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Motivated by the ongoing effort to search for high-resolution signatures of quantum spin liquids, we
investigate the temperature dependence of the indirect resonant inelastic x-ray scattering (RIXS) response for
the Kitaev honeycomb model. We find that, as a result of spin fractionalization, the RIXS response changes
qualitatively at two well-separated temperature scales, TL and TH , which correspond to the characteristic energies
of the two kinds of fractionalized excitations, Z2 gauge fluxes and Majorana fermions, respectively. While
thermally excited Z2 gauge fluxes at temperature TL lead to a general broadening and softening of the response,
the thermal proliferation of Majorana fermions at temperature TH ∼ 10 TL results in a significant shift of the
spectral weight, both in terms of energy and momentum. Due to its exclusively indirect nature, the RIXS
process we consider gives rise to a universal magnetic response and, from an experimental perspective, it directly
corresponds to the K-edge of Ru3+ in the Kitaev candidate material α-RuCl3.

DOI: 10.1103/PhysRevB.99.184417

I. INTRODUCTION

Recent years have seen tremendous interest in Kitaev ma-
terials [1–9], a family of spin-orbit-assisted Mott insulators on
tricoordinated two-dimensional (2D) and three-dimensional
(3D) lattices, in which local, spin-orbit-entangled jeff = 1/2
moments interact via strongly bond-directional Ising-like in-
teractions. The most extensively studied Kitaev materials are
the iridates A2IrO3 (A = Li, Na) [10–19] and H3LiIr2O6

[20], and the ruthenium compound α-RuCl3 [21–24]. The
interest in these materials originates from the belief that they
are proximate to the Kitaev quantum spin liquid (QSL) [1]
due to the presence of dominant Kitaev interactions in their
microscopic Hamiltonians [18,25–31].

When searching for QSL physics in Kitaev materials, a
general feature to look for is the fractionalization of spins into
two types of quasiparticle excitations, according to the exact
solution of the Kitaev model [1]: localized, gapped Z2 fluxes
and itinerant, gapless Majorana fermions. In pursuit of spin
fractionalization, a lot of experimental and theoretical effort
has been devoted to the study of spin dynamics in Kitaev
materials through various dynamical probes, such as inelastic
neutron scattering (INS) [32–41], Raman scattering [42–49],
and resonant inelastic x-ray scattering (RIXS) [50,51]. The
key idea is that, even if residual magnetic order sets in
below a critical temperature, which indeed happens in most
of the Kitaev materials, the fractionalized quasiparticles of the
nearby QSL phase may still lead to observable signatures in
the dynamical response [36,52].

In particular, there is a growing body of experimental
evidence that the ground state of the spin-orbit-assisted hon-
eycomb Mott insulator α-RuCl3 is proximate to the Kitaev

QSL phase, despite the fact that it exhibits zigzag antiferro-
magnetic order below TN � 7 K [21–24]. For example, the
INS response of α-RuCl3 [36,39,40] shows a broad continuum
spectrum of 2D magnetic fluctuations around the center of the
Brillouin zone, which is indicative of spin fractionalization
and is in agreement with the corresponding theoretical pre-
diction for the Kitaev honeycomb model [33,34]. Promising
results were also obtained by Raman scattering experiments
in α-RuCl3, detecting a broad continuum below 100 K that
even persists into the magnetically ordered phase [43,45].
Moreover, the temperature dependence of the Raman spectral
weight can be interpreted in terms of the spins fractionalizing
into fermionic quasiparticles [49].

As a general spectroscopic probe of magnetic materials,
RIXS has important advantages over both INS and Raman
scattering. In contrast to INS, which only measures dynamic
single-spin correlations, and Raman scattering, which is re-
stricted to essentially zero momentum due to its low-energy
photons, RIXS offers greater versatility in measuring a wider
range of dynamic correlations with full momentum resolution
[53–56]. Specifically, for the Kitaev QSL, it was predicted
by some of us that the magnetic channels of RIXS are ca-
pable of picking up both types of fractionalized excitations
[50,51]. Indeed, while the non-spin-conserving channels are
dominated by the localized Z2 fluxes and thus give rise to
a weakly dispersive response, the spin-conserving channel
couples exclusively to the Majorana fermions and can ef-
fectively probe the characteristic graphene-like dispersion of
these exotic fractionalized quasiparticles.

