
PHYSICAL REVIEW B 99, 184423 (2019)

Dipolar interactions in Fe: A study with the neutron Larmor precession technique MIEZE
in a longitudinal field configuration
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While the influence of dipolar interactions on the spin-wave dispersion in ferromagnets with localized
magnetic moments has been studied in detail, similar studies in itinerant electron systems are rather scarce
due to experimental difficulties. Using the newly developed neutron Larmor precession technique MIEZE in a
longitudinal field configuration, we succeeded to map out the spin-wave dispersion in Fe at small momentum
q and energy transfers E . The results demonstrate an excellent agreement of the magnon dispersion with the
Holstein-Primakoff theory, which takes the dipolar interactions into account. At larger q, the data is in agreement
with previous investigations by Collins et al., Phys. Rev. 179, 417 (1969). The q dependence of the linewidth
of the magnons is proportional to q2.5 in agreement with dynamical scaling theory. The critical exponent for
the stiffness, μ = 0.35 ± 0.01, agrees with field theory. The spin dynamics in Fe is now explored by neutron
scattering over an energy range 15 μeV < Esw < 120 meV, i.e., over about four orders of magnitude in energy.

DOI: 10.1103/PhysRevB.99.184423

I. INTRODUCTION

The detailed characterization of the magnetic excitations
in magnetically ordered materials is of significant importance
to improve their magnetic properties and to advance the
understanding of their phase transitions. In light of the search
for novel materials for applications—for example, skyrmionic
[1] and multiferroic materials [2]—it is, in particular, the
excitations at small momentum transfer q that are essential for
the stabilization of new phases as they may stabilize textures
with dimensions of a few nm up to a few μm. From the
theoretical point of view, the universality of magnetic phase
transitions with regard to the localization of the magnetic
moments [3] and scaling theory [4] are of high interest.

With decreasing momentum transfer, interactions with en-
ergy scales that are much smaller than the exchange interac-
tions become increasingly important and influence the mag-
netization dynamics. In most ferromagnets, it is the dipolar
interaction that is the most important ingredient after the ex-
change interactions. It influences the magnetization dynamics
[5] and their critical behavior [6,7], leading to the formation
of magnetic domains and to depolarization effects on the spin
dynamics. These effects are usually not considered in the
interpretation of the spin-wave dispersions as measured by
inelastic neutron scattering due to the lack of the required
energy resolution.

In the model Heisenberg ferromagnet EuS, the observa-
tion of dipolar effects is most favorable due to the large

*steffen.saeubert@ph.tum.de; Present address: Department of
Physics, Colorado State University, Fort Collins, Colorado 80523-
1875, USA.

†peter.boeni@frm2.tum.de

magnetic moment μEuS = 7 μB and the small stiffness D =
2.35 meVÅ

2
at 0.72 TC [8]. Here, dipolar effects can be

easily observed at momentum transfers of the order of q �
0.1 Å

−1
< qD � 0.25 Å

−1
[9,10]. The dipolar wave number

qD is related to the magnetization M(T, H ) and D by the
expression [8]

D(T )q2
D = gμ0μBM(T, H ). (1)

Here, g designates the gyromagnetic ratio, μ0 the magnetic
field constant, and μB Bohr’s magneton. For EuS, the required
resolution in energy and momentum can be easily achieved
using triple-axis spectroscopy (TAS) with cold neutrons [11].

In contrast to EuS, itinerant ferromagnets such as the tech-
nologically important iron are rather challenging for the in-
vestigation of dipolar effects. Although the magnetic moment
μFe = 2.1 μB and therefore the magnetization, Ms(295 K) =
1.7 × 106 A/m, are reasonably large; the large stiffness,

D(295 K) = 281 meVÅ
2

[12], yields according to Eq. (1) a

small dipolar wave number qD = 0.045 Å
−1

[6,13]. There-
fore, to identify dipolar effects, experiments have to be con-
ducted at q � qD where the magnon energy is typically of
the order of a few tens of μeV. Hence, in addition to the
requirement of providing a tight q resolution, also an excellent
E -resolution is necessary. These conditions cannot be easily
realized by means of cold triple-axis spectrometers due to the
strong penalty in intensity.

