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Magnetic order in ErFeO3 single crystals studied by mean-field theory
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Recent experiments showed magnetic moment reversal and pronounced exchange-bias (EB) effect in the
vicinity of the compensation temperature Tcomp of orthoferrites RFeO3 (R = Nd, Sm, Er). Although different
orthoferrites exhibit diverse R-Fe interactions, Tcomp values, and spin-reorientation temperatures, the EB field in
the like manner emerges and diverges upon approaching Tcomp and changes its sign with crossing Tcomp. In order to
explain these observations, a mean-field theory approach for the representative ErFeO3 orthoferrite is proposed.
The general case of two sublattices, antiferromagnet with exchange anisotropy and rare-earth–iron interactions, is
considered. A small applied magnetic field appears to be a source of additional anisotropy, resulting from canting
of sublattice moments. This anisotropy leads to an imbalance of free energy for two different types of magnetic
domains, causing a spin jump near the Tcomp. The suggested approach allows reproduction of magnetization
reversal and main features of the coercive and exchange-bias fields observed in ErFeO3.
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I. INTRODUCTION

Basic magnetic properties of the rare-earth orthoferrites
RFeO3 (R is a rare-earth ion) were studied intensively
50–60 years ago and, as pointed out in the classical review
of White [1], the investigated compounds exhibit great and
sometimes bewildering magnetic properties. Usually, they
show a similar orthorhombically distorted perovskite structure
with the space group Pnma. At the Néel temperature TN

(between 620 and 750 K) the Fe3+ magnetic moments in
RFeO3 undergo a magnetic phase transition into a canted
antiferromagnetic (AFM) state [1,2]. In some cases, a canted
antiferromagnet displays also a spin-reorientation (SR) tran-
sition, comprising two second-order phase transitions within
a certain temperature interval, where the spins rotate by 90◦
from one symmetry axis to another one [3–10]. For most
orthoferrites, spins of rare-earth ions order at temperatures
2–6 K [1]. Generally, magnetization of R3+ ions sublattice
is negligible above 100 K. It should be noted that owing
to a strong AFM coupling between R3+ and Fe3+ ions, the
compensating paramagnetic moment of R spins in RFeO3 is
oriented oppositely to the weak ferromagnetic (FM) moment
of canted Fe spins. Due to this mechanism, the Er, Nd, and
Sm orthoferrites exhibit specific compensation temperatures
Tcomp = 45, 9.2, and 4.8 K, respectively [1,7,8], at which
the two opposite moments cancel each other so that the net
magnetization vanishes, and below Tcomp the FM moment is
aligned oppositely to the moderate applied magnetic field,
demonstrating a negative magnetization. The first-principles
density-functional theory calculations confirmed such sce-
nario in NdFeO3 [11].
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The ErFeO3 orthoferrite is a representative of the RFeO3

family which demonstrates the following sequence of tran-
sitions with decreasing temperature, typical for some rare-
earth orthoferrites: antiferromagnetic phase transition, SR
transition, and finally long-range ordering of the Er3+ mo-
ments [1–4]. Below TN ≈ 636 K, the Fe3+ ions order into
four sublattices, which are antiferromagnetically coupled. The
presence of the Dzyaloshinskii-Moriya (DM) interaction in-
duces small canting between these sublattices, leading to a
macroscopic magnetization with a weak FM moment along
the c axis. With further cooling below 100 K the Fe3+ spins
start spontaneous rotation in the ac plane at T1 = 97 K and
end this process at T2 = 88 K; the FM moment rotates from
the orthorhombic c axis towards the a axis [9,10]. With further
lowering of temperature, ErFeO3 exhibits a magnetic compen-
sation with the highest Tcomp among the RFeO3 compounds.
Finally, the long-range AFM order of Er3+ spins develops
below 4.3 K [12,13]. It should be noted that ErFeO3 shows
quite remarkable behavior in the vicinity of Tcomp = 45 K. In
particular, temperature dependence of magnetization shows
the “butterfly pattern” behavior, characteristic of the first-
order transition around the Tcomp [14]. Moreover, the coercive
field HC, defined as the position of the magnetization jump,
diverges for T → Tcomp [15].

Previously, we have shown that ErFeO3 orthoferrite ex-
hibits a versatility of the exchange-bias (EB) behavior [8].
The EB appears in the vicinity of the Tcomp, increases upon
approaching Tcomp, and changes sign across Tcomp. The EB
was found to depend crucially on thermal history. It was sug-
gested that the negative EB is compatible with the equilibrium
spin configuration and the positive one with the metastable
state [8]. More recently, we studied the EB effect in two
other compensated ferrimagnets (fM) of the RFeO3 family
(R = Nd, Sm) and we have shown that there are several
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important features which are common for all studied com-
pensated orthoferrites [7]. In particular, it was revealed that
despite the different strength of the R-Fe interactions, Tcomp

values, and spin-reorientation temperatures in these ortho-
ferrites, the EB field similarly emerges and diverges upon
approaching Tcomp and changes sign with crossing Tcomp.