Nevertheless, spin fractionalization in the Kitaev materials
has not yet been observed in RIXS experiments due to at least
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two major difficulties in designing a suitable measurement.
First, to distinguish between the various magnetic channels,
one would need to do polarization analysis on the outgoing
x-ray beam. Second, the energy resolution of RIXS at the
previously proposed L3-edge [50,51] is rather poor, both in
the iridates and in α-RuCl3. In this work, we instead propose
that signatures of fractionalized excitations in α-RuCl3 can be
probed by indirect RIXS at the K-edge of Ru3+. In addition to
a favorable predicted energy resolution [57,58], this edge has
only one magnetic channel due to its indirect nature, and the
corresponding magnetic response is thus independent of x-ray
polarization.

Furthermore, it is now well appreciated that, due to the
flat band of low-energy Z2 fluxes, the dynamical responses
of the Kitaev QSL are rather sensitive to thermal fluctuations.
Indeed, already at temperatures corresponding to only a small
fraction of the Kitaev exchange energy, thermal population of
the fluxes [59] can give rise to finite-temperature responses
that are strikingly different from their zero-temperature coun-
terparts [60–63]. To provide a useful guide for experimen-
talists, we therefore calculate the indirect RIXS response
of the Kitaev QSL at finite temperature and describe how
the temperature evolution of this response reflects the spin-
fractionalization scheme in the Kitaev QSL.

Our main result is that there are qualitative changes in
the RIXS response at two distinct temperature scales, TL and
TH , separated by an order of magnitude, which correspond to
the characteristic energies of the Z2 fluxes and the Majorana
fermions, respectively. At the scale of TL, the fluxes become
thermally excited and give rise to an effective disorder for the
Majorana fermions, thereby leading to an overall broadening
of the response as well as the softening of the quasisharp
features present at zero temperature. At the scale of TH ∼
10 TL, the Majorana fermions become excited in large num-
bers, leading to an overall shift of the spectral weight, both
from positive to negative energies and from the boundary
to the center of the Brillouin zone. In the high-temperature
regime, we also identify a pronounced peak in the spectral
weight around zero energy and momentum, corresponding to
collective energy-density fluctuations, and we argue that this
peak is related to the quasi-elastic peak in the experimental
Raman response of α-RuCl3 [43,49].

II. INDIRECT RIXS IN THE KITAEV
QUANTUM SPIN LIQUID

In RIXS experiments, core electrons of a specific ion are
promoted to an unoccupied state using an x-ray beam, thereby
locally exciting the irradiated material into a highly energetic
and very short-lived (∼1 fs) intermediate state. Motivated by
α-RuCl3, we are interested in RIXS processes at the K-edge of
Ru3+ (see Fig. 1), which involve the excitation of an electron
from the 1s core shell into an unoccupied 5p state above the
4d valence shell. Since no electrons are excited directly into
the valence orbitals, magnetic excitations can only be created
by indirect RIXS processes, which do not change the spin of
the valence shell and thus correspond to the spin-conserving
channel discussed in Refs. [50] and [51]. Consequently, the
K-edge of Ru3+ has only one magnetic RIXS channel, giving
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FIG. 1. Illustration of an indirect RIXS process at the Ru3+ K-
edge creating Majorana fermion excitations in the Kitaev honeycomb
model due to the local modification of magnetic couplings in the
intermediate state. The three bond types x, y, and z of the lattice are
marked by red, green, and blue, respectively, while the bonds with
modified couplings Jκ (r) between the photon-scattering site r and
the neighboring sites κ (r) (with κ = x, y, z) are denoted by dashed
lines. The incoming (outgoing) x-ray photons have momenta k (k′)
and energies ωk = c|k| (ωk′ = c|k′|). At finite temperature, three
kinds of indirect RIXS processes contribute to the response: Stokes
processes creating two fermions, anti-Stokes processes annihilating
two fermions, and “mixed” processes creating one fermion while
annihilating another one.

rise to a universal magnetic response that does not depend on
the x-ray polarizations.