High-resolution measurements can, however, be realized
by means of the MIEZE technique using a longitudinal field
geometry [14]. It is based on a measurement of the Larmor
precession of neutrons in a magnetic field. Because all spin
manipulations of the neutrons are conducted before the sam-
ple position, the depolarization of the neutron beam by the
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Fe sample does not disturb the measurements, in contrast to
conventional spin-echo techniques, where additional polariz-
ers have to be installed to allow measurements in depolarizing
environments [15].

To determine the influence of the dipolar interactions on
the spin dynamics in the ordered phase of Fe, we have
measured the intermediate scattering function,

I (q, τ ) = S(q, τ )/S(q, 0), (2)

at and below TC. The measurements extend the data of Collins
et al. [12] and Lynn [16] to small q and the data of Kindervater
et al. [17] from the paramagnetic phase to the ferromagnetic
phase. The data are in excellent agreement with the theory of
Holstein and Primakoff [18]. Finally, the q dependence of the
linewidth of the spin waves �sw is shown to be proportional
to q2.5 in agreement with the predictions of dynamical scaling
theory [19].

II. EXPERIMENTAL SETUP

The neutron-scattering experiments were conducted at the
beamline RESEDA [20] at the Heinz Maier-Leibnitz Zentrum
using the MIEZE option in the longitudinal field configuration
(LMIEZE) [14]. The setup was almost identical with the
geometrical configuration that was used by Kindervater et al.
for the study of the critical fluctuations in Fe [17]. Details
of the setup and on the evaluation of the data are given in
Appendix A.

The neutron beam with a wavelength λ = 6 Å and a
wavelength band �λ/λ = 0.12 was provided by a velocity
selector. The two radio frequency spin flippers were oper-
ated at frequencies ν1 and ν2 up to a few hundred kHz
with frequency differences in the range 1 Hz � (ν2 − ν1) �
600 kHz, thus covering a dynamic range of approximately
6 × 10−6 ns < τ < 2 ns. To minimize path length differences
and to achieve a high momentum resolution, the measure-
ments were conducted in the small-angle neutron-scattering
(SANS) configuration [20].

The scattered neutrons were recorded with a CASCADE
detector [21], covering an area of 200 mm × 200 mm. To
account for the instrumental resolution, all data was divided
by the resolution function that was obtained by a measurement
of the elastic scattering from a graphite sample. Note that in
the SANS geometry, only spin fluctuations with transverse
polarization contribute to the scattering cross section. To make
a link to published measurements with TAS, a few scans were
conducted at the beamline MIRA at FRM II [22].

We investigated a single crystal of bcc Fe that was used in
previous studies [12,17,23]. It has a cylindrical shape with a
diameter of 9 mm and a length of 25 mm. Its 〈111〉 axis is
oriented approximately 10◦ off the cylinder axis. The sample
was mounted vertically in the neutron beam. A circular aper-
ture with a diameter of 7 mm defined the illuminated sample
volume. Most measurements were performed at temperatures
TC − 21 K � T � TC (TC = 1043 K). A few scans have been
conducted at room temperature. The sample was heated using
a high-temperature furnace, with a resistive niobium double
cylinder heating element.

The Curie temperature TC of the sample was determined at
the beginning of the experiment by measuring the temperature

FIG. 1. q dependence of the normalized LMIEZE contrast in
Fe as measured in the ferromagnetic phase at T = TC − 6 K. qel

designates the momentum transfer for zero energy transfer. The
solid lines are fits to the intermediate scattering function Eq. (4) as
explained in the text.

dependence of (i) the transmission of the neutrons through the
sample and (ii) the small angle scattering caused by the critical
magnetic fluctuations. The details of the measurements are
described by Kindervater et al. [17]. The experiments yield
T̃C = 1045.15 ± 0.05 K and a temperature gradient �T =
±0.1 K. In the following, we renormalize T̃C to the literature
value TC = 1043 K. The reproducibility of TC was periodi-
cally checked during the experiments by measuring the crit-
ical scattering during sweeping up and down the temperature
through TC.

III. EXPERIMENTAL RESULTS

As explained in Appendix A, the use of an area detector
allows measuring the intermediate scattering function I (q, τ )
simultaneously over a wide range of momentum transfers q.
Figure 1 shows some selected scans for momentum transfers

0.018 Å
−1 � qel � 0.030 Å

−1
. Here, qel corresponds to the

momentum transfer at zero energy transfer. As expected for
damped magnons, I (q, τ ) exhibits a damped oscillation. The
period of the oscillations decreases with increasing q, reflect-
ing the increase of the spin-wave energy with increasing qel as
expected. The decrease of the amplitude of the modulations
with increasing τ indicates the damping of the excitations.

