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Sampling-dependent systematic errors in effective harmonic models
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Effective harmonic methods allow for calculating temperature-dependent phonon frequencies by incorporating
the anharmonic contributions into an effective harmonic Hamiltonian. The systematic errors arising from
such an approximation are explained theoretically and quantified by density-functional-theory-based numerical
simulations. Two techniques with different approaches for sampling the finite-temperature phase space in order
to generate the force-displacement data are compared. It is shown that the error in free energy obtained by using
either can exceed that obtained from 0 K harmonic lattice dynamics analysis, which neglects the anharmonic
effects.
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I. INTRODUCTION

The harmonic approximation of the potential energy is a
fundamental part of the analysis of vibrational properties of
materials in both theoretical and experimental studies [1].
Its usefulness is multifold in the sense that not only does it
allow for capturing the dominant part of the potential energy
surface, but it makes deriving exact analytical relations for all
temperature-dependent vibrational thermodynamic properties
possible. In addition, the harmonic system can be used as a
reference point for either integration- or perturbation-based
methods in order to find the corrections due to anharmonicity
that always exists in real systems.

The lattice dynamics approach [2] to calculate the normal
vibrational modes of a crystal can break down either when
very strong quantum-mechanical effects dominate, as is the
case for crystalline helium [3], or, more commonly, due to
mechanical instabilities, for example, cubic zirconia [4] or
titanium, zirconium, and hafnium in the bcc structure [5].
This results in some of the normal modes having imaginary
vibrational frequencies due to a decrease in the total potential
energy when the atoms are displaced along those modes. The
integrals over the whole normal-mode space, which define the
harmonic free energy and all the other derived thermodynamic
properties, are in that case complex-valued and the properties
are thus commonly interpreted as undefined.

Recently, methods have been proposed to calculate free
energies of such systems for cases where the lattice is dy-
namically unstable [6] or stabilized due to temperature [7].
Both are based on partitioning of atomic configuration space,
calculating the free energy of each region separately, and
adding those energies together, consistent with equilibrium
thermodynamics.

Instead of the aforementioned detailed mapping, it is also
possible to fit high-temperature force-displacement data ob-
tained from atomistic simulation to a truncated expansion
of the potential energy surface, after which the second-
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order effective force constants can be used to calculate the
temperature-dependent phonon frequencies and hence the ef-
fective harmonic free energy. This is the basis for the meth-
ods of self-consistent ab initio lattice dynamics (SCAILD)
[5,8,9] and temperature-dependent effective potential (TDEP)
[10–12]. Neither is inherently limited to being used for
analyzing only systems with dynamical instabilities, which
could be considered the most severe case, so both can be used
to treat any kind of anharmonicity.

Currently, the best way to gather the data for either of
the methods is through density functional theory (DFT) [13],
which, in principle, provides a parameter-free way to explore
the dynamics of realistic, as opposed to model, systems.
Ab initio based thermodynamics has been shown to be a
promising way to predict the thermal properties of materials
taking all the relevant excitations, not limited to vibrational
ones, into account [14,15].

Without considering whether DFT with its approximations
can provide reliable enough data, there are also other system-
atic and statistical uncertainties associated with calculating
thermodynamic properties. Some of those, such as the limited
system size, can be partially dealt with by Fourier interpolat-
ing the information about vibrations in an infinite crystal [4],
while others, such as the limited amount of time for sampling,
can be dealt with by upsampled thermodynamic integration
with Langevin dynamics (UP-TILD) or harmonically mapped
averaging [16,17]. Regardless of the method used, the total
uncertainty required to produce satisfactory results is often
under 1 meV/atom. For example, a 6 meV/atom shift on the
energy scale results in 400 K (60%) overestimation of the
fcc to bcc transition temperature for calcium using ab initio
calculations [18].

Given the requirement of high accuracy for any method
used to calculate thermodynamic properties, it is necessary to
understand how the models behave under certain conditions.
In this study we analyze the accuracy of effective harmonic
models by comparing SCAILD and TDEP both theoretically
and numerically at different temperatures. It has been shown
that effective harmonic methods do not necessarily give a
significant improvement over 0 K harmonic approximation
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[19] and that the difference between the free energies pre-
dicted by the two methods increases with temperature [20];
however, no theoretical explanation was provided regarding
what in particular could cause the discrepancy between these
two very similar models.

