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Skyrmion quantum spin Hall effect
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The quantum spin Hall effect is conventionally thought to require a strong spin-orbit coupling, producing an
effective spin-dependent magnetic field. However, spin currents can also be present without transport of spins,
for example, in spin-waves or skyrmions. In this paper, we show that topological skyrmionic spin textures can be
used to realize a quantum spin Hall effect. From basic arguments relating to the single-valuedness of the wave
function, we deduce that loop integrals of the derivative of the Hamiltonian must have a spectrum that is integer
multiples of 2π . By relating this to the spin current, we form a new quantity called the quantized spin current
which obeys a precise quantization rule. This allows us to derive a quantum spin Hall effect, which we illustrate
with an example of a spin-1 Bose-Einstein condensate.
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I. INTRODUCTION

The quantum Hall effect (QHE) in its various forms—the
integer, anomalous, fractional, spin—is now a cornerstone of
physics and not only is of fundamental interest in solid-state
physics [1–6] but also is actively researched in other fields
such as atomic, optical, and high-energy physics [7–11]. In
particular, the quantum spin Hall effect (QSHE) has attracted
a huge amount of interest recently. One of the attractive
aspects of the QSHE in comparison to the QHE is that no
magnetic field needs to be applied to obtain the characteristic
spin current flow without dissipation—a potentially important
effect for applications such as spintronics. The theoretical
prediction of its existence in HgTe quantum wells [12] and fast
experimental verification [13] has spurred on intense research
into related phenomena into topological insulators, topologi-
cal superconductors, and other topological quantum states of
matter [14–19]. This has also motivated many experimental
studies of spin Hall effects in various other physical sys-
tems [20–23]. To date, HgTe remains the only experimentally
observed system where the QSHE has been observed. Part of
the difficulty is that a large spin-orbit coupling is required to
produce the QSHE edge states separating the spin channels,
which is only strong enough in heavy elements such as HgTe.

There is however another route to realize the QSHE. The
QSHE via spin-orbit coupling relies upon a physical transport
of carriers with spin in edge channels. There is another type
of spin current—such as in spin waves or skyrmions—where
the spins are fixed in space, but their orientation varies spa-
tially [24] [see Figs. 1(a) and 1(b)]. Since these are equivalent
ways of realizing a spin current, it should therefore be possible
to realize the QSHE equally in this way, rather than in the
conventional spin-orbit coupling approach. The concept of

spin current has drawn more and more attention in recent
years, where the manipulation of the spin degree of freedom
has been explored in numerous works [25–29]. Many efforts
in probing spin currents have also been made in the field
of spintronics [30,31] and solid state physics [32,33]. The
definition of spin current operator has been proposed for
systems without spin-rotational symmetry [34].

Recently, the skyrmion Hall effect was realized
where a topological Magnus force was observed on the
skyrmions [35–37] as well as topological and spin Hall
effects in disordered skyrmion textures [38]. The control
and detection of skyrmions in a Hall configuration is an
essential first step towards realizing the quantum Hall effect.
Furthermore, edge states from the QSHE are known to be
closely related to the observation of spin current [39]. In this
way, how one would be able to extend these results towards
the quantum spin Hall effect with skyrmions is an important
question.

In this paper, we examine the realization of the QSHE
using skyrmionic spin textures, instead of spin-orbit coupling.
Our approach is to examine the general properties of spin
textures and topological observables that can be assigned to
them. The key idea in all QHE variants is to compare the
longitudinal current to a transverse asymmetry, typically the
potential difference. Done correctly, this should depend on
a topological invariant. In our case, this has to do with the
topology of the spin texture—a related quantity to skyrmion
number. A related approach was previously investigated in
realizing the QHE in Bose-Einstein condensates (BECs) [40].
The key idea in the approach was to take advantage of the
topological properties of vortices in such systems to observe
quantized plateaus in the spatial and momentum distributions
of the atoms. Here we extend these ideas to arbitrary spin
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FIG. 1. Two types of spin current: (a) spin current due to spatial
displacement of spin momenta (large arrows indicate movement) and
(b) spin current due to spin waves (spins are fixed in space). Example
of a spin texture in two dimensions: (c) the reference state (“blank
canvas”) |�〉 = ⊗x|ψ0〉 and (d) the spin texture parametrized by the
generator G(x).

textures. Another related question is the generalization of
the QSHE to higher symmetries. Higher symmetries of the
QSHE, such as the SU(3) QHE in SnTe [41,42] also have
attracted much interest in recent years. A relevant question
is the realization of the QSHE in systems beyond the sim-
ple spin-up and spin-down cases as observed in HgTe. The
separation of the spin-up and spin-down channels is only one
manifestation of spin current that can be realized, and even for
the spin-1/2 case more complex variations of the spin current
should be feasible. We show that in our formulation of the
QSHE the scheme naturally generalizes to SU(N ), realizing
more complex realizations of the QSHE.

