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We extend the density functional perturbation theory formalism to the case of noncollinear magnetism. The
main problem comes with the exchange-correlation (XC) potential derivatives, which are the only ones that are
affected by the noncollinearity of the system. Most of the present XC functionals are constructed at the collinear
level, such that the off-diagonal (containing magnetization densities along x and y directions) derivatives cannot
be calculated simply in the noncollinear framework. To solve this problem, we consider here possibilities to
transform the noncollinear XC derivatives to a local collinear basis, where the z axis is aligned with the local
magnetization at each point. The two methods we explore are (i) expanding the spin rotation matrix as a Taylor
series and (ii) evaluating explicitly the XC for the local density approximation through an analytical expression
of the expansion terms. We compare the two methods and describe their practical implementation. We show
their application for atomic displacement and electric field perturbations at the second order, within the norm-
conserving pseudopotential methods.
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I. INTRODUCTION

The density functional perturbation theory (DFPT) is the
application of linear response theory to the density func-
tional theory (DFT) formalism. Its development traces back
to the birth of many DFT codes during the 1980s [1–3].
The first applications were for the calculations of phonon
spectra, dielectric constants, Born effective charges, and re-
lated properties [4]. These responses require us to expand
the DFT as a function of atomic displacements and electric
field perturbations. Later on, strain perturbations were added
to the list, which allows the calculation of elastic and piezo-
electric tensors [5,6]. DFPT represented a breakthrough in
the calculation of many physical properties since, once the
equations are implemented, the resulting workflow is very
simple for the end user; this also simplifies high-throughput
calculations [7,8].

However, in spite of the past decade’s increase of interest
for noncollinear magnetic materials, DFPT has been little
used for noncollinear magnets. This is due to the fact that non-
collinear magnetism within DFT is much more computation-
ally demanding (the density has four components instead of
two for collinear magnetism) and it requires us to include the
spin-orbit coupling (SOC), which, in present implementations
of DFT codes, often reduces the number of usable symme-
tries [9–11]. Additionally, noncollinear magnetism with SOC
works in very low energy ranges (from 1 to hundreds of μeV),
which require highly accurate simulations [12]. Noncollinear
ground state (GS) calculations (spin and lattice) had been
first developed in the 1980s [11] but became widespread only
recently thanks to increased supercomputer power and the im-
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provement of code scalability [9,10,13–15]. Time dependent
DFT (TD-DFT) has been recently developed for noncollinear
magnetism to give access to electronic excitation by taking
into account possible spin flip states and SOC [16,17] or to
the spin fluctuation spectra by taking into account magnetic
field perturbation [18]. However, no systematic discussion
regarding the general formalism of DFPT and its validity have
been discussed so far.

In this paper we describe and analyze the derivation of
the DFPT formalism in the presence of noncollinear mag-
netism. We show that the main difficulty is represented by
the exchange correlation (XC) term, for which the functionals
have been developed using a collinear framework. Only a few
attempts have been made to go beyond this and parametrize
directly a noncollinear functional [19–22]. Starting with the
collinear Exc functionals, we describe here two different ap-
proaches to perform the energy derivatives in the noncollinear
regime. We start with a rapid reminder of collinear and of non-
collinear DFT formalisms, followed by the description of two
formally equivalent methods to derive the XC potential from
collinear Exc functionals. We also show the specific deriva-
tions (using norm-conserving pseudopotentials) for atomic
displacement and electric field perturbations. In each case
we show how the two methods compare in precision and
efficiency.

II. BASICS OF DFPT

The framework of DFT [23,24] allows us to solve a
many-body problem as a single particle in an effective self-
consistent potential. In this formalism [25], the reference
ground state (GS) energy is estimated by minimizing with re-
spect to the Kohn-Sham (KS) wave functions ψn the following
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expression:

E [ρ] =
∑

n

〈ψn|T + Vext|ψn〉 + EH [ρ] + Exc[ρ]. (1)

Here n runs over all the occupied states, T is the kinetic
energy operator, vext is the external potential (the sum of
ionic potentials, which can be nonlocal, and eventual ap-
plied fields), and EH and Exc are the interaction energy
terms, namely the Hartree (H) and XC functionals. These
two last terms contain the approximations to the many-
body electronic interactions, as functionals of the density
operator:

ρ̂(r) =
∑

n

ψ∗
n (r)ψn(r). (2)

The Hamiltonian related to Eq. (1), needed to self-consistently
solve the KS equation, is

H = T + Vext + VH + Vxc. (3)

The solution of this equation depends on the way the last term
is approximated in the so-called XC potential Vxc. Interest-
ingly, Vxc can be written as the functional derivative of the XC
energy with respect to the density:

Vxc = δExc[ρ]

δρ(r)
. (4)

When the system is subject to a perturbation, its effects can
be related to a (small) parameter λ on which any generic ob-
servable X (λ) depends. Expanding explicitly the perturbation
series we have

X (λ) = X (0) + λX (1) + λ2X (2) + λ3X (3) + · · · , (5)

where the expansion coefficients are related to the N th order
derivative of X (λ) with respect to λ by a scalar coefficient:

X (N ) = 1

N!

dN X

dλN

∣∣∣
λ=0

. (6)

Our objective is to evaluate the modification of the GS energy
E or density ρ(r) caused by the presence of the external
perturbation, through the computation of this expansion.

At the ith generic order in λ, the XC potential can be
written as

V (i)
xc =

(
δExc[ρ(λ)]

δρ(r)

)(i)

= 1

i!

(
d (i)

dλ(i)

δExc[ρ(λ)]

δρ(r)

)∣∣∣
λ=0

. (7)

Truncating the expansion at the first order, the equation that
has to be self-consistently solved is obtained expanding the
single particle KS equation [2,4,26]:

[H (λ) − En(λ)] |ψn(λ)〉 = 0, (8)

giving the so-called Sternheimer equation [27]:

Pc(H − En)(0)Pc

∣∣ψ (1)
n

〉 + Pc(H − En)(1)
∣∣ψ (0)

n

〉 = 0, (9)

here Pc is the projector upon the empty states (conduction
bands), H (0), E (0)

n , and ψ (0) are, respectively, the GS Hamil-
tonian, eigenvalues, and wave functions, and H (1) is the first-

order Hamiltonian:

H (1) = V (1)
ext + V (1)

xc = V (1)
ext

+
∫

δ2Exc

δρ(r) δρ(r′)

∣∣∣
ρ (0)

ρ (1)(r′) dr′ + d

dλ

δExc

δρ(r)

∣∣∣
ρ (0)

.