II. METHODOLOGY

A. Harmonic approximation at 0 K and finite temperatures

In order to simplify the comparison of the two methods
a slight reformulation of the theory is needed compared to
that described in the original works. The starting point is the
force-displacement relation through a 3N × 3N force constant
matrix �, so for any atomic configuration c the forces are
given by

�fc = −�(�θ )�uc. (1)

In a similar fashion to Hellman et al. [11], the elements
of � are expressed as linear combinations of parameters �θ
as the force constants of crystalline systems are, in general,
not independent but constrained by rotational, translational,
and inversion symmetry of the lattice and by the requirement
that force appears on any atom under rigid translation of the
whole crystal. For the supercell used in this study, the number
of force constants is reduced from 82944 to 52.

This allows us to rewrite Eq. (1) as

�fc = C( �uc)�θ. (2)

where the elements of matrix Cc are linear combinations of
displacements, the coefficients of which depend on the choice
of the supercell and the aforementioned symmetry constraints.
The parameters �θ can now be found with the linear least-
squares method using the Moore-Penrose inverse of C,

�θ = C+(�u) �f , (3)

where we have omitted the indices c since both �f and �u can
contain the forces and displacements of any number of atomic
configurations. The more anharmonic the system is, the more
configurations are needed in order to keep the uncertainty
of the fit sufficiently small. By expressing �θ as a function
of temperature we obtain a temperature-dependent effective
harmonic force constant matrix from which the phonon fre-
quencies and eigenvectors can be calculated.

When working only with the vibrational modes commen-
surate with the supercell, it is more convenient to consider
the supercell itself to be the unit cell and calculate the exact
normal-mode frequencies which correspond to �q = (0, 0, 0),
i.e., only at the � point of the reciprocal lattice of the super-
cell. In that case the dynamical matrix for the whole system is

D = M− 1
2 �(�θ )M− 1

2 = Q(�θ )�2(�θ )QT (�θ ), (4)

where M is a diagonal matrix of the masses of the atoms, �2

is a diagonal matrix of eigenvalues, and Q is a matrix whose
columns are the eigenvectors.

By substituting Eq. (4) into Eq. (1) we get the following
general equation that applies to both SCAILD and TDEP:

QT (�θ )M− 1
2 �fc = −�2(�θ )QT (�θ )M

1
2 �uc. (5)
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FIG. 1. A histogram of the force-displacement relation for a
single phonon mode extracted from a molecular dynamics simulation
at 1600 K. The darker areas correspond to higher-probability states.
A linear fit through the distribution gives the negative square of the
effective mode frequency.

One of the approximations of SCAILD is that the eigenvectors
are temperature independent and can thus be obtained from a
quick 0 K phonon calculation. Whether this holds depends on
the symmetry properties of the system and the choice of the
supercell, which determines the grid of sampled q points [21].
For the system considered in this work, this approximation
does not have significant effect on the results.

Equation (5) then becomes

�φc = −�2 �υc, (6)

where �φc = QT M− 1
2 �fc is the normal-mode force and �υc =

QT M
1
2 �uc is the normal-mode displacement. The �θ dependence

is removed since we are interested in �, which can be obtained
from a simple linear least-squares fit, and how its elements are
related to the parameters becomes irrelevant.

For a perfectly harmonic crystal there exists one and only
one �2. For anharmonic crystals, however, the uniqueness
is lost due to the higher-order terms in the Hamiltonian
becoming relevant. A typical distribution of the normal-mode
force-displacement relation for a single phonon mode is de-
picted in Figs. 1 and 2. The shape is that of a Gaussian
due to both the nature of constant-temperature sampling of
the configurations and the anharmonicity of the system. The
modes that are symmetrically equivalent can be placed on
the same plot, thereby increasing the amount of data, thereby
reducing the uncertainty of the linear fit and retaining the
symmetry properties of the vibrations.

As we have shown, TDEP is mathematically equivalent to
SCAILD for systems with temperature-independent phonon
eigenvectors. The linear least-squares fit is done in real space
for the former and in normal-mode space for the latter.