II. REALIZATION OF SPIN TEXTURE

Our basic argument is as follows. Consider a continu-
ous spin texture in two-dimensional space, with coordinates
x = (x, y). At each position x, an N-dimensional spin exists
in a state |ψ (x)〉. A spin texture is then defined by a par-
ticular spatial arrangement of the spins at each position x.
While there are many possible physical quantum states for
a given spin texture, we primarily consider the example of
the minimally entangled tensor product of all the individual
states |�〉 = ⊗x|ψ (x)〉. This realization of a spin texture
can be considered without loss of generality as long as the
only observables that are measured are local spin expectation
values. An example of such spin texture is those magnetic ma-
terials with skyrmions [43–45] in helical ferromagnets, such
as FeCoSi or MnSi, and spinor BECs in anisotropic magnetic
fields [46]. In such skyrmionic realizations, the product state
is a reasonable approximation, since it is mainly character-
ized by chirality that originates from the lack of inversion
symmetry as well as the presence of anisotropic interactions
such as Dzyalonshinskii-Moriya interactions [45,47,48]. Thus
nearest-neighbor exchange interactions can be well approxi-
mated by a mean-field approximation.

We parametrize the state of a spin at position x as

|ψ (x)〉 = e−iG(x)|ψ0〉, (1)

where |ψ0〉 is a fixed reference state that the generating oper-
ator G(x) transforms into |ψ (x)〉. Thus before the generator
acts, the state |�〉 is completely uniform and is a “blank
canvas” [see Figs. 1(c) and 1(d)]. Since |ψ0〉 can be taken
arbitrarily, let us take it to be |ψ0〉 = |ψ (x0)〉. Thus at position
x0, the generator is simply G(x0) = 0. We note that, although
we refer to x as being “position,” in fact it can equally be
any other continuous parameter such as momentum depending
upon the realization of the spin texture.

From the fundamental theorem of calculus for line inte-
grals, Eq. (1) can be rewritten (see Appendix A for details) as

|ψ (x)〉 = exp

(
−i

∫
C
∇G(x) · dl

)
|ψ0〉, (2)

where C denotes a contour starting at position x0 and ending
at x (see the solid line in Fig. 1). Taking the line integral to
be a loop starting and ending at x0, we assert that the state
taken around the loop |ψ (x0)〉 must be exactly equal to the
initial state |ψ0〉. The equality includes global phases and is
an equality in a strict mathematical sense. As the reference
state |ψ0〉 can be taken to be any state, we deduce that for any
continuous spin texture we must have

exp

(
−i

∮
C
∇G(x) · dl

)
= I, (3)

where I is the D-dimensional identity matrix. This relation
has the meaning that, if we accumulate the changes in the
generating operator of a continuous spin texture around a
loop, one must necessarily start back at the original state,
obviously since it is the same state.

Let us now illustrate Eq. (3) for some simple examples. The
simplest case is where the generator is a U(1) scalar (D = 1)
in two dimensions. The solution of Eq. (3) is∮

C
∇G(x) · dl = 2πm, (4)

where m in an integer. For example, the vortex wave function
in a BEC, which takes the form |ψ (r, θ )〉 = eimθ |ψ0〉, can
be easily shown to satisfy Eq. (4), where m is the vortex
winding number. For spin S = 1/2 SU(2) rotations (D = 2),
the solution of Eq. (3) takes the form∮

C
∇G(x) · dl = πm + πm′u · σ, (5)

where u is a unit vector with u · u = 1, σ = (σ x, σ y, σ z )
are the Pauli matrices, and m and m′ are integers such
that (−1)m+m′ = 1. The spin-vortex wave function |ψ (x)〉 =
ei[ f (x)+g(x)u·σ]| ↑〉 satisfies Eq. (5), with the integers m and m′
depending upon the functions f (x) and g(x). For odd m and
m′, half-vortex solutions are obtained [49].