(10)

The orthonormalization condition that holds for the GS wave
functions 〈ψn|ψn〉 = 1, becomes to first order:〈

ψ (0)
n

∣∣ψ (1)
n

〉 + 〈
ψ (1)

n

∣∣ψ (0)
n

〉 = 0. (11)

Once the framework has been specified (DFT for the
search of the GS and DFPT to explore the effects of
the perturbations), it is very useful to write the operators in the
spinorial form: each operator belonging to the KS equation
is represented as a 2 × 2 matrix. In this way we can rewrite
Eq. (8) as (

Hαα V αβ
xc

V βα
xc Hββ

) (∣∣ψα
n

〉∣∣ψβ
n

〉
)

= En

(∣∣ψα
n

〉∣∣ψβ
n

〉
)

, (12)

here the indices α and β run over the up and down spin
components (or major and minor Pauli spinors) and n over the
bands. As we can see, the off-diagonal part of the Hamiltonian
comes only from the XC potential: all other terms of H
(kinetic energy, Hartree, and pseudopotential components) do
not cross couple up and down spin channels. At the zeroth
order, the general αβ element of the XC potential is obtained
by simply rewriting Eq. (4):

V αβ
xc [ρ̂(r)] = δExc[ρ̂(r)]

δραβ (r)
, (13)

and since the (spin) density matrix is diagonal [ραβ (r) =
ρ̂αβδαβ] only if the magnetization is directed along the quan-
tization axis z [then the magnetization m(r) = mz(r)], it is
useful to diagonalize the 2 × 2 matrix in the previous section,
finding the transformation Û (often referred to as the “spin-
1/2 rotation matrix”). Using the new basis, the XC potential
becomes

V αβ
xc = 1

2

[
δExc

δρ↑ + δExc

δρ↓

]
δαβ

+ 1

2

[
δExc

δρ↑ − δExc

δρ↓

]
(Û †σzÛ )αβ (14)

= 1

2

[
δExc

δρ↑ + δExc

δρ↓

]
δαβ

+ 1

2

[
δExc

δρ↑ − δExc

δρ↓

]
m̂ · σαβ, (15)

where ρ↑(↓)(r) = 1/2(n ± m), where n is the charge density,
δαβ is the Kronecker delta, m̂ = m/m is the magnetization
direction, and m is the norm of m; σαβ (σ x

αβ, σ
y
αβ, σ z

αβ ) are the
Pauli matrices.

In the following we extend the DFPT formalism to non-
collinear magnetism using the spinorial wave functions. With
respect to collinear magnetism, i.e., where the direction of all
the spins is along a well defined quantization axis, there are
at least two issues to be addressed: (1) the calculation of the
derivative of the XC potential V (1)

xc αβ and (2) the computation
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of the density derivatives ρ
(1)
αβ from the derivative of the KS

wave functions ψ (1)
n α .

III. NONCOLLINEAR DFT FRAMEWORK

Our goal is now to generalize the DFPT equations with
spinorial wave functions, to take into account the NCM and
thus a generic magnetization direction. The main concern of
such a generalization is to treat the derivatives of the XC term
(see above). The first problem arises from the fact that in
spin-dependent DFT the XC functionals are constructed on a
collinear basis where the magnetization is considered to have
the same orientation at each point in space. The standard way
to handle noncollinear DFT with collinear XC functionals is
to locally rotate the magnetization density with respect to the
quantization axis at each point in space, so that the derivatives
of the XC term can be treated as locally collinear [10], and
then rotated back to the “laboratory frame.” To avoid this
“local collinearity approximation,” some attempts have been
made to build specific noncollinear XC functionals [19–22].
In this paper we will restrict ourselves to the case of local
collinearity approximation and use the common collinear XC
functionals.

In a collinear magnetic system, the magnetization at each
point r in space is considered to be directed along a fixed
quantization axis (usually z). In this picture, the density matrix
has two components only, which are often specified using
α, β = 1, 2, to indicate the spin up |1〉 and down |2〉 states:

ρ11 = ρ↑ = 1
2 (n + mz ), (16)

ρ22 = ρ↓ = 1
2 (n − mz ),

ρ12 = ρ21 = 0. (17)

In these expressions and the following ones, we omit the (0) or
(1) to indicate the order of the perturbation, since the form of
the density matrix is generally valid.

In the case of NCM, the density matrix operator can be
written in terms of the GS spinorial wave functions ψ (0) as
follows:

ρ̂ = ∣∣ψ (0)
〉 〈

ψ (0)
∣∣ , (18)

where an implicit sum is understood [28] [compare, for ex-
ample, Eq. (18) with Eq. (2)]. In the representation of the
spin, projecting the spinors on the orthonormal spin basis
|α〉 and |β〉, ρ̂αβ can be evaluated explicitly in terms of spin
components:

ραβ = 〈
α
∣∣ψ (0)

〉 〈
ψ (0)

∣∣β〉 , (19)

or in matrix form:

ρ =
(

ψ
(0)
1 ψ

(0)∗
1 ψ

(0)
1 ψ

(0)∗
2

ψ
(0)
2 ψ

(0)∗
1 ψ

(0)
2 ψ

(0)∗
2

)
(20)

= 1

2

(
n + mz mx − i my

mx + i my n − mz

)
, (21)

where 〈α|ψ (0)〉 = ψ (0)
α and 〈ψ (0)|β〉 = ψ

(0)∗
β , mi is the i =

x, y, z component of the spin vector, or magnetization density,

and n is the electronic density. This expression for the den-
sity matrix is defined by its relation with the Pauli matrices
σαβ [29], which gives the following expression:

ραβ = 1

2
[n δαβ + m · σαβ] (22)

= 1

2

⎡
⎣n δαβ +

⎛
⎝ ∑

i=x,y,z

mi σ i
αβ

⎞
⎠
⎤
⎦, (23)

where the electronic and magnetization components can be
written using Eq. (20):

n = (
ψ

(0)∗
1 ψ

(0)
1 + ψ

(0)∗
2 ψ

(0)
2

)
, (24)

mx = (
ψ

(0)∗
1 ψ

(0)
2 + ψ

(0)∗
2 ψ

(0)
1

)
, (25)

my = i
(
ψ

(0)∗
2 ψ

(0)
1 − ψ

(0)∗
1 ψ

(0)
2

)
, (26)

mz = (
ψ

(0)∗
1 ψ

(0)
1 − ψ

(0)∗
2 ψ

(0)
2

)
. (27)

The expression of the GS charge density n in Eq. (24) can
be written as specified in Ref. [2]:

n(0)(r) = 1

(2π )3

∫
BZ

occ∑
i

2∑
s=1

ψ
(0)∗
iks (r) ψ

(0)
iks (r) dk, (28)

where i runs over all the occupied states, s is the spin compo-
nent (if the system is nonmagnetic s = 1), and the integral is
performed on the whole Brillouin zone (BZ).