There is a considerable number of investigations of mag-
netic structures in orthoferrites RFeO3. In particular, Bertaut
symmetry analysis showed all possible magnetic structures
in orthoferrites [16]. Many studies were devoted to theoret-
ical interpretations of the observed properties. As a rule, a
phenomenology approach in the framework of Landau theory
was used [17,18]. Methods of quantum Hamiltonian were
also applied in some works [19,20]. Unfortunately, in this
case many parameters and classic spin representation are
used, which may lead one astray in the interpretations of
the experimental results. In this paper, more exact analysis
is reported, especially in the context of the phenomena ob-
served for compensated fM, such as ultrafast spin switching,
spin-reorientation transition, field- and temperature-induced
sharp magnetization reversal, negative magnetization, and the
positive and negative exchange-bias effect [7,8,21–26]. Some
related perovskites MFeO3, where M is transition metal, show
such multiferroic properties as ferroelectric (FE) polarization,
structural antiferrodistortion (AFD), and ferro- and antifer-
romagnetic ordering. Studies of the thermodynamics, with
complicated systems of order parameters, using combined
quantum-mechanical and phenomenological theory, were per-
formed in order to find the Landau-Ginzburg-Devonshire free
energy [27–29]. Based on experimental data for BiFeO3, it
allows description of a specific structure of AFD-FE domain
walls, multiferroic phase diagram, ferroelectric polarization,
AFD tilt, and so on. Also, there is a correlation between mag-
netic and possible AFD order in RFeO3 like for MFeO3. In
particular, first-principles calculations show [30] that induced
magnetization is proportional to a value of anti-phase tilting of
oxygen octahedra for staggered AFM structure. Thus, a vector
parameter of the DM interaction is the difference between
AFD pseudovectors of the nearest neighbors. These recent
findings stimulated studies aimed at improving understanding
of magnetic properties of orthoferrites.

Taking ErFeO3 as an example, we present a more rigorous
mean-field theory of magnetism in orthoferrites based on
quantum spins of iron and rare-earth ions. This theoretical ap-
proach allows one to analyze the origin of spin-reorientation
transition, compensation point, and to understand steplike spin
overturn attributed to the additional anisotropy fields at a small
total magnetization. The structure of the paper is as follows. In
Sec. II, the starting anisotropic Hamiltonian of the Fe3+ and
Er3+ systems is formulated. The simple form, which accounts
for a weak anisotropic Heisenberg Hamiltonian with an easy
axis directed along the a axis, was applied. The single-ion
anisotropy was neglected since for Er3+ the effective spin σ =
1/2 was supposed and an orbital S state for Fe3+ was consid-
ered, and DM anisotropy in the xz plane with single parameter
d along the y axis only was taken into account. A range of
temperatures significantly above the ordering temperature of
the rare-earth ions was considered. That is why the effective
Weiss field at the rare-earth sites is caused by iron subsystem
only. In Sec. III, the results of numerical calculations of total

FIG. 1. Magnetic structure of Er orthoferrite at TSR < T < TN

with the space group Pbnm.

mean spin, free energy, and its analysis at temperature T =0
are presented. In Sec. IV, free energy, phase transitions,
and magnetic structure were analyzed for finite temperatures.
Moreover, a possible reason of the exchange-bias effect is
proposed in Sec. V. Finally, conclusions are presented in
regard to the most typical experimental data.

II. MAGNETIC HAMILTONIAN OF THE IRON-ERBIUM
SYSTEM IN ErFeO3 ORTHOFERRITE

In accordance with Bertaut analysis, there are four Fe3+
and four Er3+ magnetic sublattices in ErFeO3 orthoferrite
[16]. Fortunately, a small deviation of the sublattice mo-
ments along the y axis allows one to consider a simple two-
sublattice model for Fe3+ subsystem as a good approximation.
The erbium subsystem is in paramagnetic state. In Fig. 1, the
magnetic structure of the orthoferrite at TSR < T < TN with
the space group Pbnm is shown. In the general case, the total
magnetic Hamiltonian is written as [19]

Ĥ =
∑
i1 j2

j12Si1 S j2 +
∑
i1 j2

b12Sz
i1

Sz
j2

+
∑
i1 j2

D12
[
Si1 × S j2

]

+
∑
ikα

j̃αSα
i σα

k , (1)

where the parameters j12 and b12 determine the isotropic and
anisotropic terms of the symmetric exchange Fe3+-Fe3+ in-
teractions. Here, D12‖b and j̃α are parameters of the antisym-
metric DM and isotropic exchange Fe3+-Er3+ interactions,
respectively. The interactions Er3+-Er3+ are also assumed to
be weak.