In α-RuCl3, the magnetism of each Ru3+ ion is governed
by a jeff = 1/2 Kramers doublet in the t2g orbitals of the 4d
valence shell [2], and we assume that the effective low-energy
Hamiltonian acting on these Kramers doublets is that of the
Kitaev model [1]:

H = −J
∑

〈r,r′〉x

σ x
r σ x

r′ − J
∑

〈r,r′〉y

σ y
r σ

y
r′ − J

∑

〈r,r′〉z

σ z
r σ z

r′ , (1)

where the three bond types κ = x, y, z are distinct in their
orientations (see Fig. 1). Using the Kitaev fermioniza-
tion σκ

r = ibκ
r cr , this Hamiltonian can be written as H =

J
∑

κ

∑
〈r,r′〉κ iuκ

r,r′cr cr′ in terms of the Majorana fermions bκ
r

and cr , where uκ
r,r′ ≡ ibκ

r bκ
r′ . Importantly, uκ

r,r′ are commuting
constants of motion, and they give rise to static flux degrees
of freedom �〈r,r′〉∈puκ

r,r′ = ±1 at the plaquettes p. Moreover,
in each flux sector characterized by uκ

r,r′ = ±1, one obtains a
free-fermion Hamiltonian for cr , which can thus be identified
as deconfined Majorana-fermion excitations. Since there are
no flux excitations in the ground state, it belongs to the flux
sector with �〈r,r′〉∈puκ

r,r′ = +1 for all p.
During the RIXS process, a momentum q = k − k′ and an

energy ω = ωk − ωk′ = c {|k| − |k′|} is transferred into the
Kitaev QSL, where k and k′ are the momenta of the incoming
and the outgoing x-ray photons, respectively (see Fig. 1). In
the intermediate state, the 1s core hole acts like a nonmagnetic
impurity and locally modifies (i.e., strengthens or weakens)
the coupling strength J of the effective Kitaev model [64]. The
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intermediate state is then an eigenstate |ñr〉 of the perturbed
Kitaev model

H̃r = H − δJ
∑

κ=x,y,z

σκ
r σκ

κ (r), (2)

where κ (r) is the site connected to the core-hole site r by a κ

bond. Note that the change in the Kitaev coupling strength, δJ ,
may be positive or negative and that the limit of a nonmagnetic
vacancy [65–67], corresponding to, for example, the L-edges
of Ru3+ or Ir4+ [50,51], is recovered by setting δJ = −J .

Due to the indirect nature of the RIXS process considered,
the Kramers-Heisenberg formula [53] for the RIXS vertex
takes the simplified form

R(q) =
∑

r

eiq·r ∑

ñr

|ñr〉〈ñr|
� − Eñ + i	

, (3)

where 	 is the core-hole decay rate, Eñ is the energy of the
intermediate state |ñr〉, and � is the energy of the incoming
x-ray photon with respect to the K-edge resonance energy.
Considering the experimentally relevant fast-collision regime,
where J 	 	, we may assume that resonance is close enough,
such that � 	 	, and expand Eq. (3) in (� − Eñ)/	 up to
the order of 1/	2. Exploiting

∑
ñr

|ñr〉〈ñr| = 1 as well as∑
ñr

Eñ|ñr〉〈ñr| = H̃r, and neglecting any terms giving rise to
exclusively elastic responses, the lowest-order RIXS vertex
then becomes

R(q) = δJ

	2

∑

r

eiq·r ∑

κ

σ κ
r σκ

κ (r). (4)

This result has a straightforward physical interpretation: the
indirect RIXS vertex in Eq. (4) is due to additional exchange
interactions of strength δJ that are temporarily switched
on around the core-hole site r in the short-lived (lifetime:
τ ∼ 1/	) intermediate state [68].