IV. DFPT WITHIN NONCOLLINEAR MAGNETISM

In order to address a NCM problem, we want to map the
overall 2 × 2 density matrix form [Eq. (21)] onto a local
collinear case. In the following we develop two possibilities
to do this mapping. Both techniques rely on the idea of first
evaluating the perturbed XC potential [V (1)

xc (r)] in a local
reference frame, whose z axis is aligned with the direction
of local perturbed magnetization at each point r of the real
space. Such a choice of local coordinates reduces the problem
to that of collinear magnetism, and after the evaluation of the
corresponding “collinear” V (1)

xc (r) values, we can restore its
noncollinear form applying the backwards rotation that aligns
the local reference frame with the globally defined Cartesian
axes. The first order potential can be then evaluated based
on either (i) the λ expansion of the rotation matrices and
corresponding series of the collinear V (1)

xc expression or (ii)
by direct evaluation of the λ series of the final noncollinear
V (1)

xc expression. Essentially, we develop either the expansion
of the general expression [case (i)] or of the final result [case
(ii)]. Although both methods give the same results, the first
method (i) is more general: the procedure to evaluate V (1)

xc can
be applied without any modification of the XC potential (even
a nondiagonal one), while the second method requires the
explicit re-evaluation of the λ series for each particular choice
of XC flavor (LDA or GGA). For the sake of completeness
we provide below the development of both schemes (see
Secs. IV A and IV A 2 for methods (i) [and an alternative
one that we call (i′)] and (ii), respectively). Furthermore,
implementation of both methods allows us to validate the
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correctness of the implemented code by contrasting results
obtained using the two different techniques.

A. Method 1: expansion of the rotation matrix

1. Magnetization density local transformation

To project the noncollinear density onto the local axis of
magnetization, we need to determine the direction of the local
spin-quantization axis to build a diagonal collinear density. In
the case of a general GS density matrix ρ̂ of the form Eq. (21),
the eigenvalues are given by ρ↑,↓ = 1/2(n ± |m|) and the two
corresponding normalized and complex eigenvectors are

N1 = 1

D1

(
mz + m

mx + i my

)
, (29)

N2 = 1

D2

(
mz − m

mx + i my

)
, (30)

with

D1 =
√

|m + mz|2 + |mx + i my|2, (31)

D2 =
√

|−m + mz|2 + |mx + i my|2, (32)

where m = |m| =
√

m2
x + m2

y + m2
z . The two N1 and N2

eigenvectors define the spin-1/2 unitary transformation ma-
trix Û diagonalizing ρ̂. Then, the transformation can be
detailed as ∑

αβ

U †
iα ρ̂αβ Uβ j = ρi j δi j, (33)

here α, β, i, j are indices running on the two possible spin
states |1〉 or |2〉 (as previously defined). The expression of Û
is thus

Û =

⎛
⎜⎜⎝

mz + m

D1

mz − m

D2

mx + i my

D1

mx + i my

D2

⎞
⎟⎟⎠. (34)

The inverse of this matrix, such that Û −1Û = I, with I the
identity matrix, is

Û −1 =

⎛
⎜⎜⎝

D1

2m

(m − mz )D1

2m(mx + i my)

− D2

2m

(m + mz )D2

2m(mx + i my)

⎞
⎟⎟⎠. (35)

Moreover, at all orders in λ, we have the unitarity prop-
erty Û † = Û −1. Importantly, in the last two expressions the
presence of the m components in the denominator does not
cause a divergence if m = 0, since the dependence on the
magnetization of the numerator is of the same order. To the
first order in the perturbation, the unitarity condition continues
to hold: ∑

α

UiαU †
α j =

∑
α

U †
iαUα j = δi j, (36)

and can be expanded:∑
α

(
U (0)

iα + λU (1)
iα

)†(
U (0)

iα + λU (1)
iα

) = δi j . (37)

Developing this expression, neglecting the second order per-
turbations (λ2) and higher terms, we obtain the following
relationship: ∑

α

U †(1)
iα U (0)

α j = −
∑

α

U †(0)
iα U (1)

α j . (38)

All these properties will be exploited in order to obtain the
expression of the perturbed XC potential and density matrix
in the following part of the paper.

2. XC potential and density matrix

As we have seen for a general observable X in Sec. II, the
perturbed XC potential (in the following we will omit the “xc”
subscript in Vxc) can be expanded as a Taylor series in λ and
truncated at the first order:

Vαβ = V (0)
αβ + λ V (1)

αβ + o(λ2). (39)

At each point in space the equation to locally diagonalize the
total XC potential is∑

αβ

U †
iα Vαβ Uβ j = Vi δi j . (40)

Here U is a general transformation matrix to be determined.
Substituting now the expression in Eq. (39), truncated at the
first order, into the last equation, we obtain the complete
expression needed to rotate the reference frame along the local
direction where the XC potential is diagonal:∑

αβ

(
U (0)

iα + λU (1)
iα

)†(
V (0)

αβ + λV (1)
αβ

)(
U (0)

iα + λU (1)
iα

)
= (

V (0)
i j + λV (1)

i j

)
δi j . (41)

In passing we note that, for general noncollinear XC func-
tionals, the relation between diagonalizing ρ and V might be
more complex. It is interesting to separate the terms belonging
to the last expression, as a function of their order in λ:

0th⇒
∑
αβ

U †(0)
iα V (0)

αβ U (0)
β j − V (0)

i δi j (42)

1st⇒ + λ
∑
αβ

[
U †(1)

iα V (0)
αβ U (0)

β j + U †(0)
iα V (0)

αβ U (1)
β j

+U †(0)
iα V (1)

αβ U (0)
β j − V (1)

i δi j
]

(43)

�2nd⇒ + o(λ2) = 0. (44)

From Eq. (42) we can extract two useful properties of the
zeroth order transformation equation:

a.
∑

β

V (0)
αβ U (0)

β j = U (0)
α j V (0)

j , (45)

b.
∑

α

U †(0)
iα V (0)

