anisotropy confines the systems close to the xy plane.
The chirality is right handed over the middle three atoms
in the five-atom-long chain and over the middle eight atoms
in the 10-atom-long chain. Note that only looking at every
second spin in the chain, this visually corresponds to a left-
handed rotation, since the angle between the neighboring
spins is close to 180◦ because of the strong AFM NN cou-
plings. This chirality is determined by the z components of
the DM vectors shown in Fig. 3. The direction of the tilting
is defined by the chirality in the xy plane on one hand and
the y components of the DM vectors on the other hand, the
latter influencing the rotational sense in the xz plane. In both
systems the NN and NNN DM vectors are characterized by
large negative y components, both of which would prefer a
left-handed rotation if the angle between the NN spins would
be small. However, since this angle is larger than 90◦ in the
present case, the apparent left-handed rotation between the
NNN spins actually corresponds to a right-handed rotation
between the NN spins, meaning that the NN and NNN DM
vectors are competing in this AFM spin structure. In the
five-atom-long chain the rotational plane is tilted around the x
axis by a positive angle, leading to a left-handed chirality in
the xz plane enforced by the NN DM vectors. For the longer
chain length of 10 atoms with the same chirality in the xy
plane the influence of the NNN DM vectors becomes stronger,
leading to a tilting around the x axis by a negative angle and a
right-handed chirality in the xz plane.

The ground state of the 15-atom-long chain shown in
Fig. 5(c) can much better be characterized as a spin spiral
state. As described in the context of Fig. 2, the frustrated
isotropic interactions induce a spin spiral with a wave number
of qmax = 0.88π

a (see the k = 7 curve), which corresponds to
a wavelength of about 17 a, slightly larger than the length
of the chain. In Fig. 5(c) the spins from positions 4 to 11
visually form a full period, which can be understood as a
14 a wavelength modulation of the AFM state. This shorter
modulation period might easily be caused by the z com-
ponents of the NN DM vectors, which are not included in
Fig. 2. The large negative y components of the NNN DM
vectors play an important role in tilting the rotational plane out
from the xy plane by −26.1◦ around the x axis, for a simple
explanation see Appendix C. A similar tilted spin spiral state
was already attributed to the interplay of the DM interaction
and easy-plane magnetic anisotropy in Ref. [14]. Similarly to
the 10-atom-long chain, the DM vectors imply right-handed
rotation both in the xy plane and in the xz plane over the whole
chain. This ground state cannot satisfactorily be reconciled
with the experimental observation of a four-atomic period in
a chain of 40 Fe atoms reported in Ref. [8], which would

100
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y i
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FIG. 6. (a) The angles between NN spins ϕi, as well as (b) the y
and (c) the z components of the chirality vectors �χi in the 15-atom-
long Fe chain for the three different calculation methods; blue circles:
spin model, green triangles: ab initio spin dynamics, red horizontal
lines: homogeneous spin spirals.

correspond to a spin spiral state where neighboring spins are
perpendicular to each other.

The local rotational sense of the spins in a spin spiral
discussed above can be quantitatively described by the site-
dependent chirality vector defined as

�χi = �ei × �ei+1 . (15)

If only NN DM vectors were included in the model, �χi would
be parallel to the direction of �Di,i+1. The chirality is right
handed in the xy plane and in the xz plane for χ z

i > 0 and
χ

y
i > 0, respectively. In Fig. 6 the magnitude of the local

chirality vectors |�χi| = sin ϕi, where ϕi ∈ [0◦, 180◦] is the
angle between the NN spins, as well as the y and z components
of the chirality vectors are displayed for the 15-atom-long
chain. The angle between the spins at the edges of the chain is
almost 180◦ and also the sign of χ

y
i is switched compared to

the middle of the chain, which can be explained by the edge
effects in the interaction parameters discussed in Sec. III A.
In the middle of the chain the local environment of the
sites is similar, leading only to slight variations in ϕi. The y
component of the chirality vectors takes a value between 0.1
and 0.2 for the spins 2 to 13, indicating that the spins tilt away
from the xy plane as argued in Appendix C.