Equation (3) may be solved for a D-dimensional system by
taking the matrix logarithm of the identity matrix

∮
C
∇G(x) · dl = 2π

D∑
k=1

mk|C, k〉〈C, k|, (6)

where |C, k〉, k ∈ [1, D], are the orthonormal eigenstates of∮
C ∇G(x) · dl , and mk are integers. We have thus deduced that

all eigenstates must have integer eigenvalues, up to a factor
of 2π .
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III. QUANTIZED SPIN CURRENT

We now would like to relate Eq. (6) to some physi-
cally observable quantities to obtain the QSHE. Up to this
point, no assumptions were made regarding the types of spin
textures [and hence the types of generator G(x)] that are
allowable. To relate the above results regarding the acting
generator to the current in a simple way, we assume hence-
forth that [∇G(x), G(x)] = 0. This condition is satisfied, for
example, when the generator is self-commuting at different
locations; i.e., it has a fixed axis of rotation. Evaluating
the current j(x) ≡ − ih̄

2M [〈ψ (x)|∇ψ (x)〉 − 〈∇ψ (x)|ψ (x)〉] for
Eq. (1) yields

j(x) = − h̄

M
〈ψ0|∇G(x)|ψ0〉 = − h̄

M
〈∇G(x)〉0. (7)

We can then obtain a relation with respect to the current by
contour integration:∮

C
j(x) · dl = − h

M

∑
k

mk〈Pk〉0, (8)

where Pk = |k〉〈k| is the projection operator onto the kth
eigenstate. We have dropped the contour label C on the
eigenstates, as for the conservative cases the eigenstates are
independent on the particular contour. The above does not
necessarily lead to a quantized relation for the integrated
current around a loop due to the factor of 〈Pk〉0 which is in
general not an integer.

We can however construct a special type of current which
does follow a quantization condition. First define the projected
currents, defined as

jk (x) ≡ − ih̄

2M
(〈ψ (x)|Pk|∇ψ (x)〉 − 〈∇ψ (x)|Pk|ψ (x)〉), (9)

which follow the relation∮
C

jk (x) · dl = −h〈Pk〉0

M
mk . (10)

Then using the fact that
∑

k Pk = I , we can deduce that the
“quantized spin current,” defined as

jQ(x) = m̄
∑

k

jk (x)

mk
, (11)

follows ∮
C

jQ(x) · dl = − h

M
m̄, (12)

where m̄ ≡ ∏
k mk is an integer. The factor of m̄ is placed

in Eq. (11) to avoid division by the intergers mk , which are
potentially zero. The quantized spin current (12) depends
on the contour C in a topological way. The relation is a
generalization of the well-known relation that the loop integral
of the phase around a vortex in a BEC is an integer multiple
of 2π [40,50]. In the same way, Eq. (12) only depends upon
what singularities are circled in the contour, which determines
the integers mk . For each singularity, there is a set of integers
which characterize the nature of the vortex [Fig. 1(d)]. For a
contour which does not circle any singularities, mk = 0.

With this quantized spin current, we can follow an argu-
ment similar to that in Ref. [40] to obtain the total quantized

spin current, which is the experimentally observed quantity.
For simplicity we only consider the case that there is only one
singularity located at x = (xs, ys ) in the channel, as shown in
Fig. 1(d). Now define the quantity

I (y) =
∫ ∞

−∞
jx
Q(x)dx, (13)

where jx
Q is the x component of jQ. Now consider a long

rectangular contour shaped like that shown in Fig. 1(d). Far
away from the vortex, all currents should be zero as there are
minimal change spin configurations; thus we can just consider
the contributions due to the I (y). We thus can deduce that

I (y) =
{

j0 if y < ys,

j0 + h
M m̄ if y > ys,

(14)

where j0 = I (0) is the current along the bottom edge of
the channel. Using Eq. (14) we can easily evaluate the total
quantized spin current:

Jx
Q ≡

∫ ∞

−∞
jx
Q(x)dxdy =

∫ ∞

−∞
I (y)dy = j0w + h

M
m̄ys, (15)

where w is the width of the channel in the y direction. The
quantized transverse conductance is obtained by shifting the
singularity position and observing the change in the quantized
spin current:

σQ = dJx
Q

dys
= h

M
m̄. (16)

This shows explicitly the QSHE. The remarkable aspect of
Eq. (16) is that it relates two experimentally measurable
quantities, Jx

Q and ys, to the winding number of the skyrmions.
The current Jx

Q is simply a linear combination of spin currents
in the x direction, and ys is the vortex position. Although the
quantization condition arises originally from the loop inte-
gral (12), the final expression (16) only involves the quantized
current along the x direction, since the rectangular contours of
Fig. 1(d) can be evaluated exactly. Both the current Jx

Q and the
vortex position ys are readily observable given the images of
the spin texture such as that obtained in Ref. [35].