αβ = V (0)
i U †(0)

iβ . (46)

We can rewrite Eq. (43) using the unitary properties (38) and
the previous relations (45) and (46) as follows:∑

α

U †(1)
iα U (0)

α j V (0)
j +

∑
β

V (0)
i U †(0)

iβ U (1)
β j

+
∑
αβ

U †(0)
iα V (1)

αβ U (0)
β j = V (1)

i δi j, (47)
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and after some algebraic manipulation we get∑
α

U †(1)
iα U (0)

α j

[
V (0)

j − V (0)
i

]
+

∑
αβ

U †(0)
iα V (1)

αβ U (0)
β j = V (1)

i δi j . (48)

The last equation can be represented symbolically:(
0 	

	∗ 0

)
+

( 
 −	
−	∗ 


)
=

(
 0
0 


)
. (49)

As we can see, the first term on the left-hand side is a purely
off-diagonal matrix which is needed to compensate the off-
diagonal terms present in the second term to guarantee that
the right-hand side term is diagonal. Interestingly, this implies
that the first order transformation matrix Û (1) can never be
neglected since its presence ensures the unitarity of the trans-
formation. Determining the elements of Û (1) requires some
algebraic effort, which can be circumvented by exploiting the
analogous of Eq. (48) for the density matrix ρ̂:∑

α

U †(1)
iα U (0)

α j

[
ρ

(0)
j − ρ

(0)
i

]
+

∑
αβ

U †(0)
iα ρ

(1)
αβU (0)

β j = ρ
(1)
i δi j . (50)

In fact, the same mathematical process from Eq. (39) to (48)
is valid for the density operator as well. In this way, it holds
for both Eqs. (48) and (50) that the quantity

M = −M† =
∑

α

U †(1)
iα U (0)

α j (51)

can be written explicitly from the density matrix Eq. (50) as

Mi j =
{

i = j 0,

i �= j − ρ̃
(1)
i j

ρ
(0)
j −ρ

(0)
i

,
(52)

where we have defined

ρ̃
(1)
i j =

∑
αβ

U †(0)
iα ρ

(1)
αβU (0)

β j . (53)

The knowledge of this quantity fully solves the system of
Eqs. (48) and (50), indeed, to obtain the transformed XC po-
tential in the Cartesian system of reference we shift the second
term from the left-hand to the right-hand side of Eq. (48) and
apply the inverse transformation. Similarly to Eq. (53), we can
define an analogous expression for XC potential:

Ṽ (1)
i j =

∑
αβ

U †(0)
iα V (1)

αβ U (0)
β j . (54)

Now we can rewrite Eq. (48) and find the expression for the
perturbed potential in the local reference system:

Ṽ (1)
i j = V (1)

i δi j − Mi j
(
V (0)

j − V (0)
i

)
. (55)

In this way, the final expression for the matrix elements is

Ṽ (1)
i j =

⎧⎨
⎩

i = j V (1)
i ,

i �= j
ρ̃

(1)
i j

ρ
(0)
j −ρ

(0)
i

(
V (0)

j − V (0)
i

)
,

(56)

and its expression in the global Cartesian reference requires to
apply the inverse transformation to Eq. (56):

V (1)
αβ =

∑
i j

U (0)
αi

[
V (1)

i δi j − Mi j
(
V (0)

j − V (0)
i

)]
U †(0)

jβ . (57)

This method and the expression for the perturbed XC
potential is completely general and independent on its flavor
(LSDA or GGA or others, for example).

B. Method 1′: analytical expression of the U rotation matrix

It is possible, moreover, to find the analytical expressions
of the U (0) and U (1) transformation matrices in terms of the
Pauli matrices σαβ , i.e., the generators of the Lie group SU(2).
Specifically, we can write

U = exp

[
−i

θ

2
(σ · n̂)

]
= cos

(
θ

2

)
− i sin

(
θ

2

)
(σ · n̂),

(58)
where n̂ denotes the rotation axis direction and θ is the rotation
angle [in the following, the (0) superscript will be omitted for
0th order quantities]. In particular, these two quantities can be
written in terms of the magnetization components

n̂ = ẑ × m
|ẑ × m| =

⎛
⎝− my√

m2
x + m2

y

;
mx√

m2
x + m2

y

; 0

⎞
⎠, (59)

θ = arccos
mz

m
, (60)

thus defining the rotation operation from the local spin-

coordinate frame (with the local z axis aligned within the
local magnetization direction) to the global spin-coordinate
reference system. The use of Eqs. (58)–(60) allows us to
obtain an analytical expression for the U (1) and U †(1) matrices:

U (1) = − sin (θ/2) + i cos (θ/2)(σ · n̂)

2
θ (1)

− i sin (θ/2)(σ · n̂(1) ), (61)

U †(1) = − sin (θ/2) − i cos (θ/2)(σ · n̂)

2
θ (1)

+ i sin (θ/2)(σ · n̂(1) ). (62)

Here n̂(1) and θ (1) are the derivatives of n̂ and θ , respectively,
with respect to the perturbation and precisely

n̂(1) =
(

−m2
xm(1)

y + mxmym(1)
x(

m2
x + m2

y

)3/2 ;
m2

ym(1)
x + mxmym(1)

y(
m2

x + m2
y

)3/2 ; 0

)
,

(63)

θ (1) = −(
m2

x + m2
y

)
m(1)

z + (
mxm(1)

x + mym(1)
y

)
mz

|m|2
√

m2
x + m2

y

. (64)

Combining Eqs. (61)–(64) and using the normalization
conditions for the rotation axis components (n2

x + n2
y = 1 and

nxn(1)
x + nyn(1)

y = 0), we recognize that

U †(0)V (1)
xc U (0) = v(1)

xc I + B(1)
xc

(σ · m)

m
(65)
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and

U †(1)V (0)
xc U (0) + U †(0)V (0)

xc U (1)

= B(0)
xc

{[
sin (θ ) n(1)

y + cos (θ ) nyθ
(1)]σx

− [
sin (θ ) n(1)

x + cos (θ ) nxθ
(1)
]
σy − sin (θ )θ (1)σz

}
.

(66)

The last two expressions constitute the final equations to treat
the LSDA approximation of the XC functional. These equa-
tions, (65) and (66), have been implemented as an alternative
to the method 1 presented in the previous subsection, and
which we identify as 1′.