On this basis, it is possible to write a total mean-field
Hamiltonian with mean iron and erbium spins 〈Siα〉 and 〈σα〉
along the α direction in the i-th sublattice, respectively, in the
form

Ĥ0 = Ĥ0Fe + Ĥ0Er. (2)
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TABLE I. Parameters used in calculations of magnetic structure of ErFeO3.

Parameter Designation Numerical value or range Ref. or note

Fe3+-Fe3+ ISLEI j12(0) = z1 j12 97–109 (K) Fit
Anisotropic part of the ISLEI Fe3+-Fe3+ B12 = z1b12 −(0.29–0.33) (K) Fit
Anisotropic DM Fe3+-Er3+ ISLEI d12(0) = z1D12 5.6–6.3 (K) Fit
Anisotropic Fe3+-Er3+ exchange J̃x (0) = z2 j̃x 162–182 (K) Fit

interaction in α direction J̃z(0) = z2 j̃z 19–22 (K) Fit
Number of the nearest Fe3+ neighbors z1 6

for Fe3+ and Er3+ subsystem z2 8
Néel temperature TN 636 (K) [2]
Spin-reorientation transition temperature TSR 88–97 (K) [9,10]
Compensation temperature Tcomp 45 (K) [13]
g factors of Fe3+ and Er3+ ions gFe, gEr 2, 1.2 [2,32]

The details of Ĥ0 derivation are given in Supplemental Ma-
terial, Appendix A [31]. For N ions of each Fe3+ sublattice,

Ĥ0Fe =
N∑
i1

(
H̃2xSi1x + H̃2zSi1z

) +
N∑
i2

(
H̃1xSi2x + H̃1zSi2z

)
− 2d12(0)N{〈S1z〉〈S2x〉 − 〈S1x〉〈S2z〉}
− 2N{J12(0)〈S1x〉〈S2x〉 + [J12(0) + B12]〈S1z〉〈S2z〉},

(3)

where J12(0), B12, and d12(0) are indirect exchange interac-
tion, exchange anisotropy between iron ions from the first
and the second sublattice [intersublattice exchange interaction
(ISLEI)], and the y component of vector parameter of DM
interaction, respectively. All parameters used in the next cal-
culations for magnetic structure are presented in Table I. For
2N ions of Er3+, interacting with the nearest N iron ions,

Ĥ0Er =
2N∑

j

(H̃xσ jx + H̃zσ jz ) − N{J̃x(0)(〈S1x〉 + 〈S2x〉)〈σx〉

+ J̃z(0)(〈S1z〉 + 〈S2z〉)〈σz〉}, (4)

where J̃α (0) is a parameter of indirect exchange interaction
between iron and erbium ions (R-Fe interaction) in the α-th
direction. Neglecting the interactions between erbium ions,
the effective exchange fields H̃iα at the iron sites with i = 2
or 1 for the first or the second sublattices, respectively, along
the α direction in applied field H = (Hx, Hz ) are expressed as

H̃iα = 2[J12(0) + δαzB12]〈Siα〉 ± 2d12(0)〈Siβ〉
+ J̃α (0)〈σα〉 − gFeHα, (5)

where δαβ is the Kronecker symbol and upper and lower signs
correspond to i = 1, α = x‖a or i = 2, α = z‖c and i = 1,
α = z or i = 2, α = x, respectively, α �= β, and gFe is the g
factor of Fe3+ ion. Here and further, for simplicity, we set
Bohr magneton μB = 1. For the rare-earth subsystem,

H̃α = J̃α (0)(〈S1α〉 + 〈S2α〉) − gErHα, (6)

where gEr is the g factor of Er3+ ions. For exchange interac-
tions, in what follows, approximation of the nearest neighbors
is used. One can set 〈S̃z〉 = S for temperatures T 	 TN and
spin S = 5/2 for Fe3+. Also, applied magnetic field H is
orthogonal to the AFM axis L, i.e., in the general case Hx =
−H sin α and Hz = H cos α.