For comparison with the ground state obtained from the
spin model, we calculated the energy of the 15-atom-long Fe
chain in the homogeneous spin spiral configuration,

�ei = (cos[i(π + δ) + ϕ0], cos α sin[i(π + δ) + ϕ0],

sin α sin[i(π + δ) + ϕ0]) , (16)
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FIG. 7. Energy per atom of different spin spiral configurations
according to Eq. (16), calculated within the MFT for the 15-atom-
long chain. δ denotes the NN angle of the spiral with respect to the
collinear AFM state and α is the tilting angle from the xy plane. The
minimum, set as the zero level of the energy, is found at δ = 24◦,
α = 12◦.

in the spirit of the MFT by keeping the AFM potentials
fixed. Here δ is the modulation angle of the AFM state, α

is the tilting angle of the spiral from the xy plane and ϕ0 is
a phase factor. The NN spin angle is ϕ = π + δ, indicating
right-handed rotation in the xz and left-handed rotation in the
xy planes for δ > 0◦ and 0◦ � α � 90◦, respectively. Both
rotational senses switch under a sign change of δ, and the
rotation in the xy plane proceeds in the opposite direction
for 90◦ � α � 180◦. We did not consider an additional angle
variable which would differentiate between left- and right-
handed rotational senses in the yz plane, since in an infinitely
long chain these two chiralities are equivalent due to the
mirror symmetry with respect to the yz plane. The phase factor
ϕ0 was determined by minimizing the anisotropy energy as-
suming a homogeneous magnetic anisotropy with y easy axis,
i.e., maximizing

∑N
i=1 sin2 [i(π + δ) + ϕ0] for every δ.

The energy of the spin spirals normalized to one Fe atom is
shown in Fig. 7 as a function of δ and α, where the zero level
corresponds to the state with the lowest energy. The obtained
minimum is at δ = 24◦ and α = 12◦, with the corresponding
spin configuration shown in Fig. 5(d). While the period of
this spin spiral, λ � 15 a, shows good agreement with that
obtained from the simulations based on the spin model shown
in Fig. 5(c), the actual values of δ and α indicate a right-
handed rotation in the xz and a left-handed rotation in the xy
planes (see above), the latter being the opposite of the spin
model simulation results. This can clearly be seen in Fig. 6(c),
where χ z

i for the ground state of the spin model and for the
spin spiral with lowest energy are opposite in sign.

In the case of the 15-atom-long chain we also performed
a fully ab initio spin dynamics energy minimization as de-
scribed in Sec. II B. The energetically most favorable config-
uration found by this method is shown in Fig. 5(e), which also
resembles a flat spin spiral state apart from small deviations
from the coplanar spin arrangement. This method predicts
a right-handed rotation of the spins in the xz and a left-
handed rotation in the xy planes, in agreement with the MFT
calculations performed for the homogeneous spin spiral states.
This approach results in a wavelength of λ � 10 a (δ � 36◦)

i j

C1

�ei �ej

�e �e⊥

C2 −�e �e⊥

C3 �e −�e⊥

C4 −�e −�e⊥

FIG. 8. Illustration of the states for determining chiral interac-
tions from MFT calculations. In each configuration C1-C4, a global
rotation of the spins around the y direction is performed, described
by the vectors �e = (sin θ, 0, cos θ ) and �e⊥ = (cos θ, 0, − sin θ ).

of the spin spiral modulation which is significantly shorter
than those obtained from the previous two methods. On top
of the AFM state, this visually leads to a 5 a period of the
spin structure, see spins 3, 8, and 13 in Fig. 5(e), which fits
the experimental observation the most.

C. Four-spin chiral interactions

It was found in Sec. III B that the spin model Eq. (1) and the
MFT calculation of homogeneous spin spirals yield opposite
rotational senses of the spin components in the xy plane
for the 15-atom-long chain. This most likely indicates that
multispin interactions play an important role in the present
system, since these were not taken into account in the spin
model, but are implicitly included in the MFT calculations.
In order to estimate the magnitude of these interactions, it
is worthwhile to calculate the chiral interactions from energy
differences based on the MFT directly and compare them to
the values of the spin model shown in Table I. This method
is illustrated for the y component in Fig. 8, where four
configurations in the xz plane are shown. In the configuration
denoted by C1, during a global rotation of the spins around
the y axis by the angle θ most spins are rotated according to
�e = (sin θ, 0, cos θ ), while the perpendicular spin at site j will
follow �e⊥ = (cos θ, 0,− sin θ ). The configurations C2,C3,

and C4 are obtained by switching the signs of spins i or j as
illustrated on the right side of Fig. 8.