C. Method 2: explicit evaluation of the first-order XC potential

Alternatively to the expansion of the rotation matrix, an
explicit expression of the first order XC potential can be
obtained by performing a Taylor expansion of the right-hand
side of Eq. (15). Introducing the LSDA definitions of the
XC electrostatic potential vxc and the XC magnetic field
magnitude Bxc,

Vxc = 1

2

(
∂Exc

∂ρ↑
+ ∂Exc

∂ρ↓

)
,

Bxc = 1

2

(
∂Exc

∂ρ↑
− ∂Exc

∂ρ↓

)
, (67)

one obtains the following expression for V (1)
xc relative to the

global spin quantization axis (omitting again the subscript xc):

V̂ (1)
αβ = B(0)

xc

m

(
σαβ − (σαβ · m)m

m2

)
· m(1) + v(1)

xc Iαβ

+ B(1)
xc

(σαβ · m)

m
, (68)

where I denotes the identity matrix. In the above expression,
the first term corresponds to the change of the direction of the
XC magnetic field due to rotation of magnetization induced
by an external perturbation (e.g., atomic displacements). The
second term describes the change of electric scalar potential
induced by changes of n and m, while the last term stems
from the magnitude change of Bxc due to the variation of
the electronic density n and the magnetic moment magnitude
m. Hence, it can be readily recognized that the combination
of the second and the third terms corresponds to a rotation
of the collinear LSDA potential using the Û (0) transforma-
tion matrix, while the first term, related to the change of
magnetization direction, contains contributions involving the
Û (1) transformation matrix introduced above. The second
derivation is comparatively simple and uses more intuitive
ingredients like the xc effective magnetic field.

Within the LSDA approximation, the spin diagonal V (1)
xc

and B(1)
xc can be expressed as

V (1)
xc = 1

2

(
∂2Exc

∂ρ2
↑

ρ
(1)
↑ + ∂2Exc

∂ρ2
↓

ρ
(1)
↓ + ∂2Exc

∂ρ↑∂ρ↓

(
ρ

(1)
↑ + ρ

(1)
↓

))
,

B(1)
xc = 1

2

(
∂2Exc

∂ρ2
↑

ρ
(1)
↑ − ∂2Exc

∂ρ2
↓

ρ
(1)
↓ + ∂2Exc

∂ρ↑∂ρ↓

(
ρ

(1)
↓ − ρ

(1)
↑

))
.

(69)

In these expressions we use ρ↑ and ρ↓ which are defined in
Eqs. (16) and (17). Although the expressions (57) and (68)
should be equivalent, Eq. (57) is more generic since, in
principle, it can be applied to any combination of V (0)

xc and
V (1)

xc .
In the following we will test and compare the two methods

to verify that we obtain the same result, and see if one method
is more efficient than the other.

D. Implementation for atomic and electric field perturbations

We have implemented the aforementioned treatments of
DFPT within noncollinear magnetism in the ABINIT code [30]
(available from version 8.8.3 onwards). This implementa-
tion is currently only available in the norm-conserving pseu-
dopotential formalism; the generalization to the projector
augmented-wave (PAW) approach is in progress and should
be straightforward: the spin rotation should be applied to the
PAW on-site XC potential expressed in terms of spherical har-
monics. In the case of an atomic displacement perturbation,
one has to take care of the so-called frozen part of the second
energy derivative (see Eq. (13) in Ref. [26]). This term is the
matrix element of the second derivative of the XC potential
with respect to the unperturbed (GS) system’s wave functions.
Since this term only involves the GS charge and magnetization
densities, it does not require the local rotation procedure as the
other terms.

Another delicate term is the so-called “nonlinear exchange-
correlation core correction” (NLCC) [31], which is a correc-
tion to the XC energy to compensate for the error caused by
the “frozen-core approximation,” and the separation between
core and valence charge densities in the pseudopotential for-
malism, accounting for possible overlap between them. Even
if this correction only concerns the electronic charge density
n, it should be accounted for correctly because it is not invari-
ant under spinor rotation transformations. The treatment of
electric field perturbation involves the derivative with respect
to the k point (d/dk), which does not involve any frozen
part or NLCC, such that its generalization into noncollinear
magnetism is straightforward. The implementation works also
in the case where the spin-orbit coupling is included.

The different methods of magnetization rotation can be set
through the ixcrot ABINIT input flag. The default value is
method 1 (ixcrot=1). Method 2 or 1′ can be used by setting
ixcrot to 2 or 3, respectively.

V. TEST CASES

A. Accuracy and convergence of the implementation: Cr2O3

In this section we show how the different methods to
treat the noncollinear DFPT perform for phonons with the
LDA XC functional. We start by performing tests on Cr2O3,
which is a collinear antiferromagnetic insulator. Cr2O3 is
also known because it was the first proposed and measured
magnetoelectric crystal [32–34] and became a reference sys-
tem to study the microscopic origin of bulk magnetoelec-
tricity from DFT [35–38], which requires noncollinear treat-
ment of the magnetism (to go beyond the exchange-striction
effect [39]).
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TABLE I. Atomic displacement tests comparing FD to the three
different transformation methods for DFPT: 1, 1′, 2. Values give the
second derivatives of the energy with respect to reduced displace-
ments (values in Ha). SCI is the number of the SCF cycles needed
to converge with a tolerance �V (Ha). FD are performed using five
discretization points for the frozen part and three points for the total
one. Spin-orbit coupling is not included.

Frozen
RM m̂ E (2) (FD) E (2) (DFPT) �V # SCI

1 26330.12833 9 × 10−9 32
1′ x̂ 26330.12639 26330.12833 5 × 10−9 40
2 26330.12833 5 × 10−5 80

1 26330.12833 1 × 10−8 39
1′ ŷ 26330.12639 26330.12833 9 × 10−9 39
2 26330.12833 1 × 10−4 80

1 26330.12833 7 × 10−9 30
1′ ẑ 26330.12640 26330.12833 6 × 10−9 30
2 26330.12833 8 × 10−7 80

Total
RM m̂ E (2) (FD) E (2) (DFPT) �V # SCI

1 16.13785 7 × 10−9 36
1′ x̂ 16.13695 16.14042 3 × 10−9 39
2 16.13785 3 × 10−5 80

1 16.13785 6 × 10−9 39
1′ ŷ 16.13693 16.14042 4 × 10−9 39
2 16.13785 7 × 10−5 80

1 16.13785 4 × 10−9 32
1′ ẑ 16.13694 16.14042 1 × 10−8 40
2 16.13785 3 × 10−5 80

We perform our calculations with the ABINIT package and
the pseudodojo LDA norm-conserving pseudopotentials [40]
(including spin-orbit coupling). Cr2O3 keeps its insulating
state even without Hubbard correction for the d orbitals
of the Cr atom. To test our implementation of the DFPT
within noncollinear magnetism, we first compare the second
energy derivatives (E (2) = 1