Apparently, for J12(0) > 0 and J̃α (0) > 0, the interactions
are antiferromagnetic. Furthermore, the parameter d12(0)>0
corresponds to positive canting angles. Strictly speaking,
magnetic axes x, y in this compound do not coincide with
crystallographic a and b axes. However, for simplicity, this
discrepancy is neglected. That is why the parameter B12 < 0
corresponds to the ground state of easy-axis type along the a
direction for iron sublattice mean spins.

In spite of its simple form, the Hamiltonian (2) describes
the main peculiarities connected with canting of magnetic
moment of iron sublattices, SR transition, and compensation
point. It is easy to diagonalize Hamiltonian (2) and to find
ground state, magnetic structure at different temperatures,
and critical points of the phase transitions (see Supplemental
Material, Appendix B [31]).

Let us enter the next designation: d = d12(0)/J12(0), b =
B12/J12(0), hα = Hα/2J12(0), γx = J12(0)/J̃x(0), and γz =
J12(0)/J̃z(0). Then the equation for canting angle θ of the
Fe3+ sublattice magnetic moment relatively AFM axis L (see
Appendix B in Ref. [31]) is written as

sin(2θ ) + 1

2
b[sin(2θ ) − sin(2α)] − d cos(2θ )

+ 1

2S
〈σ 〉

(
1

γz
cos(θ + α) cos(ϕ)

− 1

γx
sin(θ + α) sin(ϕ)

)
− gFeh

S
cos(θ ) = 0, (7)

where the dimensionless applied field h = H/2J12(0). Here,
the angle ϕ determines the quantum axis direction for Er3+
spin relative to the z axis. It is related to the angle α by the
equation (see Appendix B, Eq. (B7), in Ref. [31])

tan ϕ = −γz

γx

S sin(θ ) − gErγxh

S sin(θ ) − 2gErγzh
tan α. (8)

For introduced parameters, the remaining equation takes
the form

〈σ 〉 = −1

2
tanh

˜̃h(α)

2T̃
, (9)
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where the reduced temperature T̃ = T
2J12(0) . The effective exchange field for Er3+ sublattice is determined as follows:

˜̃h(α) =
√

sin2(α)

(
S

γx
sin(θ ) − gErh

)2

+ cos2(α)

(
S

γz
sin(θ ) − gErh

)2

, (10)

which means that 〈σ 〉 depends on α. The simplified system of Eqs. (7)–(10) allows us to solve rigorously the spin-reorientation
transition problem. Thus, the expressions for single-site free energy F in units 2J12(0) for T 	 TN we write as follows:

F̃ (αi ) = −1

2
S2

{
cos(2θ ) + d sin(2θ ) − b

2
[cos(2αi ) − cos(2θ )]

}
− T̃ ln

[
2 cosh

(
˜̃h(αi )

2T̃

)]
− gFeSh sin(θ ). (11)

A ground state of the rare-earth orthoferrite and phase
transition in the ordered state are discussed in the next section.

III. SPIN-REORIENTATION TRANSITION AND ENERGY
OF THE GROUND STATE

For axis L along a and c, respectively, with fixed γi, it is
easy to find from Eq. (11) at T = 0 that

F̃ (0) = −1

2
S2{cos(2θz ) + d sin(2θz ) − b sin2θz}

− 1

2γz
S sin θz

F̃ (π/2) = −1

2
S2{cos(2θx ) + d sin(2θx ) + b cos2θx}

− 1

2γx
S sin θx. (12)

Here, the canting angle θi is determined by Eq. (7), i.e.,

(2 + b) sin(2θi ) − 2d cos(2θi ) − 1

2γiS
cos(θi ) = 0. (13)

In the case γx = γz, the value θx = θz and the difference
takes the form

F̃ (0) − F̃ (π/2) = 1
2 bS2. (14)

Thus, an easy axis is along the a direction (L‖a) at b < 0
and for b > 0 the ground state is with L‖c. It is important to
point out that the direction L does not depend on isotropic
R-Fe exchange interaction, i.e., spin-reorientation transition is
possible only in a case of changing the sign of b. One can say,
in the framework of the considered model, that only transition

4(Gx, Fz ) → 
2(Gz, Fx ) may occur in R-Fe system. The SR
transition indeed occurs in ErFeO3 at TSR of about 100 K.
This phenomenon takes place due to anisotropy of R-Fe
interaction. Moreover, the strong anisotropy only allows for
a spin reorientation for b < 0 since otherwise the ground state
with easy axis along the a direction occurs for all temperatures
below the Néel temperature TN (see approval in Appendix B
of Ref. [31]).