Assuming the spin model containing only two-spin inter-
actions, from the grand potentials associated to the configura-
tions C1-C4 one obtains

�(C1) − �(C2) − �(C3) + �(C4)

= −2
(
Jzx

i j − Jxz
i j

) + 2
(
Jxz

i j + Jzx
i j

)
cos 2θ

+ 2
(
Jxx

i j + Jzz
i j

)
sin 2θ (17)

as a function of the rotation angle θ . Note that due to the
choice of configurations and the switching of the spin direc-
tions only the interaction between sites i and j remains in
Eq. (17). Averaging Eq. (17) over the angle θ we define the
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TABLE II. Chiral interaction vectors between pairs of spins ob-
tained from the rotational scheme based on MFT calculations, Dα

r,i j ,
Eq. (18), and from the torque method, Dα

t,i j , defined in Eq. (A15).
Values are given in meV for NN and NNN interactions in the middle
of the 15-atom-long chain.

i j α Dα
r,i j Dα

t,i j

7 8 x −0.243 −0.033
7 8 y −3.107 −1.428
7 8 z −2.306 1.491
7 9 x −0.376 0.000
7 9 y −1.083 −5.030
7 9 z −1.319 1.117
8 9 x −0.167 0.033
8 9 y −3.154 −1.428
8 9 z −2.313 1.491

y component of the chiral interaction vector as

Dy
r,i j ≡ − 1

4 〈�(C1) − �(C2) − �(C3) + �(C4)〉, (18)

which, by comparing with Eq. (6), corresponds to the y
component of the DM vector Dy

r,i j = Dy
i j = 1

2 (Jzx
i j − Jxz

i j ), if
only two-spin interactions are considered in the spin model.
Here the index r denotes that the chiral interaction vector was
obtained from the rotational scheme depicted in Fig. 8. Anal-
ogously, the quantities Dx

r,i j and Dz
r,i j corresponding to the

other two components of the DM vector can be calculated by
performing the rotation in the yz and xy planes, respectively.

The calculated values for Dα
r,i j (α = x, y, z) are collected

in Table II for NN and NNN spins in the middle of
the 15-atom-long chain. In addition, the Dα

t,i j values ob-
tained from the torque method, defined in Eq. (A15) in
Appendix A, are listed in the table, which within the spin
model Eq. (1) should also coincide with Dα

i j (cf. Table I).
Due to the mirror symmetry with respect to the yz plane
going through atom 8, the symmetry rules for the DM vectors,
Eq. (14), imply (Dx

t,78,D
y
t,78,Dz

t,78) = (−Dx
t,89,D

y
t,89,Dz

t,89)
and Dx

t,79 = 0. Remarkably, these symmetry relations do not
apply to the corresponding chiral interaction vectors obtained
from the rotational method; in particular, Dx

r,79 does not van-
ish, but it has a comparable value to the other components.
This means that the spin model parametrization of the band
energy surface of the present system is not compatible by
taking into account two-spin DM interactions only.

In order to explain the differences between Dα
r,i j and Dα

t,i j in
Table II, it is necessary to include multispin chiral interactions
in the model description. Consider a grand potential of the
form

� =
∑

i

�eiKi
�ei − 1

2

∑
i, j

�eiJi j
�e j

− 1

2

∑
i, j

�Di ji j (�ei�e j )(�ei × �e j )

−
∑
i, j,k

�Di j jk (�ei�e j )(�e j × �ek )

− 1

4

∑
i, j,k,l

�Di jkl (�ei�e j )(�ek × �el ), (19)

where the last three terms represent two-, three-, and four-
site four-spin chiral interactions combining isotropic (scalar
product) and DM (cross product) contributions. In the sums
in Eq. (19), the i, j, k, and l indices run over all lattice sites,
and in each sum the different indices label different atoms.
Equation (19) may be rewritten in an alternative way where
the summations are performed over all pairs, three-site, and
four-site clusters; this is presented in Appendix B.

