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Magnetic domain wall skyrmions
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It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to
a significant interfacial Dzyaloshinskii-Moriya interaction (DMI), which modifies the internal structure of
magnetic domain walls (DWs) to favor Néel- over Bloch-type configurations. However, the impact of such a
transition on the structure and stability of internal DW defects (e.g., vertical Bloch lines) needs to be explored. We
present a combination of analytical and micromagnetic calculations to describe a type of topological excitation
called a DW skyrmion characterized by a 360◦ rotation of the internal magnetization in a Dzyaloshinskii DW. We
further propose a method to identify DW skyrmions experimentally using Fresnel-mode Lorentz transmission
electron microscopy; simulated images of DW skyrmions using this technique are presented based on the
micromagnetic results.
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I. INTRODUCTION

The discovery of a large Dzyaloshinskii-Moriya interaction
(DMI) [1,2] in bulk magnetic crystals [3,4] and thin films
with structural inversion asymmetry [5–8] has led to a fervent
rebirth of research on magnetic bubble domains in the form
of smaller particlelike features called skyrmions, which are
minimally defined as having an integer-valued topological
charge Q, computed from 4π Q = ∫

dxdy m · (∂xm × ∂ym),
where m is the unit magnetization vector. Although nontrivial
to calculate, there is an inherent energy barrier associated
with the annihilation of such an object when Q goes to 0—
something widely referred to as topological protection. The
combination of a large DMI, which yields smaller, more stable
skyrmions, and a related spin-orbit coupling phenomenon,
viz., the spin Hall effect [9–12], makes the prospect of using
skyrmions for energy-efficient memory and computing attrac-
tive [13,14].

Here, we present a manifestly different type of topolog-
ically protected magnetic excitation called a domain wall
(DW) skyrmion, which has previously been considered under
a field-theory context [15,16]. It describes a 360◦ wind of the
DW’s internal magnetization along the wall profile and has a
topological charge of ±1. In the absence of DMI, DWs in thin
films with perpendicular magnetic anisotropy tend to form
the Bloch configuration [17]. In these walls, it is common
to encounter topological defects (Q = ± 1

2 ) characterized by
180◦ transitions called vertical Bloch lines (VBLs), as shown
in Figs. 1(a) and 1(b) [18,19], which were once considered in
their own right for computer memory [20,21]. Adding a suffi-
ciently strong interfacial DMI, however, will favor a Néel-type
DW with preferred chirality, known as the Dzyaloshinskii
DW [5]. Correspondingly, a VBL in the presence of DMI
will become a DW skyrmion as schematically illustrated in
Figs. 1(c) and 1(d). In contrast to conventional skyrmions that

can propagate along any direction in two dimensions (2D) and
are subject to the skyrmion Hall effect [22], a DW skyrmion
can only move in reconfigurable 1D channels defined by the
network of magnetic DWs. Moreover, the interfacial DMI
substantially reduces the exchange length along the DW,
resulting in a DW skyrmion that is much smaller than its VBL
predecessor—an observation analogous to 2D skyrmions and
magnetic bubbles. It is worth noting that unlike the conven-
tional 2D skyrmions that can form a lattice as the ground
state [23], DW skyrmions can only be metastable excitations.
Their existence in systems with a strong DMI needs to be
investigated.

This paper describes the static properties of DW skyrmions
and proposes a methodology to identify them experimentally.
We begin with an analytical solution of the DW skyrmion
profile obtained by energy minimization, which is found
to match well with micromagnetic solutions. Based on
the micromagnetic output, Lorentz transmission electron
microscopy (LTEM) images are simulated showing that DW
skyrmions should present a clear signature in the Fresnel
observation mode.

II. ANALYTICAL CALCULATIONS

We choose Cartesian coordinates such that the DW normal
is along x and the film normal is z (Fig. 1). In the thin-film
approximation, by assuming that the system is uniform in
the thickness direction and infinite along y, we have the free
energy in the continuum limit as

E

tF
=

∫
dxdy

{
A

∑
i

|∂im|2 + Dm · [(ẑ × ∇) × m]

− Km2
z + ln 2

2π

tF
λ

μ0M2
s [n̂(y) · m]2

}
, (1)
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FIG. 1. Comparison of (a), (b) vertical Bloch lines and (c),
(d) DW skyrmions, which result from interfacial DMI.

where tF is the film thickness, A is the exchange stiffness,
i = x, y, z, D is the DMI, Ms is the saturation magnetiza-
tion, and K = Ku − μ0M2

s /2 is the effective perpendicular
magnetic anisotropy with Ku the intrinsic magnetocrystalline
anisotropy. The last term represents the demagnetization en-
ergy approximated in the thin-film geometry [5,19,24], where
λ = √

A/K is the exchange length [25] and n̂(y) is a local
normal vector of the DW to account for distortion [26] in the
presence of an internal topological defect.