III. FINITE-TEMPERATURE RESPONSE

The main result of this work is the calculation of the
RIXS response at finite temperature, which first requires a
finite-temperature formulation of the underlying Kitaev model
[59–63]. Qualitatively, thermal spin fractionalization in the
Kitaev model manifests itself in successive entropy releases
at two well-separated temperature scales TL and TH . At low
temperatures (T 	 TL), the fluxes are completely frozen and
only a small number of Majorana fermions are thermally
excited. At intermediate temperatures (TL � T � TH ), ther-
mal energy goes into both fluxes and Majorana fermions,
but their fractionalized nature remains readily observable.
Finally, at high temperatures (T 
 TH ), fluxes and Majorana
fermions recombine into spins, and the system crosses over to
a conventional paramagnetic regime.

Instead of a full and numerically costly Monte Carlo sam-
pling of flux excitations [59], a quantitative approximation
of the finite-temperature behavior is obtained by taking a
random average over “typical” flux sectors and solving the
free-fermion problem in each flux sector exactly [69]. Each
“typical” flux sector at temperature T is obtained by creating
two flux excitations around each bond with probability PT

such that the resulting probability of a flux excitation at any

plaquette is

1 − (1 − 2PT )6

2
= fT (�) ≡ 1

1 + exp(�/T )
, (5)

where � ≈ 0.15J is the single-flux gap. The solution for this
probability is given by

PT = 1 − [1 − 2 fT (�)]1/6

2
. (6)

In each “typical” flux sector, the free-fermion Hamiltonian
then takes the form

H = J
∑

κ

∑

〈r,r′〉κ
iūr,r′crcr′ , (7)

where each ūr,r′ ≡ 〈uκ
r,r′ 〉 is +1 with probability 1 − PT and

−1 with probability PT .
Exploiting the bipartite nature of the honeycomb lattice,

and noting that each unit cell l has two sites rA,l and rB,l

in the two sublattices A and B, this free-fermion Hamilto-
nian can be written as H = ∑

l,l ′ iMll ′cA,l cB,l ′ , where Mll ′ =
JūrA,l ,rB,l′ if rA,l and rB,l ′ are connected and Mll ′ = 0 other-
wise. Note also that cA,l ≡ crA,l and cB,l ≡ crB,l . Finally, the
free-fermion Hamiltonian is recast into the canonical form
H = ∑

n εn(ψ†
n ψn − 1/2), where the fermions ψn = (γA,n +

iγB,n)/2, in terms of γA,n = ∑
l UlncA,l and γB,n = ∑

l VlncB,l ,
and their energies εn = 2�nn are obtained from the singular-
value decomposition M = U · � · V T [70].

In any given flux sector, the lowest-order RIXS vertex in
Eq. (4) can be expressed in terms of the fermions as

R(q) = − δJ

J	2

∑

l,l ′
iMll ′cA,l cB,l ′ (e

iq·rA,l + eiq·rB,l′ )

∝
∑

n,n′
(ψn + ψ†

n )(ψn′ − ψ
†
n′ )

× [WA(q) · � + � · WB(q)]nn′ , (8)

where we introduce [SA/B(q)]ll ′ ≡ δll ′eiq·rA/B,l as well as
WA(q) ≡ U T · SA(q) · U and WB(q) ≡ V T · SB(q) · V . Finally,
by neglecting all elastic terms that do not change any fermion
numbers and separating inelastic terms that change fermion
numbers in inequivalent ways, the RIXS vertex in Eq. (8) can
be written as

R(q) ∝
∑

n<n′

[
R(1)

nn′ (q) + R(2)
nn′ (q)

] +
∑

n =n′
R(3)

nn′ (q). (9)

In particular, the first term describes Stokes processes creating
two fermions each:

R(1)
nn′ (q) = −ψ†

n ψ
†
n′ [A−(q)]nn′ , (10)

the second term describes anti-Stokes processes annihilating
two fermions each:

R(2)
nn′ (q) = ψn ψn′ [A−(q)]nn′ , (11)

and the third term describes “mixed” processes creating one
fermion and annihilating one fermion each:

R(3)
nn′ (q) = ψ†

n ψn′ [A+(q)]nn′ , (12)

where A±(q) = {WA(q) ± WB(q),�}± in terms of the
(anti)commutator {a, b}± ≡ a · b ± b · a.
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FIG. 2. Temperature evolution of the indirect RIXS response for the Kitaev honeycomb model. The lowest-order RIXS intensity I (ω, q)
is plotted for temperatures (a) T = 0, (b) T = 0.1J , (c) T = 0.2J , (d) T = 0.5J , (e) T = J , and (f) T = 5J along the high-symmetry path
	′-M-	-K-M in the Brillouin zone [marked by green line in the inset of subfigure (a)].

At finite temperature T , the resulting RIXS intensity of any
given flux sector is given by Fermi’s golden rule

I (ω, q) =
∑

m,m′

e−Em/T

Z
|〈m′|R(q)|m〉|2δ(ω + Em − Em′ ),

(13)

where Z ≡ ∑
m e−Em/T is the partition function. Importantly,

the free-fermion eigenstates |m〉 = ∏
n(ψ†

n )Nn |0〉 with ener-
gies Em = ∑

n Nnεn are labeled by the fermion occupation
numbers Nn = {0, 1}. Since the various terms in Eq. (9) all
change the fermion numbers in inequivalent ways, there can
be no interference between them in Eq. (13) and their corre-
sponding intensities can be calculated independently. More-
over, since the fermions do not interact, the matrix elements
of the terms R(1,2,3)

nn′ (q) only depend on the fermions n and n′
whose numbers they actually change. Substituting Eq. (9) into
Eq. (13), the lowest-order RIXS intensity is then

I (ω, q) ∝ I (1)(ω, q) + I (2)(ω, q) + I (3)(ω, q),

I (1)(ω, q) =
∑

n<n′
[1 − fT (εn)][1 − fT (εn′ )]|A−(q)|2nn′

× δ(ω − εn − εn′ ),

I (2)(ω, q) =
∑

n<n′
fT (εn) fT (εn′ )|A−(q)|2nn′δ(ω + εn + εn′ ),

I (3)(ω, q) =
∑

n =n′
[1 − fT (εn)] fT (εn′ )|A+(q)|2nn′

× δ(ω − εn + εn′ ), (14)

where the three distinct terms correspond to Stokes, anti-
Stokes, and “mixed” processes, respectively. In the limit of
T → 0, the Fermi functions fT (εn) vanish for εn > 0, imply-
ing that only Stokes processes are allowed.

In principle, the finite-temperature RIXS intensity of the
Kitaev model is obtained by taking an average of the intensi-
ties corresponding to randomly selected “typical” flux sectors:
I (ω, q) = I (ω, q). For large-enough system sizes, however,
there are no observable differences between the intensities of
the individual flux sectors. In practice, it is therefore sufficient
to approximate the average intensity with the intensity corre-
sponding to any “typical” flux sector: I (ω, q) = I (ω, q).

IV. RESULTS AND DISCUSSION

The lowest-order RIXS intensity I (ω, q) is plotted in
Figs. 2 and 3 for a range of different temperatures T ,
along an entire high-symmetry path and at specific high-
symmetry points of the Brillouin zone, respectively. We start
by briefly discussing the limit of zero temperature [50],
in which case the fermions ψn ≡ ψk are labeled by their
momenta k, and the matrix element |A−(q)|k,k′ in Eq. (14)
vanishes unless q = k + k′. The RIXS intensity I (ω, q) ∝

FIG. 3. Lowest-order RIXS intensities I (ω, q) at the (a) M point
and (b) K point of the Brillouin zone for temperatures T = 0 (solid
line), T = 0.1J (dashed-dotted line), and T = J (dashed line). Red
arrows indicate quasisharp features (i.e., logarithmic divergences) at
T = 0.
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FIG. 4. Momentum-integrated RIXS intensity I (ω) for temper-
atures T = 0 (solid line), T = 0.1J (dashed-dotted line), T = J
(dashed line), and T = 5J (dotted line). The T = 5J curve is mul-
tiplied by 0.5 to compare to other curves.