The two-site four-spin chiral interactions were recently in-
vestigated in Ref. [38]. Following from the definition Eq. (19),
they are antisymmetric in their indices,

�Di ji j = −�Dji ji, (20)

similarly to the two-spin Dzyaloshinsky-Moriya interaction
in Eq. (6). For the three-site interactions we will consistently
use the notation �Di j jk where the second and third site indices
coincide, in which case there is no intrinsic symmetry relation
connecting the coefficients in the sum in Eq. (19). By def-
inition, the four-site interactions �Di jkl satisfy the symmetry
relations

�Di jkl = �Djikl , (21)

�Di jkl = −�Di jlk ; (22)

therefore, a prefactor of 1/4 is introduced in the last term of
Eq. (19). Moreover, the mirror symmetry on the yz plane in
the center of the chain implies

�Di jkl =
⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠�Dσ (i)σ ( j)σ (k)σ (l ), (23)

where σ (i) was defined in the context of Eq. (14). Equation
(23) is satisfied for two-, three-, and four-site chiral interac-
tions.

If Eq. (18) is evaluated based on the model Eq. (19), one
obtains

Dα
r,i j = Dα

i j +
∑

k /∈{i, j}
Dα

ikk j +
∑

k �=l /∈{i, j}

(
1

2
Dα

kli j + Dα
ikl j

)
. (24)

Note that the two-site four-spin interaction �Di ji j does not
contribute to the grand potential of the configurations shown
in Fig. 8, since it is only finite between pairs of spins which are
not parallel and not perpendicular to each other. Considering
the chiral interaction vectors in Table II it is possible to derive

Dx
r,79 =

∑
k /∈{7,9}

Dx
7kk9 +

∑
k �=l /∈{7,9}

Dx
7kl9, (25)

which generally does not vanish since the three-site and four-
site chiral interactions are not antisymmetric with respect
to their first and fourth indices. This indicates the presence
of four-spin chiral interactions in the system on the order
of 0.4 meV, which is not negligible compared to the total
value of chiral interactions also containing two-site contribu-
tions displayed in Table II. The relation (Dx

r,78,D
y
r,78,Dz

r,78) �=
(−Dx

r,89,D
y
r,89,Dz

r,89), which breaks the symmetry rules for
two-spin DM interactions, may similarly be explained by the
presence of the four-spin chiral interactions.
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Changing from the two-spin model in Eq. (1) to the model
containing also four-spin interactions in Eq. (19) naturally
modifies the interpretation of the chiral interaction energies
obtained from the torque method,

Dα
t,i j = Dα

i j + Dα
i ji j +

∑
k /∈{i, j}

Dα
kii j

−
∑

k /∈{i, j}
Dα

k j ji + 1

2

∑
k �=l /∈{i, j}

Dα
kli j ; (26)

for details of the derivation see Appendix A. It should be
noted that contrary to Eq. (24), Eq. (26) is antisymmetric
with respect to the site indices i and j, thus preserving the
symmetries of the two-site DM vectors. Most importantly, the
different treatment of the two-, three-, and four-site four-spin
interactions between the rotational scheme in Eq. (24) and the
torque method in Eq. (26) can explain why the z components
of the two kinds of chiral interaction vectors have different
signs in Table II. While the torque method supports positive
χ z

i or right-handed chirality in the xy plane, the rotational
scheme supports negative χ z

i or left-handed chirality in the
same plane. The chirality derived from the rotational method
is in agreement with the lowest-energy spin spiral state ob-
tained from MFT calculations and the ground state found by
the ab initio energy minimization discussed in Sec. III B.