To solve for m = m(x, y), we parametrize the magnetiza-
tion vector in spherical coordinates as

m = {sin θ cos φ, sin θ sin φ, cos θ}. (2)

In the absence of DMI (D = 0), minimizing the free energy
leads to a standard soliton profile, θ = 2 arctan exp(x/λ) and
φ = ±π/2, with ± representing a Bloch wall of either chiral-
ity.

Adding a strong DMI will overcome the demagnetization
energy, leading to Néel walls with either φ = 0 or π . Here,
we choose D > 0, thus φ = π at y = ±∞. As φ changes,
VBLs [Figs. 1(a) and 1(b)] will gradually transition into DW
skyrmions [Figs. 1(c) and 1(d)]. Similar to constriction of the
DW profile in a VBL due to the increased demagnetization
energy [26], the presence of a DW skyrmion also locally
deforms the DW profile due to DMI. Because the internal
magnetization is inevitably tilted away from the DW normal
in a DW skyrmion, there is a driving force for the DW
itself to bend locally as an attempt to recover this energy;
this phenomenon is similar to the spontaneous tilting of
Dzyaloshinskii DWs identified in Refs. [7,27]. To capture this
effect, we adopt a modified Slonczewski ansatz for the profile
function that involves two independent variables,

θ = 2 arctan exp
x − q(y)

λ
, (3)

φ = φ(y), (4)

where φ(y) is the azimuthal angle of the in-plane component
of m and q(y) denotes the deviation of the DW center from
its location in a straight homochiral DW without a VBL or
DW skyrmion; q(y) and φ(y) are two collective coordinates to
be solved by minimizing the total energy. We have neglected
a possible y dependence of λ, which is expected to become

significant only for large DMI. Inserting Eqs. (3) and (4) into
the energy functional Eq. (1), noting that the local normal
vector n̂ = {1, q′, 0}/

√
1 + q′2, and integrating out x from

−∞ to ∞, we obtain the free energy

E =2tF A

λ

∫
dy[q′2 + λ2φ′2 + 2ξ (cos φ − q′ sin φ)

+ 2η(cos2 φ − q′ sin 2φ)], (5)

where ξ = πD/4
√

AK and η = (ln 2)tF μ0M2
s /4π

√
AK are

two dimensionless parameters characterizing the strengths of
the DMI and the demagnetization energy relative to the DW
energy 4

√
AK . In typical ferromagnets, ξ and η are small

so we only keep linear order terms for these parameters in
Eq. (5).

Minimizing the free energy calls for two Euler-Lagrange
equations. The first one, δqE = 0, yields q′ − ξ sin φ −
η sin 2φ = C, where the constant C can be determined by
the boundary conditions. At y → ±∞, we have q′ → 0 and
φ → − arccos(ξ/2η), thus C = 0. Including the other equa-
tion, δφE = 0, we arrive at two coupled nonlinear differential
equations,

−λ2φ′′ = ξ (sin φ + q′ cos φ) + η(sin 2φ + 2q′ cos 2φ), (6)

q′ = ξ sin φ + η sin 2φ. (7)

Since Eq. (5) is accurate to linear order in ξ and η, we ignore
quadratic terms of ξ and η in Eqs. (7) and (6), by which φ

effectively decouples from q. Then Eq. (7) reduces to a double
sine-Gordon equation that, despite high nonlinearity, can be
solved analytically. Defining β = ξ/2η as the relative strength
of DMI with respect to the demagnetization energy, we obtain
our central results:

φ

2
=

⎧⎨
⎩

± arctan
[√

1+β

1−β
tanh

(
1
2

√
1 − β2y/λs

)]
if β < 1,

± arctan
[√

β

β−1 sinh
(√

β − 1y/λs
)]

if β � 1,

(8)

and

q

λs
=

⎧⎪⎨
⎪⎩

2η(1 + β )
cosh(

√
1−β2y/λs )−1

cosh(
√

1−β2y/λs )−β
if β < 1,

4η
√

β
[
1 + (β−1) cosh (

√
β−1y/λs)

1−β cosh2 (
√

β−1y/λs)

]
if β � 1,

(9)

where λs = λ/
√

2η is an exchange length along y at the
critical point β = 1 and the + (−) sign represents the solution
with positive (negative) topological charge Q. The critical
condition β = 1 is where the Néel wall is formed at y → ±∞
and a DW skyrmion with Q = ±1 is formed at the center.
At this value, φ/2 → ± arctan y/λs and q/λs → 4η(y/λs )2