Our approach differs slightly from the original formulation
of SCAILD where sampling of the normal-mode displace-
ments, in order to obtain the forces, was limited to certain
discrete values that give the same mean-square displacement
as a quantum harmonic oscillator at a constant temperature,
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FIG. 2. A typical force-displacement plot for a single frequency
but symmetrically equivalent phonon modes for illustrating and
fitting effective harmonic models. Not all points are shown for
visualization purposes. As the temperature increases, the distribution
of forces for fixed displacements broadens. The frequency of the
mode is 20.6, 20.1, and 19.4 THz at 0, 600, and 1600 K, respectively.

i.e.,

�u = M− 1
2 Q�d, (7)

where

di = ±
√√√√ h̄

�i,i

[
1

2
+

(
exp

h̄�i,i

kBT
− 1

)−1
]
. (8)

That makes it possible to take the average of �2 over all
the sampled configurations, which means the average slope
of all the lines from the origin to every point in the force-
displacement plot. This is not mathematically equivalent to
a linear least-squares fit through all the points. In addition,
when the displacements for SCAILD are sampled from a
Gaussian distribution, as done in this work, the most likely
displacement for a given mode is zero, while the force due
to the anharmonicity is nonzero, which leads to many large
positive and negative �2 values which are not likely to
cancel out, leading to a large error in the estimation of the
average value.

B. Sampling of the configuration space

The major difference between TDEP and SCAILD is the
way the displacements are obtained. For TDEP it is a constant-
temperature molecular dynamics simulation consistent with
the Hamiltonian of the anharmonic system, whereas for
SCAILD the displacements are sampled from the distribution
self-consistent with the current best-fit harmonic Hamiltonian.
The major advantage of the latter is the reduction in the
number of calculations due to more efficient generation of
uncorrelated samples as there exists an analytical expression
that gives correct constant-temperature statistics.

Using the samples generated by a canonical molecular
dynamics or Monte Carlo simulation can be interpreted as

finding the harmonic potential that reproduces the forces given
by the anharmonic Hamiltonian for constant temperature with
the smallest error in least-squares sense. It is not unlike using
the method of force matching quite commonly employed in
order to fit empirical interatomic potentials to DFT reference
data [22]. The lack of transferability is often an issue with
empirical potentials, and as we explain below, it also plays an
important role in the effective harmonic models.

It is slightly less obvious what the sampling used in
SCAILD method yields. In addition to the resulting model
being harmonic, the displacements themselves are generated
assuming noninteracting phonon modes. It has been suggested
that this results in probing the wrong parts of the phase space
[23], which is certainly true when the actual anharmonic
system is concerned; however, the goal here is not to perfectly
reproduce the whole anharmonic Hamiltonian but to pack the
anharmonic vibrational information into a truncated Taylor
expansion of the potential. Nevertheless, by careful reasoning,
one can identify the possible effects of the harmonic sampling
when compared to the anharmonic one. Since in the former
case all the correlations in the motion of the normal modes
are ignored, the probability of sampling higher-energy con-
figurations increases, which results in larger magnitudes for
the sampled forces and in turn higher effective vibrational
frequencies which increase with temperature.

While it is clear that the two sampling methods are dif-
ferent, it does not automatically follow that one provides a
better free-energy estimation than the other. In both cases
we obtain a harmonic Hamiltonian, both of which are just
approximations and so are the predicted free energies. While
there might exist an effective harmonic model that gives the
exact free energy of the system, it is not immediately clear
whether either of the methods should do that.

C. Thermodynamic integration and free-energy perturbation

Since we expect SCAILD and TDEP to give different
harmonic force constant matrices and therefore also different
free energies, the full vibrational free energy needs to be
calculated for a proper comparison. Both methods provide an
excellent reference system for free-energy perturbation (FEP)
and thermodynamic integration (TI) when compared to the
Einstein crystal [24,25], which has a smaller overlap with
the phase space of the anharmonic system, and to a 0 K
harmonic model [26,27], which has undefined free energy in
the case of phonon modes with imaginary frequencies. It must
be noted that the efficiency of thermodynamic integration can
be increased even more by using an intermediate potential,
such as a local anharmonic one [28], a semiempirical one [29],
or one based on machine learning [19].

Both FEP and TI allow us to calculate free-energy differ-
ences from ensemble averages of energy differences. There
are several variations of each. In this work we used a linear
path through a parameter λ from the effective harmonic
system to the anharmonic one, in our case a DFT system as
follows:

U (λ) = λUDFT + (1 − λ)UEH. (9)
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To get the free-energy difference from thermodynamic inte-
gration we calculate

	F =
∫ 1

0

〈
∂U (λ)

∂λ

〉
λ

dλ =
∫ 1

0
〈UDFT − UEH〉λdλ. (10)

In practice there are possibilities either to sample λ on a
discrete, but not necessarily equidistant, grid or to perform
adiabatic switching where λ changes continuously throughout
the simulation.