The influence of R-Fe exchange and DM interaction on
canting angle of Fe3+ of sublattice magnetic moments is
presented in Fig. 2, containing the results obtained by nu-
merical solution of Eq. (13). One can see that anisotropy
of the Heisenberg interaction influences θ weakly. Contrary
to that, the anisotropy of the R-Fe interactions, γx, plays an
essential role in realization of balanced angle of canting. The

apparent increase of θ with increasing Dzyaloshinskii-Moriya
interaction is noticed, although its influence is not strong.
At γx → ∞ the angle θ → θ∞, where θ∞ is determined by
Eq. (B18) in Appendix B of Supplemental Material [31].

IV. THERMALLY INDUCED SPIN REORIENTATION,
COMPENSATION POINT, AND CRITICAL TEMPERATURE

The critical temperature TN as a function of d is presented
in Fig. 3. One can see that TN increases with increasing canting
angle. The Heisenberg anisotropy influences TN only weakly.
Ordinary result TN = 2

3 S(S + 1)J12(0) for a two-sublattice
isotropic antiferromagnet is fulfilled at d = 0. In this case, the
TN does not depend on parameters γi and b.
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FIG. 2. Canting angle as a function of R-Fe exchange γ

(a) or Dzyaloshinskii-Moriya interaction d (b) for parameters:
(a) b = −0.001 and d = 0.05, 0.1, 0.4 (curves 1–3, respectively) and
d = 0.4, b = −0.1 (curve 4); (b) b = −0.001 and γx = 1, 10 (curves
1 and 2, respectively) and b = −0.1, γx = 1, 10 (curves 3 and 4,
respectively).
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FIG. 3. Dependence of the Néel temperature TN of the phase
transition order-disorder on Dzyaloshinskii-Moriya parameter d with
γz = 10 and b = −0.06.

In order to find the temperature dependence of the total
magnetic moment Mtot and temperature of the SR (TSR),
the relation that works well in orthoferrites for tempera-
tures T 	 TN was used. In this case, the free energy is
expressed as in Eq. (11). To find θi and 〈σ 〉 it is neces-
sary to solve the system of equations (7) and (9). The SR
temperature TSR is determined as a temperature at which
the difference of free-energy values (11) for fixed direc-
tions of axis L, i.e., for α = 0 and α = π/2, is equal to
zero. Unfortunately, there is no analytic form for TSR and
the one is calculated numerically. The dependence T̃SR on
anisotropy R-Fe exchange interaction parameter γx, at γz =
5, b = −0.003, and d = 0.058, is presented in Fig. S3 in
Appendix C of Ref. [31]. One can see that T̃SR decreases
with increasing γx, i.e., with disappearance of the anisotropy
when J̃x(0) > J̃z(0) and J̃x(0) → J̃z(0). The temperature de-
pendences of free energy for different γx values at h = 0 for
Fe+3 total magnetic moment along c (α = 0) and a (α = π/2)
directions are presented in Fig. S4 in Appendix C of Ref. [31].
Also, the decrease of TSR with increasing R-Fe exchange
anisotropy is observed. It appears that the difference in R-Fe
exchange anisotropy is a key factor determining a significant
difference in values of TSR for various orthoferrites. It is
known that SmFeO3 orthoferrite exhibits SR transition at tem-
perature TSR ≈ 480 K, while for both Nd and Er orthoferrites
with weaker anisotropy this transition occurs at around 100 K
[11,22,23].

In the low-temperature limit T 	 TN, one can write the
following equations for components 〈Si,tot〉 of the total mean
spin 〈Stot〉:

〈Sx,tot〉 = −gFeS sin(α) sin(θ ) + gEr sin(ϕ)〈σ 〉
〈Sz,tot〉 = gFeS cos(α) sin(θ ) + gEr cos(ϕ)〈σ 〉, (15)

where ϕ, θ , and 〈σ 〉 are determined by Eqs. (7)–(10). It
appears that the canting angle θ is a function of α (see Fig. 4)
and ϕ = −α for α = αi. In what follows the total magnetic
moment Mtot (αi, T̃ ) of erbium orthoferrite is expressed (in

-180 -90 0 90 180
1.5

2.0

2.5

3.0

3.5

2

3

1

FIG. 4. Angular dependence of canting angle θ for b = −0.003
and γz = 5 for parameters d = 0.058, γx = 0.6, and γx = 0.8 (curves
1 and 2, respectively) and d = 0.7 and γx = 0.6 (curve 3).

Bohr magnetons) as

Mtot (αi, T̃ ) = ±
[

gFe sin(θ )S − gEr

2
tanh

(
sin(θ )S

2γiT̃

)]
(16)

for h = 0, αz = 0, and αx = π/2, upper and lower sign,
respectively. The g-factor values pointed out for Fe3+ and
Er3+ (see Table I) correspond to the experimentally observed
effective numbers of Bohr magnetons 5.92 and 9.58 [2],
respectively.