2
∂2E
∂λ2 ) obtained from DFPT and

finite difference (FD) calculations for an atomic displacement
perturbation in one direction (Cr atom along the x direction
displaced by four amplitudes—two positive and two negative:
−2τ , −τ , +τ , and +2τ , with τ = 0.003 Å; analogous results
hold for the other two displacement directions that are not
shown for simplicity). This five-point FD scheme allows us to
extract the pure harmonic contribution to the energy variation
and thus guarantees the validity of the comparison with the
linear response calculations at the second order. The results
are shown in Table I where we report the comparison of the
frozen contribution alone and the total energy second deriva-
tives for both DFPT (within its three 1, 1′, and 2 methods) and
FD. In Table I we also include the number of self-consistent it-
erations (SCI) needed to reach a given residual of the potential
to stop the SCI. We also put a maximum number of iterations
of 80 such that if the SCI did not reach the required precision
the calculation will stop and we report the potential residual
that the calculation could reach at the 80th step. As can be
seen the three approaches agree to within machine precision,
and the agreement with FD is within 5–7 significant digits. We

TABLE II. Calculated TO and LO phonon frequencies at the �

point (cm−1) of Cr2O3 for the collinear case and noncollinear with
magnetic moments along the z directions (no SOC). We compare the
results given by methods 1, 1′, and 2, which all give the same result
and are, as expected for a collinear antiferromagnet, extremely close
to the collinear case.

Mode # Collinear Noncoll. 1 Noncoll. 1′ Noncoll. 2

1–2 233.6 233.6 233.6 233.6
3 236.0 236.0 236.0 236.0
4 246.3 246.3 246.3 246.3

5–6 279.5 279.5 279.5 279.5
7–8 300.3 300.3 300.3 300.3
9–10 356.8 356.7 356.7 356.7
11 361.4 361.4 361.4 361.4
12 381.6 381.6 381.6 381.6

13–14 414.4 414.4 414.4 414.4
15 436.8 436.8 436.8 436.8
16 446.8 446.8 446.8 446.8

17–18 464.7 464.6 464.6 464.6
19 466.3 466.3 466.3 466.3

20–21 473.2 473.1 473.1 473.1
22–23 521.9 521.9 521.9 521.8

24 536.9 536.9 536.9 536.9
25–26 545.1 545.1 545.1 545.1

27 566.8 566.8 566.8 566.8

LO1 280.5 280.5 280.5 280.5
LO2 416.5 416.5 416.5 416.5
LO3 512.1 512.1 512.1 512.1
LO4 590.3 590.3 590.3 590.3

also observe that within 80 SCI steps, method 2 does not reach
the same precision as methods 1 or 1′ do. Method 2 seems
then to give slower converge. We also remark that method 1
converges with a bit less number of SCI steps than method 1′.
We note that this slower convergence of method 2 is observed
even with changing the mixing or preconditioning parameters.
However, these characteristics may vary depending on the
case study and method 2 could appear better in other crystals
than Cr2O3.

In Table II we report the calculated TO and LO phonon
frequencies of Cr2O3 for the collinear case and for the non-
collinear case (magnetic moments along the z direction, the x
and y directions give the same results and are not shown for
clarity) at the � point of the Brillouin zone and without spin-
orbit coupling. This comparison without spin-orbit coupling
allows us to confirm the correctness of our implementation
since Cr2O3 is a nonfrustrated collinear antiferromagnet such
that no difference should be observed between the collinear
and noncollinear case. We can see that methods 1, 1′, and
2 give strictly the same phonon frequencies within less than
0.1 cm−1. The comparison is also extremely good with the
collinear case, which thus confirm the validity and robustness
of our implementation at the physics level.

In Table III we report the calculated Born effective charges
and electronic dielectric constant (ε∞) for the collinear case
and noncollinear case with spins along z direction and method
1 only (the other methods and spin directions give the same
agreement and are not shown for clarity). Here again, and
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TABLE III. Calculated Born effective charges (Z∗ in electron
charge) of inequivalent atoms and electronic dielectric constant (ε∞)
of Cr2O3 for the collinear case and noncollinear (spins along the z
direction and from method 1) with magnetic moments along the z
directions (no SOC). We compare the results given by methods 1, 1′,
and 2, which all give the same result and are, as expected for collinear
antiferromagnet, extremely close to the collinear case.

Collinear Noncollinear (z)

Z∗
Cr

⎛
⎝ 2.824 0.347 0.000

−0.347 2.824 0.000
0.000 0.000 3.037

⎞
⎠

⎛
⎝ 2.825 0.346 0.000

−0.346 2.825 0.000
0.000 0.000 3.037

⎞
⎠

Z∗
O1

⎛
⎝−2.107 0.388 0.509

0.388 −1.659 0.882
0.454 0.787 −2.024

⎞
⎠

⎛
⎝−2.107 0.388 0.509

0.388 −1.659 0.882
0.454 0.787 −2.025

⎞
⎠

Z∗
O2

⎛
⎝−1.435 0.000 −1.018

0.000 −2.331 0.000
−0.909 0.000 −2.024

⎞
⎠

⎛
⎝−1.435 0.000 −1.018

0.000 −2.331 0.000
−0.909 0.000 −2.025

⎞
⎠

ε∞

⎛
⎝12.018 0.000 0.000

0.000 12.018 0.000
0.000 0.000 13.156

⎞
⎠

⎛
⎝12.024 0.000 0.000

0.000 12.024 0.000
0.000 0.000 13.163

⎞
⎠

as expected from the LO mode agreement, both the Born
charges and electronic dielectric constant are in very good
agreement, thus showing the validity of the implementation
for the electric field perturbation.

Now that the implementation is validated, we propose to
explore a case where the spin-orbit coupling matters and can
induce a change in the DFPT response for different spin
directions.