IV. GENERALIZATION WITH SPIN-1 EXAMPLE

We now illustrate and slightly generalize the theory, using
the example of a BEC with spin S = 1 spin texture (see
Appendix B). The S = 1 case is of particular relevance to
BECs with a ground-state hyperfine structure with three hy-
perfine states, such as 87Rb. The spin texture we consider is
|ψ (x)〉 = ei[ f (x)+g(x)u·S]|ψ0〉, where S = (Sx, Sy, Sz ) are S = 1
spin matrices [51]. We note that any spin texture of this form
satisfies [∇G(x), G(x)] = 0. We first construct the quantized
spin current, which will be a sum of three currents as given
in Eq. (11), with projectors being the eigenstates of u · S.
An equivalent way of writing the quantized spin current is in
terms of conventional and lth-order spin currents which may
be evaluated for l = 0, 1, and 2:

j (l )(x) ≡ − ih̄

2M
〈ψ (x)|(u · S)l |∇ψ (x)〉 + H.c.

= h̄

M
[〈(u · S)l〉0∇ f (x) + 〈(u · S)l+1〉0∇g(x)], (17)
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with 〈(u · S)3〉0 = 〈u · S〉0 for S = 1. The quantized spin cur-
rent in terms of these currents is obtained by eliminating the
〈(u · S)l〉0 factors:

jQ(x) = 1
4 [(m2 − m′2) j (0)(x) − mm′ j (1)(x) + m′2 j (2)(x)],

(18)

where m and m′ are the winding numbers associated with our
chosen functions f (x) and g(x), respectively.

Since we are modeling a BEC, we also need to include the
density distribution ρ(x), which has the effect of modulating
the current by this factor. In general this acts to spoil the
quantization relation (10) as a factor of ρ(x) is integrated in
the loop integral. However, using the distribution ρ(y) in a
long channel that is only y dependent allows for determination
of the total current [40]. In this situation the total quantized
spin current is

Jx
Q = h̄PxN

M
+ h

2M
(m2 − m′2)Ay, (19)

where N is the total number of particles in the BEC, Px is
related to the center of mass momenta of the condensate,
and Ay is the spatial asymmetry parameter Ay = ∫ ys

∞ ρ(y)dy −∫ ∞
ys

ρ(y)dy. Equation (19) is our desired result, where we
explicitly have a quantized dJx

Q/dAy.
We numerically simulate the spin texture |ψ (x)〉 for the

functions f (x) = mθ and g(x) = m′θn(x), respectively. Here,
n(x) is a noise function which acts to locally disrupt the vortex
distribution but does not affect the overall topology of the state
[see Figs. 2(a)–2(c)]. For each spin configuration, we calculate
the total quantized spin current and asymmetry parameter by
integrating Eq. (18) and Ay, respectively. Different values of
Jx

Q and Ay are obtained by displacing the density distribution
ρ(x) in the y direction and keeping |ψ (x)〉 fixed.

Calculated results for different winding numbers m and m′
are shown in Figs. 2(d) and 2(e), which represent the anal-
ogous results as found in Ref. [40] where the displacement
of a vortex in the y direction gives rise to a current in the
x direction. Here we also see a perfectly linear relationship
between Jx

Q and Ay as expected, but the current is both a
combination of the spin and conventional currents, which
occurs due to each of them contributing their own quantization
relation. Only the quantized spin current obeys a quantized
QSHE as this is a topological invariant of the system. As
expected, the results are very robust in the presence of noise.
In Fig. 2(f) we show the logarithmic difference between the
currents in the presence of noise of various strengths. The
results show that one must add extremely large amounts of
noise before the current-asymmetry relation is disrupted. The
robustness can be attributed to the fact that the observables
are connected to a topological invariant, which is insensitive
to local fluctuations.