The temperature dependences of total magnetic moment
in erbium orthoferrite are presented in Fig. 5 for different
values of R-Fe exchange interactions along the x axis. One can
see that only for strong anisotropy γx � 1 of R-Fe exchange
interaction the SR occurs, manifesting as a jump of
Mtot (αi, T̃ ). It can be seen from Fig. 5 that for the weakest
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FIG. 5. Temperature dependences of total magnetic moment for
different values of the R-Fe exchange along the c axis.
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FIG. 6. Angular dependence of the free energy F for b = −0.003, d = 0.058, γz = 5, and γx = 0.6 at temperatures T̃ : (a) 0.5, 0.45, and
0.427 (curves 1–3, respectively); (b) 0.35, 0.25, 0.183, and 0.175 (curves 1–4, respectively). Inset: density plot F as a function of angle α in
radians and T̃ .

anisotropy with γx = 0.9 the TSR tends to zero. When
the SR occurs with magnetization overturn (see Fig. 5),
the further temperature lowering to a value T̃comp gives
Mtot (αi, T̃comp) = 0. Thus, the magnetization reverses sign at
temperature T̃comp named as a compensation temperature. In
a similarity to TSR the compensation temperature decreases in
value with decrease in R-Fe exchange along the a axis (see
Fig. S5 in Appendix C of Ref. [31]). At T̃ = T̃comp = 0.183
the magnetic moment Mtot (αi, T̃ ) = 0 is seen for γx = 0.6
below the temperature T̃ = T̃SR = 0.426 of spin reorientation.
From Fig. 3 it follows that T̃N = 2.92. For the experimental
value of TN = 636 K, we obtain J12(0) = 109 K, TSR = 93 K,
and Tcomp = 40 K, which is in remarkable agreement with
experimentally determined temperatures of 97 and 45 K
[4,8–10,15,20]. Apparently, above or below TSR the ground
state corresponds to an easy axis along the a (α = 0) or c
(α = π/2) axis, respectively.

Let us consider the analytical expression for compensation
temperature Tcomp at which Mtot (π/2, T̃ ) = 0 [see Eq. (16)].
In such a case, it is easy to calculate Tcomp for both low
temperatures T 	 TN and small canting angles since one can
set 〈S̃z〉 = S and sin(θT ) ≈ θT . From the system of Eqs. (9)
and (13) for low temperature T̃ , it follows:

θT (2 + b) = d + 1

4γxS
tanh

(
SθT

2γxT̃

)
. (17)

Since Mtot (π/2, T̃ ) = 0 for T̃ = T̃comp and θT = θcomp, we
find the following equation for compensation temperature in

units 2J12(0):

T̃comp = Sθcomp

2γx a tanh
(
2Sθcomp

gFe

gEr

) , (18)

where the canting angle θcomp = 2γxdgEr

2γx (2+b)gEr−gFe
(see Eq. (C2)

and Fig. S5 in Appendix C in Ref. [31]). For b = −0.003,
γx = 0.6 and d = 0.058, Eq. (18) provides the following val-
ues: θcomp = 0.095 rad and T̃comp = 0.183. Thus, a sufficiently
large value of the R-Fe exchange interaction for ErFeO3 gives
the largest Tcomp in the series of orthoferrites. It is necessary
to take into account the role of the DM anisotropy. Its value
must be optimal because at small d it is difficult to induce the
R-Fe effective exchange field to be competitive with Fe-Fe
exchange at high temperatures. That is why SmFeO3 has a
high TSR = 480 K with a low compensation point. In Fig. S5 it
corresponds to a low-temperature area below Tcomp maximum
when at small d we have a drastic Tcomp growth with increase
in γx. The decrease of Tcomp reflects the suppression of the
DM exchange. The canting angle θ changes sign at Tcomp = 0.
The first-principles study [33] shows the highest oxygen
octahedron tilting angles for erbium orthoferrite since Er3+
has the smallest ionic radius. It gives a larger value of the
DM interaction parameter with larger magnetization induced
by Fe3+ subsystem. As a result, we have the highest Tcomp in
ErFeO3.