IV. CONCLUSION

Ab initio electronic structure calculations were performed
to study the magnetic properties of Fe monatomic chains on
the Re(0001) substrate. For all the considered chains strong
antiferromagnetic couplings between the nearest-neighbor
spins were observed, which in the case of the five-atom-long
chain led to a nearly collinear antiferromagnetic ground state
with the spins approximately aligned perpendicular to the
chain and to the surface normal. As the length of the chain
is increased, the frustration of the isotropic exchange interac-
tions at farther neighbors transforms the ground state into a
spin spiral state, with a single modulation period observable
in the 15-atom-long chain. The experimental investigations
in Ref. [8] also concluded on a spin spiral ground state of
40-atom-long Fe chains, although with a smaller period.

For the 15-atom-long chain the spin components in the
xz plane were found to follow a right-handed rotation in the
spin spiral. Regarding the rotation in the xy plane, calculations
based on a spin model only containing two-spin interactions
yielded a right-handed rotation, while determining the optimal
homogeneous planar spin spiral state using magnetic force
theorem calculations and performing an optimization of the
configuration directly within the ab initio scheme both indi-
cated a left-handed chirality. This discrepancy was resolved
by considering chiral multispin interactions in the spin model,
the presence of which in the system is supported by calcu-
lations of specific rotated spin configurations sensitive to the
chirality.

Since the experiments were carried out in the supercon-
ducting phase of the Re substrate, future ab initio calcula-
tions including the superconducting state of Re by solving
the Bogoliubov-de Gennes equation [39,40] may reveal the
reasons behind the observed discrepancies between theory

and experiment regarding the spin spiral period. Such first-
principles calculations would also enable the investigation of
the interplay between exotic magnetic states and topological
superconductivity in clusters of magnetic atoms on a super-
conducting substrate.
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FIKP grant of the Emberi Erőforrások Minisztériuma (BME
FIKP-NAT), the Alexander von Humboldt Foundation, and
the Deutsche Forschungsgemeinschaft via SFB668 are grate-
fully acknowledged.

APPENDIX A: TORQUE METHOD

Here we give a short summary of how the parameters of
the classical spin model in Eq. (1) were determined by using
the torque method; for more details see Ref. [41]. As shown
in Fig. 9, at each site i the spin direction will be denoted by
�ei, and two orthogonal vectors �e1i, �e2i are defined which form
a right-handed basis together with �ei, and around which �ei is
rotated by the infinitesimal angles β1i and β2i, respectively.
The derivatives with respect to these angles may be expressed
as

∂

∂β1i
= −�e2i

∂

∂�ei
+ �ei

∂

∂�e2i
, (A1)

∂

∂β2i
= �e1i

∂

∂�ei
− �ei

∂

∂�e1i
. (A2)

Supposing the model of Eq. (1), the second derivatives of
� with respect to the angles β1i and β2i can be calculated as

∂2�

∂β2 j∂β2i
= −Jαβ

i j eα
1ie

β

1 j for j �= i, (A3)

∂2�

∂β2 j∂β1i
= Jαβ

i j eα
2ie

β

1 j for j �= i, (A4)

∂2�

∂β1 j∂β2i
= Jαβ

i j eα
1ie

β

2 j for j �= i, (A5)

�e2i

�e1i

�ei

�e ′
i

β2i
β1i

FIG. 9. Illustration of the rotation of the spin direction �ei around
the perpendicular vectors �e1i and �e2i by angles β1i and β2i, used in the
torque method to calculate derivatives of the grand potential.
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∂2�

∂β1 j∂β1i
= −Jαβ

i j eα
2ie

β

2 j for j �= i, (A6)

∂2�

∂β2
2i

=
∑

j

Jαβ
i j eα

i eβ
j − 2Kαβ

i eα
i eβ

i + 2Kαβ
i eα

1ie
β

1i, (A7)

∂2�

∂β2
1i

=
∑

j

Jαβ
i j eα

i eβ
j − 2Kαβ

i eα
i eβ

i + 2Kαβ
i eα

2ie
β

2i, (A8)