V. SUMMARY AND CONCLUSIONS

In summary, we have shown how to obtain a skyrmionic
QSHE in spin textures, in contrast to the conventional ap-
proach of employing spin-orbit interactions. The result is a
general property resulting from the single-valuedness of the

FIG. 2. Examples of the quantum spin Hall effect using spin
textures. The current distribution in a spin-1 BEC for (a) the con-
ventional current j (0)(x), (b) the first-order spin current j (1)(x),
and (c) the second-order spin current j (2)(x). The chosen spin
texture is f (x) = mθ and g(x) = m′θn(x), with m = 1, m′ = −2,

u = (1, 1, 1)/
√

3, and n(x) = 1 + γ
∑

i
1√

2πσ 2 e− |x−xi |2
2σ2 is the noise

function with γ = 0.5 and σ = 1. The noise centers are at (−2, 0),
(3,2), and (−3,−3). (d) The lth-order integrated spin current J (l )

x =∫
j (l )
x (x)dxdy versus the asymmetry parameter Ay. (e) The total

quantized spin current Jx
Q versus the asymmetry parameter Ay for

various spin textures for the parameters as marked. (f) Error in the
current due to the inclusion of noise for the case m = 1 and m′ = 2
for the noise strengths as marked. The Gaussian density profile
ρ(x) = e−y2/(2σ 2

y ) is assumed with σy = 100.

wave function at each point in space—tracking the changes
of the state around a loop must result in the same state again.
In this case a combination of spin and conventional currents
must be used to obtain a precise quantized conductance. This
does require a priori knowledge of the topological state of
the system—however, since the combinations only involve co-
efficients that are integers, these should be estimatable fairly
easily if images of the spin texture are available. The primary
assumption made in our derivation is that [∇G(x), G(x)] = 0,
which is satisfied by “single-axis” generating operators. Since
this still allows for a completely general spatial distribution,
this still gives a wide variety of spin textures, including the
presence of noise. We found numerically that there is very
little influence of noise on the conductance, as would be
expected from a QHE. Experimentally, the method requires
the ability to image and manipulate the skyrmion position,

184427-4



SKYRMION QUANTUM SPIN HALL EFFECT PHYSICAL REVIEW B 99, 184427 (2019)

which has been shown to be possible in a variety of sys-
tems [35,36,52].
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APPENDIX A: LINE INTEGRAL FORM OF SPIN STATE

We here include the derivation of Eq. (2). We start with the
parametrization of the spin texture

|ψ (x)〉 = e−iG(x)|ψ0〉. (A1)

Now expand the generating operator in terms of an operator
basis Aj :

G(x) =
∑

j

a j (x)Aj, (A2)

where a j (x) are position-dependent scalar functions. Apply-
ing the fundamental theorem of calculus for line integrals for
the scalar functions a j (x) we have

a j (x) − a j (x0) =
∫
C
∇a j (x) · dl, (A3)

where the contour starts at x0. Since G(x0) = 0, we may take
a j (x0) = 0. Substituting Eqs. (A3) and (A2) into Eq. (A1), we

obtain

|ψ (x)〉 = exp

(
−i

∫
C
∇G(x) · dl

)
|ψ0〉. (A4)

APPENDIX B: SPIN-1/2 EXAMPLE

In the spin-1/2 case, we can show explicitly that the
generating operator from Eq. (1) in the main text is

|ψ (x)〉 = ei[ f (x,y)+g(x,y)(u·σ)]|ψ0〉, (B1)

where f (x, y) and g(x, y) are scalar functions, and u
is an arbitrary unit vector. The current density j(x) =
− ih̄

2M [〈ψ (x)|∇ψ (x)〉 − 〈∇ψ (x)|ψ (x)〉] can be evaluated for
Eq. (B1) to give

j(x) = ρ h̄

M
[∇ f (x, y) + ∇g(x, y)〈u · σ〉0], (B2)

where the expectation value is with reference to |ψ0〉. A sim-
ilar expression for spin current density j(x) = − ih̄

2M [〈ψ (x)|
(u · σ)|∇ψ (x)〉 − 〈∇ψ (x)|(u · σ)|ψ (x)〉] can be written as

j (u·σ )(x) = ρ h̄

M
[∇ f (x, y)〈u · σ〉0 + ∇g(x, y)]. (B3)

We can then obtain a total current which is denoted as Jtot

by integrating both sides of Eqs. (B2) and (B3):

Jtot = Nf

∮
C

j(x) · dl − Ng

∮
C

j (u·σ)(x) · dl

= ρh

M

(
N2

f − N2
g

)
. (B4)

We choose f (x, y) = Nf θ and g(x, y) = Ngθ so that they
satisfy the phase-winding relation of BEC:

∮
C ∇ f (x, y) · dl =

2πNf ,
∮
C ∇g(x, y) · dl = 2πNg. The property of Pauli matri-

ces 〈(u · σ )2〉0 = 1 is used. These results can be taken as a
generalization of current density in the previous work [40].
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