B. Spin-orbit effect: RuCl3 case

α-RuCl3 is a layered material, with space group P63/mcm
and a honeycomb arrangement of the Ru atoms, where the 4d
electrons drive unusual electronic and magnetic behavior due
to strong spin-orbit interaction [41]. The magnetic anisotropy
of RuCl3 is very strong, where the magnetic moments lie
perpendicular to the stacking plane and where a magnetic
field of about 14 T is necessary to flip the moments in-
plane [42]. The magnetic ground state is known to be the
so-called ZZ antiferromagnetism (ZZ-AFM) but for our test
purpose we will simulate the crystal within its ferromagnetic
phase. As for Cr2O3, we performed our calculations with the
ABINIT package and the pseudodojo LDA norm-conserving
pseudopotentials [40] including spin-orbit coupling. The cal-
culations were done with a grid of 8 × 8 × 8 k points and a
cutoff energy of 50 Ha for the plane wave expansion.

We performed internal atomic coordinate relaxations at
fixed cell parameters (a = 6.561 and c = 5.709 Å) for both
collinear and noncollinear cases (with a residual on the forces
of 2 × 10−5 Ha/bohr) before performing the DFPT calcula-
tions of the phonons (using method 1). For the noncollinear
simulations, we treated both in-plane (x direction) and out-
of-plane (z direction) alignment of the magnetic moments.
Since no Hubbard correction is done for the Ru-d orbital
correlations, we find that the ground state is metallic with
or without the spin-orbit coupling (as reported in Ref. [42]).
We obtain a magnetocrystalline anisotropy of about 780 μeV,

TABLE IV. Calculated phonon frequencies (cm−1) of α-RuCl3 in
its FM phase for the collinear case and noncollinear with magnetic
moments along the x and z directions. Those changing the most are in
bold and belong to the �−

3 irreducible representation, showing clearly
the link between mode symmetry and sensitivity to the magnetic
state.

Mode # Label Collinear Noncollinear (x̂) Noncollinear (ẑ)

1 �+
2 20i 19i 21i

2–3 �+
5 123 123 123

4 �−
4 146 146 147

5–6 �−
5 148 148 147

7 �−
3 169 166 158

8–9 �−
6 176 174 175

10–11 �+
6 249 249 248

12 �+
4 279 278 277

13–14 �−
5 283 283 282

15–16 �+
5 291 291 291

17 �−
2 298 298 296

18–19 �−
6 333 334 335

20 �−
3 355 347 351

21 �+
1 355 354 352

which is consistent with previous calculations [43] and the
strong anisotropy reported experimentally.

We report the results in Table IV. We can observe that
the differences between collinear and noncollinear cases are
small. Frequency differences for different orientations are
within < 2 cm−1, except the �−

3 modes. A deviation of 9 cm−1

is observed for mode number 7 when spins are along the z
directions and of 3 cm−1 when spins are along the x direction
(when comparing to the collinear calculation). A deviation
of 9 and 4 cm−1 is observed for mode number 20 when
spins are aligned along x and z, respectively. We also remark
a small frequency shift of 1 (spins along x direction) and
3 cm−1 (spins along z direction) of mode number 21 with
label �+

1 . The modes with �−
3 label, which exhibit the strong

noncollinear spin-phonon coupling, are the only two modes
that involve motions of the Ru against each other along the z
direction. The associated Cl motions are along the in-plane
direction only and are such that they come closer to Ru
going away from their xy plan and they go away from Ru
going closer to their plan. This spin-orbit shift of phonon
bands denotes an appreciable spin-electron-phonon coupling,
which would require further studies to understand the exact
microscopic origin. We also observe a small unstable mode
for all the cases, showing that the FM phase at the fixed
cell parameters we used is structurally unstable (which is not
surprising as it is not the ground state).

The results on RuCl3 validate our implementation, in that
performing explicitly noncollinear DFPT calculations, shows
a significant difference. This could be critical for systems
where the noncollinearity is strongly coupled to the lattice
properties of the crystal.

VI. CONCLUSION

In this paper we have shown how to treat noncollinear
magnetism within the DFPT. The main problem is that most
of the XC functionals, like LDA or GGA, are derived at the
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collinear level, thus missing the off-diagonal terms of the
density containing the x and y components of the magneti-
zation. This prevents us to use them as such in DFPT, where
perturbations can change the orientation of the magnetization.
We have derived several possibilities to treat this problem at
the � point of the Brillouin zone, which are all based on
reducing the noncollinear derivatives to their collinear ones
by aligning the z coordinate axis to the local magnetization
direction (before or after perturbation). At each point of the
real space, the derivative of the XC potential can thus be
performed in the usual collinear framework, the knack being
to perform the back and forth transforms between the local
collinear system and the global noncollinear one. We propose
two possibilities to perform these changes of coordinate sys-
tem for the XC functional, either through a Taylor expansion
of the rotation matrix between the two coordinate systems,
or using an analytical expression of the XC functional (only
done for the LDA here). These different methods produce
identical energy results in the test cases we explored, with
method 2 being somewhat slower and harder to converge. In
pathological cases it is possible that one method could be
qualitatively better. We have performed tests on the atomic
displacement and electric field perturbations in Cr2O3 (as
method and code test) and shown that in RuCl3, with strong
spin-orbit coupling and magnetic anisotropy, the phonons are
affected by the noncollinear spin directions. It is evident that
noncollinear magnetization is central to correctly treat the
physics of materials exhibiting spin spirals. However, their
eventual incommensurate order needs to be approximated by
the use of a commensurate supercell. In this case, the access
to the phonon modes, naturally folded at the � point, will be
guaranteed by our current implementation. To go beyond, a
full q-dependent perturbation treatment of both the spins and
the phonon should be done. In this regard, the adaptation of
the formalism is relatively straightforward since it requires
the factorization of the phase (see Ref. [26] Sec. IV B).
More explicitly, the wave function and the related density
matrix [see, for example, Eq. (A4) in Appendix A 1] of an
incommensurate perturbed system have to be adapted adding
a phase factor for q �= 0. When explicit the dependencies of
these quantities by the spatial coordinate r and the reciprocal
k and q vectors, we can write

ψ
(1)
αk,q(r) = (N�)−1/2 u(1)

αk,q(r) ei(k+q)·r, (70)

ρ
(1)
αβ,q(r) = ψ

(1)
αk,q(r)ψ (0)∗

βk (r) + ψ
(0)
αk (r)ψ (1)∗

βk,q(r). (71)

In Eq. (70), N is the number of repeated unit cells (from
the Born–von Karman periodic conditions) of volume � and
u(1)

k,q(r) is the related periodic wave function. The transposition
to finite q is identical to the non-spin-polarized case, and
intrinsic changes presented above are the same as the XC
derivative terms acquire a wave vector only in the multi-
plicative density terms [44] in Eq. (10) above. Although this
extension sounds undemanding from the analytical point of
view, at the implementation level it requires additional efforts
that are underway but beyond the scope of the present work.