1+(y/λs )2 . For
β < 1, only a partial DW skrymion with 1/2 � |Q| < 1 exists
and φ(±∞) = ±[π − arccos(β )]. For β = 0, Eqs. (8) and (9)
reduce to a VBL profile [18,19]. When converted into original
units, the critical condition becomes

Dc = 2 ln 2

π2
tF μ0M2

s , (10)

which sets a minimum DMI strength to form a full DW
skyrmion. To characterize the impact of DMI on the DW
skyrmion energy �E (i.e., the energy cost of creating a
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FIG. 2. (a)–(e) Analytical solutions Eqs. (8) and (9). (f)–(j) Full
micromagnetic solutions. Arrows indicate the in-plane component of
the magnetization. (k)–(o) Normalized topological charge densities:
Here, the contour lines enclose the topological charge indicated. The
DMI strength is indicated at the bottom of each column. The areas
shown are 100 nm × 250 nm.

DW skyrmion inside a DW), we normalize by the VBL energy
�EVBL. [17–19] This leads to a rather simple form of the
scaled DW skyrmion energy,

�E

�EVBL
=

{√
1 − β2 + 2β arctan

√
1+β

1−β
if β < 1,

2
√

β − 1 + 2β arccsc
√

β if β � 1,

(11)

which is plotted in Fig. 3(b) along with the corresponding
micromagnetic calculations to be discussed below.

III. MICROMAGNETIC CALCULATIONS

We used our MATLAB-based finite-differences code M3

[28,29]. The code implements the Dzyaloshinskii-Moriya
interaction for thin films and the corresponding boundary
conditions [30], together with the exchange interaction for
micromagnetics [31]. As can be seen in Fig. 2, the magne-
tization profile of the analytic solutions agrees well with the

FIG. 3. (a) DW skyrmion width Wm,x (blue) across and Wm,y

(red) along the domain wall as a function of DMI strength for
micromagnetic (solid lines) and analytical (dashed lines) calcula-
tions. The critical DMI strength Dc is shown as a dotted magenta
line. (b) Corresponding DW skyrmion energy vs DMI. Parameters
used were tF = 2 nm, K = 3 × 105 J/m3, A = 1.6 × 10−11 J/m,
and Ms = 600 kA/m.

full micromagnetic results, including the notchlike deforma-
tion near the center which ascribes to an increasing D. The
parameters used in these calculations are as follows: tF =
2 nm, K = 3 × 105 J/m3, A = 1.6 × 10−11 J/m, and Ms =
600 kA/m, which are comparable to values reported for
Co/Ni multilayers in Refs. [7,8]. The total volume simulated
was 128 nm × 512 nm × 2 nm and the cell size was 0.5 nm ×
0.5 nm × 2 nm. In regard to future applications, the size of a
skyrmion plays an important role. A conventional skyrmion,
i.e., a Néel- or Bloch-type skyrmion, consists of an inner
and outer domain as well as a DW separating them. The
skyrmion size is often given by its radius which is defined
by the inner area bounded by the contour for which the out-
of-plane magnetization vanishes, thereby neglecting the wall
width [32]. Because the DW skyrmion is confined within a
distorted DW (Fig. 2), the conventional definition of a single
skyrmion radius is not applicable. However, one can use the
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(b) (c) (e) (f)(a) (d)

FIG. 4. (a) and (d) Fresnel-mode LTEM, (b) and (e) phase map,
and (c) and (f) in-plane magnetic induction map of (a)–(c) a ver-
tical Bloch line (D = 0 mJ/m2) and (d)–(f) DW skyrmion (D =
0.5 mJ/m2) calculated from the micromagnetic output of Figs. 2(f)
and 2(i).

DW width Wm,x at the skyrmion center and the width of the
DW substructure Wm,y along the wall to obtain an estimate of
the size of the DW skyrmion (for details, see the Supplemental
Material [33]). As shown in Fig. 3, both quantities decrease
with increasing DMI. For the analytical solution, λ appearing
in Eqs. (3) and (4) is assumed to be independent of D. It is
simply given by λ = √

A/K , which provides an upper bound
for the width W mic

m,x from the micromagnetic simulations. As
shown in Fig. 3, the analytical value W ana

m,y provides a good
approximation for the width W mic

m,y determined from micro-
magnetic calculations. However, these two quantities do not
capture the unique shape of DW skyrmions. We therefore
propose an alternative way to define the skyrmion size and
shape using the topological charge density [34],

�top = 1

4π
m · (∂xm × ∂ym). (12)

The size of an arbitrary skyrmion can now be defined as the
area enclosing a certain percentage of the topological charge.
Normalized plots of topological charge density are shown in
Fig. 2. The core of the DW skyrmion defined by Wm,x and
Wm,y contains about 20% of the topological charge of the DW
skyrmion.