Figure 2(a) shows the temperature dependence of I (q, τ )
for temperatures TC − 21 K � T � TC as measured for the

momentum transfer qel = 0.18 Å
−1

. The data shows that the
period of the oscillation increases with increasing T , i.e.,
the magnons soften and evolve toward a quasielastic peak at
T = TC. We note that the data points at T = TC do not follow
an exponential decay, i.e., the data points near τ = 25 ps and
τ = 80 ps lie systematically above and below the exponential
curve, respectively, confirming that the critical fluctuations at
TC do not decay exponentially [24,25].

To connect the LMIEZE data as measured in the time do-
main with spectroscopic data, we have calculated the Fourier
transform of S(q, τ ), yielding the scattering function [26]

S(q, ω) = 1

2π h̄

∫
S(q, τ )e−iωτ dτ. (3)
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FIG. 2. LMIEZE measurements at TC and in the ferromagnetic

phase of iron at qel = 0.018 Å
−1

. (a) Normalized intermediate scat-
tering function S(q, τ ), as measured using a MIEZE setup in a
longitudinal field. Data was recorded using neutrons with a mean
wavelength of λ = 6.0 Å. Note that the error bars are difficult to see
because they are typically smaller than the size of the symbols. The
solid lines are fits to the data using Eq. (4). (b) The scattering function

S(q, E ) is shown for qel = 0.018 Å
−1

for various temperatures. The
black horizontal line indicates the best energy resolution used by
Collins et al. close to TC [12].

Figure 2(b) shows that the magnon peaks shift with increasing
temperature toward E = 0. The small double peak observed at
TC (blue solid line) may be an indication for the nonexponen-
tial decay of the critical fluctuations, i.e., that the spectrum
at TC cannot be described by a Lorentzian spectral weight
function [25].

To extract the energy and the linewidth of the magnons,
we have assumed that the line shape of the spin waves and
the critical scattering can be represented by Lorentzian spec-
tral weight functions. We have made this choice because in
most work on the critical dynamics of isotropic ferromagnets
around TC, the data was fitted by means of Lorentzian spectral
weight functions, in particular in the work of Collins et al. [12]
to which we frequently refer to. Therefore, the intermediate
scattering function is given by an exponentially decaying
cosine function of the form

I (q, τ ) = cos

(
Eswτ

h̄

)
e−�swτ/h̄, (4)

where Esw and �sw are the energy and the linewidth of the
spin waves, respectively, and h̄ is Planck’s constant divided by

FIG. 3. Temperature dependence of the spin-wave dispersion.
The solid lines are fits based on the Holstein-Primakoff theory
[Eq. (7)] convoluted with the momentum resolution of RESEDA
[Eq. (8)]. The dispersion becomes linear at small q. Note that the
apparent gap at q = 0 is an artifact of the finite q-resolution. The
broken green line depicts the dispersion when the dipolar interactions
are neglected, i.e., Esw = Dq2. D is fixed at the value obtained for
T = TC − 4 K.

2π . Above TC, Esw = 0 and I (q, τ ) becomes an exponential
function.

The spin-wave energy Esw as a function of the scattering
vector q is displayed in Fig. 3. While qel used so far cor-
responds to the momentum transfer for zero energy trans-
fer, q describes the momentum transfer at the peak position
E = Esw of the spin wave. The data shows the expected
increase of Esw with decreasing temperature and increasing q.
Appendix C provides a summary of the fitted parameters Esw

and �sw for future theoretical analysis of the LMIEZE data.
Although the spin-wave spectrum is gapless, the resolution

convoluted dispersions converge toward a finite energy for
q → 0 due to the finite q resolution. The systematic devi-
ations of the data from the quadratic dispersion at large q
appear because the measurements have been conducted in
the proximity of the spectrometer configuration, where the
scattering triangle does not close anymore. For a more detailed
discussion of the magnon dispersion, see the next paragraph.