∑
k |A−(q)|2k,q−k δ(ω − εk − εq−k ) can then be understood in

terms of the characteristic momentum dispersion εk of the
fermions [50,51].

Ignoring the matrix element [A−(q)]k,q−k, the RIXS in-
tensity at each momentum q is proportional to the joint
density of states ĝω(q) = ∑

k δ(ω − εk − εq−k ), which in turn
corresponds to an effective (joint) band dispersion ε̂k(q) ≡
εk + εq−k as a function of the fermion momentum k. Due
to the finite width of this effective band, the RIXS intensity
is nonzero for a finite energy range at each momentum q,
which can be identified as an indirect signature of fraction-
alization [50]. However, while truly sharp features I (ω, q) ∝
δ(ω − ω̂q) are absent from the RIXS response, there are clear
quasisharp features I (ω, q) ∝ − log(ω − ω̂q) [see Fig. 3] due
to logarithmic divergences in ĝω(q), which correspond to van
Hove singularities of the effective band ε̂k(q).

As the temperature is increased, there are qualitative
changes in the RIXS response at the two characteristic tem-
perature scales TL ≈ � and TH ≈ J , which can be identified
as indirect signatures of the flux and fermion excitations, re-
spectively. At temperatures T � TL, thermally excited fluxes
behave like disorder from the perspective of the fermions
[69], and fermion momentum is therefore no longer a good
quantum number. As a result of this effective disorder, the
quasisharp features of the zero-temperature RIXS response
disappear. Also, in the absence of a momentum selection
rule (e.g., q = k + k′), a larger number of processes become
allowed and hence the energy range of the RIXS response
increases. Interestingly, both of these features are already
observable at T = 0.1J � � (see Figs. 2 and 3).

At temperatures T � TH , fermions become thermally ex-
cited in large numbers, and Stokes processes are thus no
longer dominant over anti-Stokes and “mixed” processes.
Consequently, the spectral weight of the RIXS response is
shifted to lower energies and becomes nonzero even at ω < 0.
To distinguish this overall shift of the spectral weight from the
finer changes discussed in the previous paragraph, we plot the
momentum-integrated RIXS intensity I (ω) ≡ ∫

dq I (ω, q)
for a range of different temperatures in Fig. 4. While the T =
0.1J response is almost identical to the zero-temperature one,
the spectral weights of the T � J responses are significantly
shifted to progressively smaller energies. In particular, the

FIG. 5. (a) Energy-integrated RIXS intensity I (q) along the
high-symmetry path 	′-M-	-K-M [see inset of Fig. 2(a)] and
(b) “mixed” RIXS intensity I (3)(ω, q) in a small region around the
	 point. In each subfigure, the curves correspond to temperatures
T = 0 (solid line), T = 0.1J (dashed-dotted line), T = 0.5J (dashed
line), and T = 5J (dotted line), and are normalized such that the peak
of the T = 5J curve is at 1.

T = 5J response is almost symmetric with respect to ω = 0,
indicating that Stokes and anti-Stokes processes are almost
equally probable.

Moreover, at temperatures T 
 TH , the momentum-
integrated RIXS intensity exhibits a strong peak around zero
energy as a result of quasi-elastic “mixed” processes at
small momenta q. These processes do not change the total
number of fermions and instead correspond to collective
energy-density fluctuations [71–73]. In Fig. 5, we pinpoint
the existence of these quasi-elastic processes in two different
ways. First, we plot the energy-integrated RIXS intensity
I (q) ≡ ∫

dω I (ω, q) in Fig. 5(a), and observe that its max-
imum is transferred from the boundary to the center of the
Brillouin zone upon increasing the temperature. Second, we
plot the “mixed” component of the RIXS intensity, corre-
sponding to the third term in Eq. (14), integrated over a
small region around the 	 point of the Brillouin zone, in
Fig. 5(b). This quantity, I (3)(ω, q ≈ 	) ≡ ∫

|q|<ε
dq I (3)(ω, q),

is strongly peaked around zero energy, and its ω = 0 peak
grows rapidly as the temperature is increased [74]. Inter-
estingly, such a quasi-elastic peak has been experimentally
observed at high temperatures in the Raman response of the
Kitaev QSL candidate α-RuCl3 [43,49].