Since SCAILD and TDEP sample a lot of configurations
and provide both the harmonic and DFT energies, it is also,
in principle, possible to calculate the anharmonic free energy
without any extra steps through free-energy perturbation:

	F = (−1/β ) ln 〈exp [−β(UB − UA)]〉A (11)

For TDEP, UA are the potential energies from a DFT molecular
dynamics (MD) calculation, and UB are the potential energies
calculated using the fitted harmonic model. For SCAILD,
UA are the harmonic potential energies calculated using the
converged fit, and UB are the potential energies for the same
structures obtained from DFT. FEP can also be done using
stratified calculations. Similar to thermodynamic integration,
several intermediate simulations using mixed Hamiltonians
of the two end points can be done, and the free-energy
differences between each step can be calculated using Eq. (11)
and subsequently summed together [30].

D. Calculations

Cubic zirconia was chosen for the system to be studied
for several reasons. It has been studied using 0 K [4], self-
consistent lattice dynamics [8], and other methods [31]. At
ambient pressure it is not dynamically stable, as indicated by
the large number of imaginary phonon modes which disappear
when a SCAILD analysis is performed. Another option for
achieving dynamical stability for cubic ZrO2 is to put it under
high pressure, which we opted to do in order to retain the
ability to compute the free energy from the 0 K phonon
calculation for comparison.

As explained above, the theory simplifies a lot in cases
where the eigenvectors can be assumed not to depend on
temperature. ZrO2 contains two types of atoms with a rela-
tively large difference in atomic weights, which should the-
oretically allow for the possibility of temperature-dependent
eigenvectors. The size of the supercell was chosen to be
2 × 2 × 2 of the conventional unit cell with a lattice parameter
of 9.7 Å, containing a total of 96 atoms. It is not guaranteed
to give a converged free energy with respect to the size but
is a good balance between capturing the overall vibrational,
both harmonic and anharmonic, behavior while allowing for
sufficiently long molecular dynamics simulations.

All phonon calculations were done using PHONOPY

[2] without applying a nonanalytical term correction. For
SCAILD and TDEP our own implementations were used. For
SCAILD we acquired the eigenvectors from PHONOPY, after
which the displacements were generated for every normal
mode according to a Gaussian distribution with the same
mean-square displacement as given by theory for a classical
harmonic oscillator at a constant temperature; that is, in
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FIG. 3. Convergence of the free energy with respect to the
number of iterations using SCAILD. The values are given as a
difference from the last step. The free-energy difference between two
consecutive iterations is typically orders of magnitude smaller than
the longer-term changes.

Eq. (7), �d is obtained from

σ 2
i = 〈

d2
i

〉 = kBT

�2
i,i

. (12)

The sampling was from a classical distribution in order to
be directly comparable to classical DFT molecular dynamics,
although at the investigated temperatures we expect the effect
on the results to be relatively small.

As shown in Fig. 3 the changes in free energy between
consecutive iterations can be orders of magnitude smaller than
the changes over many iterations, so instead of basing the
convergence on the former, we ran the simulations for a fixed
number of (500) steps.

All the molecular dynamics simulations for TDEP were
performed using Nosé-Hoover thermostating with the Nosé
mass corresponding to approximately a time period of 80 fs
and velocity Verlet integration with a time step of 1 fs. The
symmetry requirements for the force constant matrix and
crystal were taken into account when performing the linear fit
of the displacement-force data. No additional cutoff distance
in addition to that determined by the supercell was used for
the force constants.

For both methods the simulations were done at 600, 1100,
and 1600 K. At higher temperatures the oxygen atoms started
migrating and occasionally created vacancy-interstitial pairs,
which complicates the analysis not only for SCAILD and
TDEP but also for the following thermodynamic integration
which set the upper limit used in this work. The number of
MD steps was 20 000 at 600 and 1100 K and 30 000 at 1600 K.

Thermodynamic integration was done for λ values of 0,
0.1, 0.25, 0.5, 0.75, 0.9, and 1. For TDEP λ = 1 data are
already acquired before the fitting, and no extra calculation
is needed. The same data were also used for SCAILD at
λ = 1. For SCAILD at λ = 0 a separate fast MD run was
done using the harmonic Hamiltonian, after which a subset of
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uncorrelated samples was chosen for which the energy was
calculated using DFT. Whereas a Nosé-Hoover thermostat
was used for TDEP mostly because it automatically retains
the position of the center of mass of the system and there-
fore simplifies the fitting, Langevin dynamics was used for
the thermodynamic integration steps in order to avoid the
possibility of incorrect sampling of the phase space when
the system is close to harmonic [32]. The drift of the center
of mass was not problematic for TI since only the energy
differences were obtained instead of displacements.