The q dependence of the damping, �sw, of the spin waves
is shown in Fig. 4(a) on a log-log scale. It is seen that �sw is
well reproduced by

�sw = Aqz−η, z = 2.5, (5)

as expected according to the predictions of dynamical scaling
theory [19]. The critical-point correlation exponent [27] η =
0.0340 ± 0.0025 [28] has been neglected. The damping of
the spin waves depends only weakly on T [Fig. 4(b)], i.e.,
the relative width �sw/Esw of the excitations decreases with
decreasing temperature, leading to an apparent sharpening of
the magnon peaks as expected [29,30].

The measured linewidth at TC is with A = 143 ±
25 meVÅ

2.5
in quantitative agreement with previous work

[17,31,32] and the theoretical value A = 128.6 meVÅ
2.5

pre-
dicted by Frey and Schwabl [33]. The q dependence of �sw is
compatible with the experiments of Farago and Mezei who
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FIG. 4. (a) The momentum dependence of �sw is shown for
various temperatures at and below TC. �sw is roughly proportional
to q2.5. (b) �sw depends only weakly on T in the temperature regime
investigated.

observed that 2 < z < 4 [15]. An exponent z = 2.5 for the
damping of the spin waves and the longitudinal fluctuations
was also observed in Ni [34].

During the course of the LMIEZE experiment, we have not
analyzed the polarization of the scattered neutrons. Therefore,
the cross sections of the spin waves and the longitudinal
fluctuations were measured simultaneously [11]. Hence, the
magnitude of the damping of the spin waves is overestimated.
However, the q dependence of �sw is not affected.

IV. DISCUSSION

The spin-wave dispersions shown in Fig. 3 were analyzed
using the theory of Holstein and Primakoff for isotropic
ferromagnets including the dipolar interactions [18]:

Esw = (
(Eq + gμBμ0H )(Eq + gμBμ0H

+ gμBμ0M(T, H ) sin2 θq)
)1/2

. (6)

Here, Eq = Dq2 designates the exchange energy, H the ap-
plied magnetic field, θq the angle between the magnetization
M and q, and g = 2 is the Landé factor. Because no magnetic
field was applied, H = 0 and 〈(sin θq)2〉 = 2

3 . Note that due
to the very similar temperature dependence of D and M (see
below), the theory of Holstein and Primakoff can also be
applied at finite temperature and in particular close to TC.
Therefore, the dispersion simplifies to

Esw = (
Dq2(Dq2 + 2

3 gμBμ0M(T, H )
)1/2

. (7)

Note that Esw ∝ q for q → 0 [8] due to the reduction of
the number of Goldstone modes from 2 to 1 by the dipolar
interactions [5].

FIG. 5. Spin-wave stiffness D as function of temperature. The
orange lines are fits to the LMIEZE-data using Eq. (9) with μ =
0.35 (solid orange line) and μ = 0.37 (broken orange line). The data
of Collins et al. is shown by gray squares. Their fit to the data is
shown as a gray line [12]. For comparison, the MIRA data are shown
as blue triangles.

The spin-wave dispersions shown in Fig. 3 were fitted to
Eq. (7) convolved with the instrumental momentum resolution
R(q − q′, σq−q′ ) of the spectrometer where σq−q′ is the spatial
variance. R was analytically derived by Pedersen et al. [35]
and Hammouda and Mildner [36] (see Appendix B). The fit
function is then given by

Esw(q − q0) ∗ R(q − q0)

=
∫
D

Esw(q − q0)R(q′ − (q − q0), σq′−(q−q0 ) ) dq′. (8)

The apparent finite energy gap at q = 0 is an artifact of the
finite q resolution, which leads to contributions of magnon
scattering at finite q, where Esw > 0. Therefore, there is no
“dipolar” energy gap at q = 0. The agreement of our data with
the Holstein-Primakoff theory is excellent.

To demonstrate the importance of including the dipolar in-
teractions, we show in Fig. 3 the dispersion relation convolved
with the resolution function for a purely exchange-coupled
ferromagnet (green broken line), i.e., we have set M(T, H ) =
0 in Eq. (7). Obviously, there is pronounced disagreement
with the data. The apparent gap due to the momentum res-
olution around q = 0 is reduced because the dispersion now
approaches E = 0 quadratically.