∂2�

∂β1i∂β2i
= −Kαβ

i

(
eα

1ie
β

2i + eα
2ie

β

1i

)
, (A9)

where α and β label summations over Cartesian indices.
Within the torque method the derivatives on the left-hand

sides of Eqs. (A3)–(A9) are obtained directly from first prin-
ciples, using the expressions derived from Lloyd’s formula
given in Ref. [10]. The diagonal elements of the anisotropy
tensor K

i
were determined from Eqs. (A7) and (A8) via

∂2�

∂β2
2i

− ∂2�

∂β2
1i

= 2Kαβ
i eα

1ie
β

1i − 2Kαβ
i eα

2ie
β

2i, (A10)

which simplifies to Kyy
i − Kzz

i if �ei is pointing along the x
direction. This way it is only possible to determine the dif-
ferences between the diagonal elements, but this information
is sufficient since K

i
was defined as a traceless tensor because

its trace only shifts the grand potential by a constant factor
due to the normalization of the spins. The two independent
components were computed by considering spin configura-
tions where all spins are pointing along the x and y directions.

For calculating the exchange interaction tensor J
i j

one has

to rely on Eqs. (A3)–(A6). By introducing the tensor products

�vri,p j = (−1)r+p�eri ⊗ �epj (A11)

for r, p = 1, 2, and the notation for the derivatives

xri,p j = ∂2�

∂βp j∂βri
, (A12)

with r = 3 − r the opposite angle index, Eqs. (A3)–(A6) can
be summarized as

xri,p j = �vri,p j �Ji j, (A13)

where J
i j

is rewritten as a vector �Ji j in the tensor prod-

uct space. By introducing V
ri,p j

= �vri,p j ◦ �vri,p j , the orthog-

onal projection onto the subspace of �vri,p j , summing over
Eqs. (A3)–(A6) one obtains the system of linear equations∑

r,p

xri,p j�vri,p j =
∑
r,p

V
ri,p j

�Ji j . (A14)

Since V
ri,p j

is a rank-1 matrix, the sum over four equations

in Eq. (A14) only enables the calculation of four components
of �Ji j as described in Ref. [10]. In order to determine the full
tensor, Eq. (A14) has to be summed up over calculations per-
formed for at least three linearly independent directions of the
�ei vectors, corresponding to a least-squares fitting procedure
for �Ji j . Due to the C3v symmetry of the Re(0001) surface,
during the calculations four ferromagnetic configurations of
the �ei vectors were taken into account, including three NN
directions parallel to the x axis and at angles 60◦ and 120◦ with

respect to this direction, as well as one along the out-of-plane
z direction.

The chiral interaction vectors �Dt,i j introduced in Sec. III C
were calculated in ferromagnetic configurations with all spins
pointing along one of the α = x, y, or z directions, i.e., �ei = �eα

in Fig. 9. The components of �Dt,i j are defined as

Dα
t,i j ≡ 1

2

(
∂2�

∂β1 j∂β2i
− ∂2�

∂β2 j∂β1i

)
, (A15)

which within the model Eq. (1) containing only two-spin
interactions simplifies to the DM vector [cf. Eqs. (A4) and
(A5)],

Dα
t,i j = Dα

i j . (A16)

On the other hand, inserting the spin model Eq. (19) instead
of Eq. (1) into Eq. (A15) and using the relations Eqs. (A1)
and (A2) to calculate the second derivatives yields Eq. (26) in
Sec. III C,

Dα
t,i j = Dα

i j + Dα
i ji j +

∑
k

Dα
kii j −

∑
k

Dα
k j ji + 1

2

∑
k,l

Dα
kli j .

(A17)

APPENDIX B: ALTERNATIVE NOTATION FOR THE
FOUR-SPIN CHIRAL INTERACTIONS

Equation (19) follows the convention where the summa-
tions are performed for each index separately over all lattice
sites, treating the cases where some of the indices coincide
individually. This is in agreement, e.g., with the notation for
the two-site two-spin and four-spin chiral interactions used in
Ref. [38]. Another way of expressing the grand potential or
the Hamiltonian is by performing the summations over all
different plaquettes, i.e., pairs, triangles, and quadrilaterals
in the case of the two-, three-, and four-site interactions,
respectively. Such a convention is used, e.g., in Ref. [42] for
the isotropic four-spin interactions.