All DFT calculations were done using VASP [33–36] with
the projector augmented-wave method [37] with a plane wave
cutoff energy of 400 eV and the generalized gradient approx-
imation Perdew-Burke-Ernzerhof [38] exchange-correlation
functional [39]. The number of electrons treated explicitly was
12 and 6 for Zr and O, respectively. A 2 × 2 × 2 Monkhorst-
Pack �-centered k-point grid [40] and Gaussian smearing with
σ = 0.05 were used.

The choice for the k-point grid was based on the balance
between sufficient accuracy and computational time. Fits for
SCAILD and TDEP based on shorter runs with a 3 × 3 × 3 �-
centered grid at 1600 K resulted in a roughly 1 meV/atom
difference. For thermodynamic integration a check was done
by recalculating the λ = 0.5 point for TDEP at 1600 K using
a 4 × 4 × 4 �-centered grid. The difference seen was within
the statistical uncertainty of the original calculation, so the
UP-TILD [27] method was not applied.

As shown by Hellman [23], the relative errors in forces
decrease by orders of magnitude as the magnitude of the
forces increases to that of the thermally excited states. Based
on that, the 0 K harmonic calculations, including obtaining
the eigenvectors for SCAILD, were done using a denser
7 × 7 × 7 k-point grid.

III. RESULTS

The vibrational free energies calculated using all of the
methods are shown in Table I. The full anharmonic vibrational
free energies are in good agreement. Even at the highest
considered temperature, 1600 K, all stratified free-energy
perturbation and thermodynamic integration results are within
1 meV/atom. Both SCAILD and TDEP are, however, off by
about 20 meV/atom, and perhaps surprisingly, even the free
energy calculated from harmonic lattice dynamics is a lot
closer to the value obtained from thermodynamic integration
than those of either effective harmonic method.

The errors in free energies predicted by SCAILD and
TDEP are opposite in sign. This is also evident from the
thermodynamic integration results shown in Fig. 4. Since
the TDEP force constant matrix is fitted to the DFT-
MD results, the average potential energy difference be-
tween DFT and TDEP is also minimal at λ = 1. It is
also seen that setting the average potential energies to
be equal, as done in Ref. [11] [Eq. (21)], would do lit-
tle to reduce the error. In this case the whole TI curve
would be shifted down by roughly 3 meV/atom for the
temperature of 1600 K, which accounts for only 15% of
the total error. Similar conclusions can be drawn for
SCAILD, for which the agreement with DFT is best at
λ = 0, with the error due to mismatched average potential

TABLE I. Vibrational free energies (in meV/atom) calcu-
lated by different methods. The meaning of the acronyms is as
follows: LD, lattice dynamics; H, harmonic; EH, effective har-
monic; AH, anharmonic; FEP, free-energy perturbation; SFEP, strat-
ified free-energy perturbation; TI, thermodynamic integration. For
TDEP the EH results are presented for both temperature-independent
and temperature-dependent eigenvectors, denoted by Q0 and QT ,
respectively.

Method Type 600 K 1100 K 1600 K

LD H 4.0 −176.7 −415.9

SCAILD EH 7.1 −167.3 −398.0
AH, FEP 4.1 −176.4 −415.1

AH, SFEP 3.8 −177.9 −419.0
AH, TI 3.8 −178.1 −419.1

TDEP EH, Q0 0.9 −186.8 −438.5
EH, QT 1.0 −186.6 −437.9

AH, FEP 3.2 −180.1 −422.0
AH, SFEP 3.4 −177.8 −418.4

AH, TI 3.5 −177.7 −418.6

energies being slightly larger and, if taken into account, pro-
viding a better estimation for the full vibrational free energy
than TDEP.

Free-energy perturbation was not able to correct all of the
discrepancy, possibly due to the limited number of samples;
however, the stratified version gives free energies that agree
very well with TI results. This is expected since the same input
data were used for both methods.