Figure 5 summarizes the temperature dependence of the
spin-wave stiffness in Fe. The LMIEZE data of our paper
(orange circles) is compared with the data obtained by Collins
et al. (gray squares) [12] as well as with the data from MIRA
(blue triangles). There is a good overall agreement between
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TABLE I. Comparison of the spin-wave stiffness given by
Collins et al. [12] to the results of the present paper. The calculated
critical exponent μ is given by μ = 0.3407 ± 0.0023 [28].

μ = ν − β D0 (meVÅ
2
)

Collins et al. [12] 0.37 ± 0.03 281 ± 10
Säubert et al. 0.37 (fixed) 400 ± 23
(this paper) 0.35 ± 0.01 357 ± 20

the different data sets. The data from Collins et al. clearly
deviate at small q from the LMIEZE and MIRA data in
a systematic way, most likely because the use of thermal
neutrons involved a coarse E resolution. Note that the MIRA
data reproduces the data of Collins et al. at large q very well
and maintain their trend toward small q.

It is also seen that the stiffness D as determined by TAS is
larger than for LMIEZE because the two techniques sample
different E regimes of the spectral weight function. TAS is
more sensitive to large E transfers (corresponding to short
times) and MIEZE is more sensitive to long times (corre-
sponding to small E ), respectively. As soon as the spectrum
deviates from a Lorentzian, deviations will be observed.

The critical exponent for the temperature dependence of
the stiffness D is given by μ = ν ′ − β = 1

2ν ′(1 − η), where
ν ′ and β are the critical exponents for the correlation length
below TC and the magnetization, respectively [37]. Therefore,
D is given by

D = D0

(
TC − T

TC

)μ

, (9)

where D0 is a constant. In the following, we assume that the
critical exponents for the correlation length below and above
TC are identical, i.e., ν ′ = ν. Therefore, one obtains, according
to field theory, μ = 0.3407 ± 0.0023 [28], which is similar
to the critical exponent of the magnetization, β = 0.3647 ±
0.0012 [28].

Fitting the LMIEZE data to Eq. (9) yields μ = 0.35 ± 0.01
in excellent agreement with the theoretical value μ = 0.3407.
Collins et al. obtained μ = 0.37 ± 0.03, a value [12] that is
compatible with our results within experimental error. We
have also fitted D(T ) with the exponent μ fixed at 0.37
(broken orange line in Fig. 5), which does not agree as well
with our data as the fitted value μ = 0.35. The fit results of
Collins et al. and our work are summarized in Table I.

V. CONCLUSIONS

Using the Larmor precession technique LMIEZE, we in-
vestigated the spin dynamics in the ferromagnetic phase of
Fe close the the Curie temperature TC with high resolution,
thus extending the measurements of Collins et al. [12] and
Lynn [16] to small q. Those measurements were performed
with thermal neutrons, i.e., at momentum transfers where the
dipolar interactions are small. As a result, the dispersion in Fe
is now available over approximately four orders of magnitude
in energy.

The results can be summarized as follows: The temperature
dependence of the stiffness constant D is governed by the

critical exponent μ = 0.35 ± 0.01 that is in excellent agree-
ment with the theoretical value μ = 0.3407 ± 0.0023 [28].
The dipolar interactions do not affect μ; however, they reduce
the number of Goldstone modes by one [5]. Therefore, the
dispersion becomes linear in the limit q → 0, i.e., the exci-
tations are gapless. The damping of the spin waves displays
a q dependence with a dynamic critical exponent z = 2.5
in agreement with scaling theory [4]. The comparison with
similar measurements in localized systems shows that the
qualitative behavior and the critical exponents in Fe are not
affected by the localization of the magnetic moments.

The experiments in the ferromagnetic phase of Fe demon-
strate that the LMIEZE technique is an excellent high-
resolution spectroscopic technique for the investigation of the
magnetization dynamics even under depolarizing conditions
caused, for example, by domain formation or the application
of magnetic fields. The very high energy resolution allows,
in particular, the exploration of interactions with a small
energy scale that may lead to emergent behavior in strongly
correlated electron systems. Due to the very large dynamic
range of the LMIEZE technique, it does not only complement
the well-known triple-axis and time-of-flight techniques; in
addition, it also extends these spectroscopies to very small
energy and momentum transfers that are typically only acces-
sible by conventional neutron spin-echo techniques.