At this point it is useful to discuss the angular dependence
of the free energy at temperatures near TSR and Tcomp. The
angular dependences of the free energy F for different values
of parameters of interactions and temperatures are shown
in Fig. 6. One can see that at T̃ = T̃SR = 0.427 the free
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energies for α = 0 and π/2 practically coincide. At T > TSR

the difference F (0) and F (π/2) is on the order of 0.44 K
that corresponds to the potential barrier that matches 6.5 kOe.
In temperature range close to T̃ ∼ T̃comp = 0.183, the height
of the potential barrier between directions of AFM axis L
along the a and c axes is increased up to 160 kOe. Appar-
ently, in this case, Fe3+ magnetic moments rotate in the ab
plane. Correspondingly, the free-energy extrema exist only for
angles α = 0, ±π/2, which points out the spin-reorientation
phase transition of the first order at temperature T = TSR.

V. MAGNETIC FIELD INDUCED EB IN ErFeO3

Near the compensation point 〈Stot〉 → 0, there is a com-
petition between anisotropy and magnetic moments induced
due to inclination by magnetic field h of the Fe3+ sublattice.
Here, we discuss the renormalized anisotropy field caused by
additional canting of the Fe3+ magnetic moments. Indeed,
h ∼ 0.0001 is very small and corresponds approximately to
160 Oe for Fe3+. Let us estimate the change of the canting
angle θ caused by this value of h. From Eqs. (7), at α = π/2
we obtain the difference �θ = 5 × 10−5 rad for h = 0 and
0.0001. The other parameters are the same as in figures above
with γx = 0.6. The effective exchange field Heff is ∼ 200 Oe
[see Eq. (C3) in Appendix C in Ref. [31]) that is on the
same order of magnitude as demagnetizing fields. In order
to understand the appearance of induced anisotropy, let us
consider more thoroughly the change of free energy caused
by applied field h near the compensation point.

Using the expression for free energy in linear approxi-
mation over θ at α ∼ π/2, Eq. (11) can be rewritten at low
temperatures T 	 TN as

F̃ (α) = 1
2 S2{−1 − b sin2α − 2dθ} − hMtot (±π/2, T̃ ),

(19)
where Mtot (±π/2, T̃ ) = −gFeSθ0 + 1

2 gEr tanh( Sθ0

2γx T̃
) and θ0 is

determined by Eq. (17) at θT = θ0.
It appears that at T ∼ Tcomp the total magnetic moment

Mtot (π/2, T̃ ) tends to zero and anisotropy contribution 1
2 S2b

is finite. In this case, the anisotropy field HA is proportional
to b/Mtot (π/2, T̃ ), i.e., there is an experimentally observed
increase of HA at T → Tcomp. Also, an applied field h changes
the canting angle of the Fe3+ sublattice moments. Thus,
depending on the direction of the total Fe3+ sublattice moment
there is a positive or negative increase of the free energy. The
coercive field HC is shifted for different types of domains as
well.

Let us designate the type of domains in which magnetic
field is directed against the a axis by number N2 (see Fig. 7).
This type of domain corresponds to the geometry considered
above. Obviously, for these domains the additional sublattice
canting by magnetic field decreases the free energy. In the
system, there are domains of the basic type N1 for which
h is along the a axis and this direction is assigned by the
experiment (see Fig. 7). Apparently, in this case in the expres-
sion (19) for free energy it is necessary to perform h → −h
replacement. In fact, the field dependence F̃ (π/2) is more
complicated since the canting angle θ depends on h as well.

FIG. 7. Possible domains in ErFeO3 at h = 0. Here, arrow h
reflects only the direction of an applied magnetic field. Symbol F
describes ferromagnetic moment from two Fe3+ sublattices; R is
magnetic moment Er3+ ion for T < Tcomp (R > F ).

In the linear approximation over h, the free energy (19) for
domains N1 and N2 takes the form

F̃ (±π/2) = const ± hd�θ, (20)

where �θ = θ − θ0 is the additional magnetic bias caused by
change of canting angle θ by applied field h, θ0 is the solution
of Eq. (17), and

�θ = χh. (21)

Here, χ determines the correction to small canting angle θ0

and is expressed as

χ =
gFe − gEr

8γx T̃

(
1 − 16S2γ 2

x [(2 + b)θ0 − d]2
)

S
{
2 + b − 1

8γ 2
x T̃

(
1 − 16S2γ 2

x [(2 + b)θ0 − d]2
)} . (22)

Even at high temperatures χ is a sufficiently large in value
∼ gFe

S(2+b) that can shift essentially a peak of coercivity near the
compensation point (see Fig. S6 in Appendix C in Ref. [31]).
In experiment [8], the skewness of temperature dependences
of coercive fields that may be connected with prevalence of
one or another type of domain is observed.