Following this convention, Eq. (19) may be rewritten as

� =
∑

i

�eiKi
�ei −

∑
〈i, j〉

�eiJi j
�e j −

∑
〈i, j〉

�Di ji j (�ei�e j )(�ei × �e j )

−
∑
〈i, j,k〉

[�Di j jk (�ei�e j )(�e j × �ek ) + �Dikk j (�ei�ek )(�ek × �e j )

+ �Dk j ji(�ek�e j )(�e j × �ei ) + �Djkki(�e j�ek )(�ek × �ei )

+ �Djiik (�e j�ei )(�ei × �ek ) + �Dkii j (�ek�ei )(�ei × �e j )]

−
∑

〈i, j,k,l〉
[�Di jkl (�ei�e j )(�ek × �el ) + �Dikl j (�ei�ek )(�el × �e j )

+ �Dilk j (�ei�el )(�ek × �e j ) + �Dkli j (�ek�el )(�ei × �e j )

+ �Dl jik (�el�e j )(�ei × �ek ) + �Djkil (�e j�ek )(�ei × �el )]. (B1)

Once again, the i, j, k, and l indices all label different
atoms. The sums over pairs contain half as many terms as
the two-site summations in Eq. (19); however, this is resolved
by taking into account the intrinsic symmetry relations J

i j
=

184430-11
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JT
ji

and Eq. (20), which enable canceling the 1/2 prefactor.

As discussed in the main text, no such intrinsic symmetry
relations exist for the three-site four-spin chiral interaction,
which necessitates a summation over six different terms in
Eq. (B1), corresponding to the possible permutations of the
site indices in a triangle. For the four-site interactions, the
symmetry relations in Eq. (22) cancel with the prefactor 1/4
in Eq. (19), simplifying the sum over 24 permutations in a
quadrilateral to six different terms in Eq. (B1).

Note that Eq. (B1) is the most general form of the grand
potential containing four-spin chiral interactions. Crystal sym-
metries may reduce the number of independent coefficients
for specific plaquettes. For example, the mirror symmetry
defined in Eq. (23) implies that in the triangle with i =
σ ( j) and k = σ (k) there are only three inequivalent three-
site four-spin chiral interactions instead of six in the general
case.

APPENDIX C: TILTED SPIN SPIRALS

In this section we summarize why the spin spiral ground
state becomes tilted away from the xy plane due to the y
component of the DM vectors. We will consider a simpli-
fied spin model consisting of N sites where the interactions
are homogeneous along the chain, with Kyy < 0 anisotropy
accounting for the easy y direction and Dy DM interaction
between NN spins. We will compare the energies of harmonic
spin spiral configurations as defined in Eq. (16), simplifying
the description to two parameters δ and α. It is assumed
that a spin spiral state with a specific δ value is formed by
the frustration of the isotropic exchange interactions, as was
discussed in Sec. III B, and only the dependence of the grand

potential of the spin model on the α parameter is considered.
This is given by the expression

�(α) = �0 +
N∑

i=1

Kyy(cos α sin [i(π + δ) + ϕ0])2

−
N−1∑
i=1

Dy(sin α sin[i(π + δ) + ϕ0]

× cos[(i + 1)(π + δ)+ϕ0]

− cos[i(π + δ)+ϕ0] sin α sin[(i + 1)(π + δ)+ϕ0]),

(C1)

where now �0 describes the contributions which do not
depend on α, such as the isotropic interactions. For N � 3, the
average of sin2 [i(π + δ) + ϕ0] with respect to atomic indices
equals 1/2, and using a simple addition formula it is possible
to arrive at

�(α) = �0 + 1
2 NKyy cos2 α − (N − 1)Dy sin α sin δ. (C2)

One can obtain the value of α minimizing the grand
potential by differentiation,

α = arcsin

(
−N − 1

N

sin δDy

Kyy

)
(C3)

for |(N − 1) sin δDy/NKyy| � 1, and

α = ±π

2
(C4)

otherwise. This indicates that for an arbitrarily small value of
Dy, the most preferred state is tilted away from the xy plane
where α = 0. We note that including the z component of the
DM vectors influences the dependence of the grand potential
on the α parameter but does not change this qualitative
conclusion.
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