In contrast to TAS that can be applied at small and large
momentum transfers, the LMIEZE technique used in this
study is essentially a time-of-flight-technique that provides
the highest E resolution at small angles [38], where neutrons
within a wide wavelength band �λ/λ � 10% can be used,
leading to high intensity. For TAS, �λ/λ has to be restricted
to � 1%, leading to a penalty of a factor of �10 in intensity.
For more details, see Ref. [39].

FIG. 6. (a) Sketch of the LMIEZE setup at the instrument
RESEDA [17]. All spin manipulations are performed prior to the
sample, thus making the method insensitive to depolarizing effects at
the sample position. (b) Schematic of the neutron flight path showing
sample, beam stop, and detector. (c) The black square indicates the
detector area. The red rectangle shows the beam stop. Its shadow
on the detector is visualized by the gray hatched area. The data
was grouped in segments with a width of 2 pixels and a height
of 20 pixels, centered along a line going through the direct beam
(colored rectangle).
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APPENDIX A: LONGITUDINAL MIEZE SETUP AT
RESEDA (LMIEZE) AND DATA EVALUATION

The longitudinal MIEZE setup used for our experiments
is shown in Fig. 6(a). Figure 6(b) shows a schematic of
the neutron flight path. RESEDA utilizes a position sensitive
2D CASCADE detector which covers an area of 20 × 20 cm
with 128 × 128 pixels. It provides the required high time
resolution � = 100 ns [21,40,41]. Figure 6(c) shows how
the data from the detector was grouped for further process-
ing. By comparing data evaluations using different grouping
masks, it was shown that the integration of the counts over
masks with a width of 2 pixels and a height of 20 pixels,

TABLE II. Results obtained from fitting the spin-echo spectra at
T = TC − 1 K.

2θ q Esw �Esw �sw ��sw

(◦) (Å
−1

) (meV) (meV) (meV) (meV)

0.96 0.0143 0.0162 0.0002 0.0095 0.0002
1.04 0.0157 0.0177 0.0002 0.0105 0.0002
1.12 0.0172 0.0195 0.0003 0.0124 0.0003
1.20 0.0187 0.0218 0.0003 0.0135 0.0004
1.27 0.0202 0.0233 0.0005 0.0157 0.0005
1.35 0.0218 0.0274 0.0005 0.0165 0.0006
1.43 0.0234 0.0309 0.0007 0.0198 0.0008
1.51 0.0249 0.0328 0.0008 0.0205 0.0009
1.59 0.0264 0.0359 0.0010 0.0235 0.0012
1.67 0.0280 0.0397 0.0013 0.0264 0.0015
1.75 0.0296 0.0431 0.0015 0.0287 0.0019
1.82 0.0312 0.0469 0.0018 0.0309 0.0022
1.90 0.0329 0.0508 0.0018 0.0296 0.0022
1.98 0.0345 0.0546 0.0029 0.0404 0.0035
2.06 0.0362 0.0595 0.0029 0.0384 0.0034
2.14 0.0380 0.0651 0.0039 0.0450 0.0045
2.22 0.0396 0.0678 0.0047 0.0499 0.0054
2.30 0.0410 0.0689 0.0046 0.0466 0.0053
2.38 0.0427 0.0737 0.0062 0.0557 0.0069
2.46 0.0447 0.0814 0.0060 0.0509 0.0065
2.54 0.0460 0.0811 0.0063 0.0519 0.0070
2.61 0.0480 0.0889 0.0083 0.0609 0.0090
2.69 0.0494 0.0899 0.0094 0.0639 0.0101
2.77 0.0508 0.0913 0.0089 0.0579 0.0095
2.85 0.0514 0.0821 0.0116 0.0690 0.0127

TABLE III. Results obtained from fitting the spin-echo spectra at
T = TC − 2 K.