The constant in Eq. (20) does not depend on h and is
determined by angle α. It is obvious that a rotation of Fe3+
moments in the ac plane is thermodynamically unfavorable.
It follows from Fig. 6, where the energy difference between
directions along the a and c axis is of order 13 K, which is in-
commensurably with applied field. Apparently, the total mag-
netic moment rotates in the bc plane, where the anisotropic
field must be essentially weak. Thus, one can write for this
plane the following expression for free energy:

F̃ (φ) = − 1
2 S2b1sin2(φ) + (Mtot ± δχS2d )h cos(φ), (23)

where φ is rotation angle in the bc plane and b1 denotes
the corresponding exchange anisotropy. Obviously, Mtot and
χ depend on anisotropy parameter b, only. The parameter δ

reflects a relative volume of the domains N1 and N2 with
upper and lower signs, respectively. Differentiating F̃ (φ) over
φ and equating it to zero we obtain the next expression for
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FIG. 8. Temperature dependences of the coercive fields Hi,coer for
domains N1 and N2 (curves 1 and 2, respectively) for b = −0.003,
b1 = −0.00005, d = 0.058, γx = 0.6. The volume content δ+1 =
0.001 and δ−1 = 0.999 of domains N1 and N2, respectively.

coercive fields Hi,coer of i-th domain type:

Hi,coer = S2b1

Mtot + iδχS2d
, (24)

where i = +1 and −1 for domains N1 and N2, respectively.
Also, Mtot = Mtot (±π/2) [see Eq. (16)].

The temperature dependences of the coercive fields Hi,coer

for domains N1 and N2 are presented in Fig. 8. Experi-
mentally observed skewness of the Hi,coer (T ) [8] reflects the
change of the volume ratio of domains N1 and N2. Appar-
ently, this change has nonequilibrium character.

As defined in Ref. [8], one can determine the average
coercive HC and exchange-bias HEB fields in the following
manner:

HC =
∣∣∣∣H+1,coer − H−1,coer

2

∣∣∣∣
HEB = H+1,coer + H−1,coer

2
. (25)

The field HEB determines the shift of the hysteresis loop
center caused by existence of the two types of domains.
Figures 9(a) and 9(b) show the temperature dependences of
the average coercive field HC and exchange-bias HEB, respec-
tively. As can be seen in Fig. 9, the sharp increase of the
average coercive field and exchange bias near the compen-
sation point are in good agreement with experimental results
obtained for ErFeO3 single crystals (see Ref. [8]). Obviously,
only a small part of domains of type N1 is responsible for such
a behavior at T ∼ Tcomp (see curve 1 in Fig. 9).

Let us consider the appearance of steplike overturns of
magnetic moments of domains N1 and N2 near the compensa-
tion point. Indeed, above Tcomp the basic domains are type N2
since Mtot > 0 (see Fig. 7). At h �= 0 nonzero magnetization
appears because of rotation of the a axis in type N1 domains
around the c axis through an angle 180◦ that is equivalent
to corresponding rotation of the magnetic moments. In this
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0.00

0.01

0.02

H
C

T/2J12(0)

T=Tcomp.
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EB

T/2J12(0)
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FIG. 9. Temperature dependences of the average coercive field
HC (a) and exchange-bias HEB (b) for b = −0.003, b1 = −0.00005,
d = 0.058, γx = 0.6, δ+1 = 0.001, and δ−1 = 0.999.

case, the weak anisotropic magnetic field in the ab plane acts
only. Field-induced deformation of canting angle is favorable
for type N2 domains (curve 1 in Fig. 8). That is why even
in a small temperature range near Tcomp and at T < Tcomp

the negative magnetization due to N1 domains emerges. As
the energy of deformation of canting angle becomes smaller
than the energy of interaction of the total magnetic moment
with applied field, spin reversal takes place. The similar
situation occurs at temperature increasing from T < Tcomp to
T > Tcomp.

VI. CONCLUSIONS

For a two-sublattice antiferromagnet with exchange
anisotropy and R-Fe interactions, the mean-field theory was
applied. It was proved that the spin-reorientation phase tran-
sition occurs at temperature TSR only for strong anisotropy of
R-Fe exchange interaction. The influence of Dzyaloshinskii-
Moriya and R-Fe exchange anisotropies on TSR as well as
compensation point has been determined. Experimentally
observed steplike jumps for ErFeO3 magnetization near the
compensation point are explained. It was shown that magnetic
exchange bias is caused by additional deformation of the
canting angle of Fe magnetic sublattice in a weak applied
field. Although the theory is somehow simplified, it can
predict correctly significant features, such as the behavior
of the average coercive field HC and the exchange-bias field
HEB. The comparison with experiment is quite encouraging
and indicates that the considered model contains the essential
physics.
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