In either case shifting the potential energy does not result
in a change in the force constants or in the phonon disper-
sions, which are shown in Fig. 5 for TDEP and Fig. 6 for
SCAILD. The general trend is for TDEP to predict a decrease
and for SCAILD to predict an increase in frequencies over
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FIG. 4. Thermodynamic integration results for TDEP and
SCAILD. Every dot corresponds to one equilibrium MD calculation
with a λ-mixed Hamiltonian. The error bars were obtained using the
block-averaging method and are shown for ±3 standard deviations.
The solid line is a fourth-order polynomial fit with the reciprocals of
the standard deviations used as weights.
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FIG. 5. Phonon dispersion dependence on temperature as pre-
dicted by TDEP.

all of the reciprocal space. A notable exception to that is
the lowest-frequency mode at the X point, which would be
unstable without the external pressure. Both methods predict
an increase in the frequency, albeit SCAILD from 2.9 THz
at 0 K to 6.1 THz and TDEP to 4.4 THz at 1600 K. The
changes in frequencies at high-symmetry q points are depicted
in Fig. 7. We must note that since the calculations were done
at a fixed volume, the typical lowering of the frequencies due
to thermal expansion is not taken into account.

The reason why TDEP, at least when up to second-
order force constants are considered, cannot provide a bet-
ter estimate than SCAILD is that an effective harmonic
Hamiltonian fitted at either λ = 0 or λ = 1 exhibits similar
nontransferability. Whereas the average energy difference be-
tween DFT and the effective harmonic model can be forced to
be zero at one of the end points of the TI curve, its absolute
value can only monotonically increase as TI is performed,
and the sampled atomic configurations will start to differ
from those used for the fit. This can be proven using the
Gibbs-Bogoliubov inequality [41], which states that(

∂2F

∂λ2

)
NV T

� 0. (13)
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FIG. 6. Phonon dispersion dependence on temperature as pre-
dicted by SCAILD.
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FIG. 7. Temperature dependence of change in phonon mode
frequencies at high-symmetry points. The darker and lighter colors
indicate lower and higher initial frequencies, respectively.

As the anharmonicity increases, the transferability and
thus the estimate for the full vibrational free energy become
worse. This can also be explained as follows: let us consider
a full infinite expansion of the DFT Hamiltonian. Starting
from a harmonic model, we carry out the TDEP process,
that is, perform molecular dynamics runs at λ = 1, and for
each subsequent run we increase the number of terms in the
expansion. For up to a quadratic term the effective harmonic
model can be fitted exactly, and 	U = 0 for any λ. As we
add more terms, 	U at λ = 0 starts to deviate from zero
more and more while being kept zero at λ = 1. Whereas
lattice dynamics ignores terms higher than second order, both
SCAILD and TDEP incorporate those in an effective manner
into the harmonic Hamiltonian, and as shown, this can lead
to a much larger error. In addition, it is not obvious that
adding, for example, the third-order force constants to the
effective model Hamiltonian necessarily reduces the error
since the second-order force constants may remain relatively
unaffected.

IV. CONCLUSIONS

Given temperature-independent eigenvectors, the effective
harmonic models obtained through either SCAILD or TDEP
produce two types of systematic errors. One is due to the
different choices of the ensemble of displacements and forces
used to fit the data. Based on our results neither could be
considered better than the other, the reason being that in either
case it is not the remaining explicitly anharmonic energy
obtained through thermodynamic integration that is mini-
mized, but the potential energy difference at one of the end
points of the λ-integration curve. The other systematic error,
common to both, is introduced by trying to reproduce the
anharmonic interactions in an effective harmonic manner.

The free energies predicted by either method diverge
as the temperature increases, with the general trend being
SCAILD predicting an increase in the phonon frequencies
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and higher free energy than the exact value, as opposed to
TDEP, which predicts decreasing frequencies and lower free
energy. For the system considered in this work both give a
worse estimate of the free energy than the 0 K harmonic
model. Therefore, relying on one or the other can introduce
large errors when investigating the vibrational thermodynamic
properties of materials, especially when the results of either
are compared with those obtained through other methods,
for example, when using the quasiharmonic approximation to
calculate the free energy of one phase but one of the effective
harmonic methods for another in order to compute the phase
stability. In addition, due to the nonlinearity of the systematic
error with respect to temperature, it is possible that the error
in other thermodynamic quantities derived from free energy,
such as heat capacity, will have even larger errors. Free-energy

perturbation can be used without extra computational cost in
order to estimate the error, but since it may not account for
all of the difference between the approximate and true free
energy, thermodynamic integration or any other method that
takes all of the anharmonicity explicitly into account has to be
used.
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