2θ q Esw �Esw �sw ��sw

(◦) (Å
−1

) (meV) (meV) (meV) (meV)

0.96 0.0145 0.0200 0.0002 0.0109 0.0002
1.04 0.0160 0.0232 0.0002 0.0120 0.0003
1.12 0.0176 0.0256 0.0003 0.0135 0.0003
1.20 0.0191 0.0285 0.0004 0.0147 0.0004
1.27 0.0206 0.0309 0.0005 0.0166 0.0005
1.35 0.0223 0.0354 0.0006 0.0182 0.0007
1.43 0.0238 0.0383 0.0007 0.0199 0.0008
1.51 0.0254 0.0418 0.0008 0.0211 0.0010
1.59 0.0272 0.0475 0.0010 0.0233 0.0012
1.67 0.0290 0.0525 0.0014 0.0287 0.0017
1.75 0.0303 0.0522 0.0017 0.0305 0.0020
1.82 0.0323 0.0603 0.0018 0.0299 0.0020
1.90 0.0345 0.0701 0.0026 0.0374 0.0028
1.98 0.0355 0.0670 0.0025 0.0347 0.0028
2.06 0.0379 0.0780 0.0035 0.0423 0.0037
2.14 0.0396 0.0826 0.0043 0.0471 0.0046
2.22 0.0411 0.0852 0.0049 0.0503 0.0054
2.30 0.0436 0.0964 0.0052 0.0483 0.0054
2.38 0.0459 0.1062 0.0078 0.0645 0.0082
2.46 0.0454 0.0888 0.0073 0.0591 0.0079

i.e., approximately the height of the illuminated sample, al-

lows processing data extending from qmin = 0.0139 Å
−1 �

q � qmax = 0.0629 Å
−1

while simultaneously retaining high
statistics in the regions of interest.

APPENDIX B: INSTRUMENTAL RESOLUTION
OF THE LMIEZE SETUP

The resolution of the LMIEZE setup was analytically
calculated following the theoretical work by Pedersen et al.
[35] and Hammouda and Mildner: [36] (i) resolution due to
the finite wavelength spread and (ii) resolution due to the
finite collimation. The resolution function is represented by
a Gaussian distribution of standard deviation σq, where q is
the magnitude of the scattering vector,

R(q, σq ) =
√

1

2πσ 2
q

exp

(
− q2

2σ 2
q

)
, (B1)

with

σ 2
q = (

σ 2
q

)
λ
+ (

σ 2
q

)
coll, (B2)

= q2
(σλ

λ

)2
+ 4π2

λ2

σ 2
x + σ 2

y

L2
SS

, (B3)

= q2

(
�λ√

6λ

)2

+
(

2π

λ

)2 σ 2
x + σ 2

y

L2
SS

. (B4)

In the last step, a triangular wavelength distribution was
assumed. The spatial variance is divided in a horizontal
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TABLE IV. Results obtained from fitting the spin-echo spectra at
TC − 4 K.

2θ q Esw �Esw �sw ��sw

(◦) (Å
−1

) (meV) (meV) (meV) (meV)

0.96 0.0148 0.0244 0.0003 0.0131 0.0003
1.04 0.0164 0.0280 0.0003 0.0136 0.0003
1.12 0.0180 0.0323 0.0004 0.0150 0.0004
1.20 0.0197 0.0362 0.0005 0.0170 0.0005
1.27 0.0213 0.0398 0.0006 0.0190 0.0007
1.35 0.0230 0.0445 0.0007 0.0197 0.0008
1.43 0.0248 0.0496 0.0008 0.0216 0.0009
1.51 0.0266 0.0548 0.0011 0.0261 0.0013
1.59 0.0283 0.0599 0.0012 0.0260 0.0014
1.67 0.0302 0.0657 0.0015 0.0274 0.0016
1.75 0.0321 0.0716 0.0020 0.0332 0.0021
1.82 0.0343 0.0808 0.0026 0.0390 0.0028
1.90 0.0357 0.0815 0.0024 0.0340 0.0025
1.98 0.0381 0.0919 0.0038 0.0463 0.0040
2.06 0.0407 0.1037 0.0044 0.0488 0.0045
2.14 0.0412 0.0978 0.0048 0.0495 0.0050
2.22 0.0448 0.1172 0.0054 0.0509 0.0056
2.30 0.0458 0.1153 0.0062 0.0543 0.0065
2.38 0.0469 0.1146 0.0077 0.0626 0.0082
2.46 0.0495 0.1259 0.0079 0.0587 0.0083

contribution,

σ 2
x =

(
LSD

LSS

)2 r2
1

4
+

(
LSS + LSD

LSD

)2 r2
2

4
+ 1

3

(
�x3

2

)2

, (B5)

and a vertical contribution,

σ 2
y =

(
LSD

LSS

)2 r2
1

4
+

(
LSS + LSD

LSD

)2 r2
2

4
+ 1

3

(
�y3

2

)2

. (B6)

TABLE V. Results obtained from fitting the spin-echo spectra at
T = TC − 6 K.