Other immediate perspectives of our work are to extend
this formalism to the projector augmented-wave (PAW) ap-
proach [45,46] and to GGA and hybrid XC functionals, and

to combine it with the linear response of crystals to magnetic
fields [18,47] (i.e., spin waves which are not frozen into the
ground state).
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APPENDIX A: BUILDING THE SPIN DENSITY MATRIX

In order to write the expression for the first order density
matrix ρ̂ (1) we need to derive Eq. (18) with respect to a given
perturbation λ:

ρ̂ (1) = ∂ρ̂ (0)

∂λ
= ∂

∂λ

( ∣∣ψ (0)
〉 〈

ψ (0)
∣∣ ) (A1)

= ∣∣ψ (1)
〉 〈

ψ (0)
∣∣ + ∣∣ψ (0)

〉 〈
ψ (1)

∣∣ . (A2)

The generic element of this operator, projected on the α, β

spin states, is

ρ
(1)
αβ = 〈

α
∣∣ψ (1)

〉 〈
ψ (0)

∣∣β〉 + 〈
α
∣∣ψ (0)

〉 〈
ψ (1)

∣∣β〉 (A3)

= ψ (1)
α ψ

(0)∗
β + ψ (0)

α ψ
(1)∗
β . (A4)

At this point, we can write the ρ̂ (1) general expression, in
terms of the wave functions analogously to the GS [see
Eq. (20)]:

ρ̂ (1) =
(

ψ
(1)
1 ψ

(0)∗
1 ψ

(1)
1 ψ

(0)∗
2

ψ
(1)
2 ψ

(0)∗
1 ψ

(1)
2 ψ

(0)∗
2

)

+
(

ψ
(0)
1 ψ

(1)∗
1 ψ

(0)
1 ψ

(1)∗
2

ψ
(0)
2 ψ

(1)∗
1 ψ

(0)
2 ψ

(1)∗
2

)
(A5)

=
(

ψ
(1)∗
1 ψ

(0)
1 + ψ

(0)∗
1 ψ

(1)
1 ψ

(1)
1 ψ

(0)∗
2 + ψ

(0)
1 ψ

(1)∗
2

ψ
(1)
2 ψ

(0)∗
1 + ψ

(0)
2 ψ

(1)∗
1 ψ

(1)∗
2 ψ

(0)
2 + ψ

(0)∗
2 ψ

(1)
2

)

= 1

2

(
n(1) + m(1)

z m(1)
x − i m(1)

y

m(1)
x + i m(1)

y n(1) − m(1)
z

)
. (A6)

The last equation has been obtained as a derivative of Eq. (21)
and, interestingly, we note that the shape of the density matrix
does not change with respect to a given order of perturbation.
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Following the analogous procedure used for the GS case
[Eq. (24) and following], we obtain the expression of the
charge and magnetization density components in terms of
spinors:

n(1) = [
ψ

(1)∗
1 ψ

(0)
1 + ψ

(0)∗
1 ψ

(1)
1 + ψ

(1)∗
2 ψ

(0)
2 + ψ

(0)∗
2 ψ

(1)
2

]
,

(A7)

m(1)
x = [

ψ
(1)∗
1 ψ

(0)
2 + ψ

(0)∗
1 ψ

(1)
2 + ψ

(1)∗
2 ψ

(0)
1 + ψ

(0)∗
2 ψ

(1)
1

]
,

(A8)

m(1)
y = i

[
ψ

(1)
1 ψ

(0)∗
2 + ψ

(0)
1 ψ

(1)∗
2 − (

ψ
(1)
2 ψ

(0)∗
1 + ψ

(0)
2 ψ

(1)∗
1

)]
,

(A9)

m(1)
z = [

ψ
(1)∗
1 ψ

(0)
1 + ψ

(0)∗
1 ψ

(1)
1 − (

ψ
(1)∗
2 ψ

(0)
2 + ψ

(0)∗
2 ψ

(1)
2

)]
.

(A10)

Separating the real and imaginary parts of the wave functions
to rewrite the last equations we remark that all the quantities
are real, as we expected:

n(1) = 2
[
ψ

(0)′
1 ψ

(1)′
1 + ψ

(0)′′
1 ψ

(1)′′
1 + ψ

(0)′
2 ψ

(1)′
2 + ψ

(0)′′
2 ψ

(1)′′
2

]
,

(A11)

m(1)
z = 2

[
ψ

(0)′
1 ψ

(1)′
1 + ψ

(0)′′
1 ψ

(1)′′
1 − ψ

(0)′
2 ψ

(1)′
2 + ψ

(0)′′
2 ψ

(1)′′
2

]
,

(A12)

m(1)
x = 2

[
ψ

(1)′
1 ψ

(0)′
2 + ψ

(0)′
1 ψ

(1)′
2 + ψ

(0)′′
1 ψ

(1)′′
2 + ψ

(0)′′
2 ψ

(1)′′
1

]
,

(A13)

m(1)
y = 2

[
ψ

(1)′
1 ψ

(0)′′
2 − ψ

(1)′′
1 ψ

(0)′
2 + ψ

(0)′
1 ψ

(1)′′
2 − ψ

(0)′′
1 ψ

(1)′
2

]
.

(A14)

APPENDIX B: LOCAL POTENTIAL INTEGRAL

In addition to the perturbed density matrix elements that
have to be built for a noncollinear magnetic system, we need
to specify the terms involved in this complicated formalism,
as well as the so-called “local potential.” This term (see Eq.
(91) in [2]), for a given band, is defined as follows:〈

ψ (1)∗∣∣(H − ε)(0)
∣∣ψ (1)

〉
= 〈

ψ (1)∗∣∣v(0)
∣∣ψ (1)

〉
(B1)

=
∫

ψ (r)(1)∗v(r)(0)ψ (r)(1)d (r). (B2)

The terms to be integrated then can be explicitly written
performing the matrix product between spinors and the local
potential matrix:

=
∫

dr
(
ψ

(1)
1 ψ

(1)
2

)∗(v11 v12

v21 v22

)(
ψ

(1)
1

ψ
(1)
2

)
(B3)

=
∫

dr[v11|ψ1|2 + v22|ψ2|2 + 2v′
12ψ

′
1ψ

′
2

+ 2v′
12ψ

′′
1 ψ ′′

2 − 2v′′
12ψ

′
1ψ

′′
2 + 2v′′

12ψ
′′
1 ψ ′

2]. (B4)
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