We emphasize that the matrix elements [A±(q)]nn′ in
Eq. (14) also lead to observable features in the RIXS response.
First of all, the RIXS intensity I (ω, q) vanishes for all energies
ω at a reciprocal lattice vector q = G or, equivalently, at
the 	 point of the Brillouin zone. Indeed, since the RIXS
vertex R(G) in Eq. (4) is proportional to the Hamiltonian
H in Eq. (1), it does not create any excitations and gives
rise to a purely elastic response. Importantly, this connection
between H and R(G) is valid on the level of the spins, and the
corresponding suppression around the 	 point is thus a robust
feature of the RIXS response at arbitrary temperature [75].

Furthermore, in comparison to the equivalent 	′ points in
the neighboring Brillouin zones (q = G = 0), the suppression
of the RIXS response may be stronger or weaker around the 	

point in the central Brillouin zone (q = 0) [see Fig. 2] due
to a destructive or constructive interference between RIXS
processes at the two sublattices of the bipartite honeycomb
lattice. In general, there is a complex phase factor ±i between
the two sublattices for each fermion created (annihilated). For
the (anti-)Stokes processes, dominating at low temperatures
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and/or far away from ω = 0, the interference at q = 0 is de-
structive due to (±i)2 = −1, and the RIXS response is weaker
around the central 	 point. Conversely, for the “mixed”
processes, dominating close to ω = 0 at high temperatures,
the interference at q = 0 is constructive due to (+i)(−i) =
+1, and the RIXS response is stronger around the central 	

point. Importantly, the phase factors ±i indicate that inversion
symmetry acts projectively on the fermions, and the stronger
suppression around the central 	 point at low temperatures
T � TL is thus an indirect signature of their fractionalized
nature [50,51].

V. SUMMARY AND OUTLOOK

In this work, we presented a microscopic calculation of
the finite-temperature RIXS response for the Kitaev QSL
on the honeycomb lattice. To obtain a universal magnetic
response, we concentrated on indirect RIXS which only has
one magnetic channel and couples exclusively to the Majorana
fermions. However, in stark contrast to the case of zero
temperature, thermally excited Z2 fluxes are also indirectly
observable at finite temperature as they give rise to an ef-
fective disorder potential for the Majorana fermions. In fact,
as the temperature is increased, the RIXS response changes
qualitatively at two well-separated temperature scales, TL and
TH , due to the thermal proliferation of Z2 fluxes and Majorana
fermions, respectively. We thus conclude that the temperature
evolution of the RIXS response provides further evidence of
spin fractionalization, in addition to those already observable
at zero temperature.

Moreover, as the small-momentum regime of RIXS is
directly related to Raman scattering, we can provide a possible
explanation for the strong quasi-elastic peak that has been

experimentally observed in the Raman response of α-RuCl3

[43,49]. Indeed, we found a similar quasi-elastic peak in our
theoretical RIXS response above the higher temperature scale
TH and understood that it corresponds to long-wavelength
collective fluctuations of the Majorana fermions. While we
were not able to quantitatively reproduce its experimentally
observed temperature dependence, we argue that this strong
quasi-elastic peak, which so far has been subtracted as an
unknown background, is also qualitatively consistent with the
presence of fractionalized excitations in α-RuCl3.

Finally, we emphasize that our results capture the funda-
mental properties of the indirect RIXS process at the K-edge
of Ru3+ in α-RuCl3. The predicted energy resolution at this
edge, �ω ∼ 1 meV [57,58], is much smaller than the band-
width 12J ∼ 20 meV [29] of the magnetic RIXS response.
Due to this favorable prediction for the energy resolution and
the universality of the corresponding RIXS response, we hope
that, in the near future, the quantitative predictions in this
work will serve as a useful guide for RIXS experiments in
Kitaev materials.
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