2θ q Esw �Esw �sw ��sw

(◦) (Å
−1

) (meV) (meV) (meV) (meV)

0.96 0.0154 0.0319 0.0003 0.0144 0.0003
1.04 0.0170 0.0361 0.0003 0.0157 0.0003
1.12 0.0186 0.0395 0.0004 0.0176 0.0004
1.20 0.0204 0.0448 0.0004 0.0201 0.0005
1.27 0.0223 0.0508 0.0005 0.0225 0.0006
1.35 0.0242 0.0570 0.0006 0.0240 0.0007
1.43 0.0259 0.0612 0.0008 0.0274 0.0009
1.51 0.0279 0.0680 0.0010 0.0291 0.0010
1.59 0.0302 0.0765 0.0012 0.0323 0.0013
1.67 0.0325 0.0858 0.0017 0.0386 0.0017
1.75 0.0347 0.0937 0.0018 0.0380 0.0018
1.82 0.0367 0.1001 0.0021 0.0395 0.0021
1.90 0.0388 0.1068 0.0023 0.0400 0.0023
1.98 0.0409 0.1137 0.0031 0.0488 0.0032
2.06 0.0432 0.1222 0.0035 0.0500 0.0037
2.14 0.0454 0.1299 0.0042 0.0538 0.0044
2.22 0.0470 0.1329 0.0049 0.0577 0.0052

TABLE VI. Results obtained from fitting the spin-echo spectra
at TC − 11 K.

2θ q Esw �Esw �sw ��sw

(◦) (Å
−1

) (meV) (meV) (meV) (meV)

0.96 0.0165 0.0436 0.0004 0.0205 0.0005
1.04 0.0184 0.0487 0.0006 0.0232 0.0007
1.12 0.0204 0.0558 0.0007 0.0263 0.0008
1.20 0.0225 0.0626 0.0009 0.0281 0.0010
1.27 0.0249 0.0722 0.0013 0.0340 0.0013
1.35 0.0270 0.0794 0.0013 0.0327 0.0014
1.43 0.0296 0.0895 0.0015 0.0329 0.0016
1.51 0.0324 0.1011 0.0019 0.0360 0.0020
1.59 0.0349 0.1104 0.0022 0.0359 0.0022
1.67 0.0371 0.1177 0.0024 0.0358 0.0025
1.75 0.0393 0.1252 0.0025 0.0329 0.0026

The geometrical parameters of the LMIEZE setup are as
follows:

Radius source aperture: r1 = 20 mm

Radius sample aperture: r2 = 7 mm

Source-sample distance: LSS = 3.0 m

Sample-detector distance: LSD = 2.25 m

Horizontal pixel width: �x = 3.125 mm

Vertical pixel width: �y = 3.125 mm

Wavelength: λ = 6.0 Å

Wavelength spread: �λ/λ = 0.12.

APPENDIX C: SUMMARY OF FIT PARAMETERS

Tables II–VII summarize the results obtained from fitting
the spin-echo spectra recorded in the ferromagnetic phase of
Fe between T = TC − 1 K and T = TC − 21 K. The data
was fitted as described in the main text using Eq. (4). Some
examples are shown for T = TC − 6 K and various momen-

tum transfers q in Fig. 1 and for fixed qel = 0.018 Å
−1

in
Fig. 2.

TABLE VII. Results obtained from fitting the spin-echo spectra
at TC − 21 K.

2θ q Esw �Esw �sw ��sw

(◦) (Å
−1

) (meV) (meV) (meV) (meV)

0.96 0.0183 0.0573 0.0007 0.0292 0.0008
1.04 0.0214 0.0712 0.0008 0.0302 0.0009
1.12 0.0236 0.0785 0.0010 0.0298 0.0010
1.20 0.0286 0.1030 0.0013 0.0319 0.0013
1.27 0.0306 0.1091 0.0012 0.0260 0.0012
1.35 0.0318 0.1101 0.0014 0.0255 0.0014
1.43 0.0332 0.1125 0.0019 0.0285 0.0018
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