Figure 3(b) shows the DW skyrmion energy versus D in
units of kbT for T = 300 K for analytical and micromagnetic
calculations, which have near perfect agreement in the low
D regime. For larger D, the fixed λ approximation becomes
less valid, causing the analytical solution to deviate from the
micromagnetic one.

IV. LORENTZ TEM SIMULATIONS

To support future experimental imaging of DW skyrmions,
we employ Fresnel-mode Lorentz TEM calculations on the
micromagnetic output of Fig. 2. Fresnel-mode Lorentz TEM
is an out-of-focus imaging technique in which a through-
focus series of bright-field images is recorded; details regard-
ing the simulation of relevant image contrast can be found
in Ref. [35]. Numerical profiles of an isolated VBL (D =
0 mJ/m2) and an isolated DW skyrmion (D = 0.5 mJ/m2) are
illustrated in Figs. 2(f) and 2(i), respectively, which are used
in the calculations of Fig. 4. In the absence of DMI, Bloch
walls are present which display a sharp magnetic contrast
that reverses at the location of the VBL in Fresnel-mode

(a) (b) (c) (d) (e)

-15° 0° 15° 30°-30°
(f) (g) (h) (i) (j)

FIG. 5. (a)–(e) Fresnel-mode LTEM images and (f)–(j) corre-
sponding in-plane magnetic induction maps of an isolated DW
skyrmion (D = 0.5 mJ/m2) at varied states of tilt calculated from
micromagnetic outputs illustrated in Fig. 2(i).

images [Fig. 4(a)]. In the presence of DMI, Néel walls become
the preferred configuration and do not display any magnetic
contrast in Fresnel-mode images without sample tilt. How-
ever, strong magnetic contrast is still observed at the location
of the DW skyrmion in Fig. 4(d). This dipolelike contrast
originates from the Bloch-like portions of the DW across
the DW skyrmion. Thus, DW skyrmions would be the only
contributor to magnetic contrast in systems that exhibit DMI
when examined with Lorentz TEM in the absence of sample
tilt.

As experimental Fresnel-mode Lorentz TEM images do
not offer explicit directional information regarding the mag-
netic induction, phase reconstruction is typically employed
using the transport of intensity equation (TIE) to calculate the
integrated in-plane magnetic induction [36,37]. The resultant
phase map for D = 0 displays contrast along the domain wall
which reverses at the location of the VBL similar to that
observed in the Fresnel-mode image. The color map shows the
direction of in-plane induction matching those in the output
of the micromagnetic simulation with a discontinuity at the
location of the VBL. The magnetic induction takes on a dis-
tinct braidlike appearance centered around the DW skyrmion
with no signal from the surrounding DW. This signature takes
on a larger footprint than that of magnetic contrast in the
calculated Fresnel-mode image which may assist in locating
DW skyrmions in experimental images.

As mentioned previously, Néel walls do not display mag-
netic contrast in the absence of a sample tilt in Fresnel-
mode imaging. When a tilt is applied to the sample, an in-
plane component emerges from the perpendicular induction
of neighboring domains giving rise to contrast at a Néel wall.
This too is observed in our calculated Fresnel-mode images
[Figs. 5(a)–5(e)]; as the sample tilt increases, the magnetic
contrast becomes more apparent along the DW surrounding
the DW skyrmion. Additionally, the contrast from the DW
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skyrmion itself remains strong with respect to the surrounding
DW regardless of the tilt direction, which will be useful
for confirming the presence of a DW skyrmion experimen-
tally. The corresponding in-plane magnetic induction maps
[Figs. 5(f)–5(j)] further support this notion as the braidlike
feature from the DW skyrmion remains visible even at larger
tilts where a strong signal is observed around the DW.

V. SUMMARY

In summary, we have introduced a kind of topological mag-
netic excitation called a DW skyrmion characterized by a 360◦
transition of the internal magnetization within a Dzyaloshin-
skii DW and defined by a topological charge of ±1. The DW
skyrmion analysis presented here builds off prior work on
VBLs in much the same way the recent surge in skyrmion
research is rooted in decades of research on magnetic bubble
memory. The static properties were calculated both analyti-
cally and micromagnetically with excellent agreement on the

resulting size, energy, and profile. Although open questions
remain about their thermal stability and dynamic properties,
DW skyrmions provide an alternative strategy for leveraging
topological protection in magnetic systems with a strong
interfacial DMI. The reconfigurable nature of the DWs that
host these excitations could open the door to different kinds of
memory and computing schemes based on topological charge.
To this end, we have proposed an experimental methodology
to unequivocally image DW skyrmions using Fresnel-mode
Lorentz TEM to support future work in this area.
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