
PHYSICAL REVIEW B 99, 184101 (2019)

Nonlinear elasticity of ε -Fe: The pressure effect
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Description of elasticity of iron at the ultrahigh pressures is a challenging task for physics, with a potential
strong impact on other branches of science. In the present work, we calculate the elastic properties of hcp
iron in the pressure range of 50–340 GPa beyond the linear elasticity approximation, conventionally assumed
in theoretical studies. We define the higher order elastic constants and present expressions for the long-wave
acoustic modes Grüneisen parameters of a compressed hcp crystal. We obtain the second and third order elastic
constants of the hcp Fe in the considered pressure interval, as well as its Grüneisen parameters for the high-
symmetry directions. The latter are directly compared with the Grüneisen parameters derived from the volume
dependences of the vibrational frequencies calculated in the quasiharmonic approximation. The obtained results
are used for the stability analysis of the hcp phase of iron at high pressures.
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I. INTRODUCTION

The pressure in the Earth’s inner core, which consists
mainly of Fe reaches 330–360 GPa, There is numerous evi-
dence that the ε phase of iron with hexagonal closed packed
(hcp) structure [1–4] is stable at such extreme compression at
low-to-intermediate temperature. Thus, a knowledge of elastic
properties of this phase is crucial for many reasons, e.g., for
the interpretation of seismic observations [5]. Consequently,
the elastic properties of ε-Fe were studied in many experi-
mental and theoretical works. According to the experimental
data [3,4], a transition from bcc Fe to hcp structure at room
temperature takes place at 10–18 GPa. Magnetic properties
of the hcp Fe are still under discussion [6]. However, it is
generally accepted that at room temperature the hcp phase
is nonmagnetic at least at pressures exceeding 50 GPa and
has a wide stability interval, predicted theoretically to extend
at least to 5700 GPa [7], and confirmed experimentally to
at least 400 GPa [8]. Several experimental studies of elas-
tic properties were performed on polycrystalline samples of
epsilon Fe and at different pressures, including the radial
x-ray diffraction experiments (RXD) [9,10], inelastic x-ray
scattering (IXS) [11,12], and Raman spectroscopy [13]. From
these experiments, the second order elastic constants (SOECs)
of single crystals were derived. Theoretical studies of SOECs
of monocrystalline hcp iron in the pressure interval up to 400
GPa were performed using density functional theory (DFT)
[14–18].

However, the second order elastic constants characterize
the linear elastic response. To the best of our knowledge, the
higher order elastic constants of Fe, like the third order elastic
constants (TOECs) are not known, and therefore their predic-
tion is of interest. TOECs reflect the anharmonicity of lattice
vibrations and define the lowest order of nonlinear response.
They are important for the understanding of anharmonic

properties of solids, such as thermal expansion, Grüneisen
parameters, dependences of elastic responses, and sound ve-
locities on temperature and applied pressure, among others
[19,20]. Moreover, TOECs determine the wave-form distor-
tion of ultrasonic finite-amplitude waves passing through a
solid, as well as an amplitude of the second harmonic wave
[21,22].

In the present work we employ a technique of higher
order elastic constants calculations for compressed crystals
[23,24]. The full set of SOECs and TOECs of ε-Fe in the
pressure interval 50–340 GPa is calculated at temperature
T = 0 K. The DFT is used for the calculations of energy at
different volumes and deformations. The expression for the
Grüneisen parameters of long-wave acoustic modes of hcp
crystals using the second and third order elastic constants
is given. We calculate these parameters for longitudinal and
transverse acoustic modes for high-symmetry directions in the
considered pressure interval. For comparison, we calculated
the phonon dispersion relations and derived the Grüneisen
parameters from the volume dependences of vibrational fre-
quencies. The obtained results were used for the analyses of
stability of the hcp phase of iron at high pressure.

The paper is organized as follows. In Sec. II we define the
second and higher order elastic constants for a compressed
crystal. The method of their calculation and the details of the
employed ab initio technique are presented in Secs. III and IV.
Section V presents the analysis of the calculated SOECs,
TOECs, and vibrational properties of the hcp Fe, followed by
conclusions.

II. DEFINITION OF HIGHER ORDER ELASTIC
CONSTANTS OF A LOADED CRYSTAL

The nth order elastic constants (n � 2) of a compressed
crystal characterize the elastic response of a material on a
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finite deformation under hydrostatic pressure. Let us define
the initial (compressed, but undeformed) state as the equi-
librium state at the given temperature and external pressure,
while the deformed state is the one under the effect to an
additional, generally nonhydrostatic strain. We characterize
the deformed state using the Lagrangian tensor of finite de-
formations ηi j [19]:

ηi j = 1
2 (αkiαk j − δi j ), (1)

where αk j = ∂rk/∂Rj is the deformation gradient, rk and Rj

are the Cartesian coordinates of point of solid in the deformed
and the initial states, respectively, and δi j is the Kronecker
delta. Note that we use the Einstein summation convention
for the summation over the repeated indexes.

The Gibbs free energy G can be expanded in Tailor series
over components of the deformation tensor ηi j :

�G

V0
= 1

2!
C̃i jklηi jηkl + 1

3!
C̃i jklmnηi jηklηmn + . . . , (2)

where �G = G(P, T, η) − G(P, T, 0) is the change of ther-
modynamic potential upon deformation ηi j and V0 is the
volume of the system in the initial state (note that this is the
volume at pressure P rather than the equilibrium volume at
P = 0 GPa). In Eq. (2) we introduce the isothermal elastic
constants of the nth order (n � 2) of the loaded crystal [23]:

C̃i jkl... = 1

V0

(
∂nG

∂ηi j∂ηkl ...

)
T ,η=0

. (3)

At a fixed hydrostatic pressure P the change of the Gibbs
free energy upon the change of volume can be expressed as

�G

V0
= �F

V0
+ P

�V

V0
, (4)

where �F = F (P, T, η) − F (P, T, 0) and �V = V − V0 are
the changes of the Helmholtz free energy and the crystal vol-
ume due to the deformation ηi j , respectively. Thus, in Eq. (3),
both the change of the free energy and the work against the
external load due to the additional small deformation ηi j are
taken into account. This is the main difference between the
elastic constants of the loaded and unloaded crystal [19,25].
Elastic constants for the unloaded state are given by the
relation [26]

Ci jkl... = 1

V0

(
∂nF

∂ηi j∂ηkl ...

)
T,η=0

. (5)

In contrast to the elastic constants defined in Eq. (5),
the Cauchy relations are not fulfilled for C̃i jkl... due to the
consideration of the external pressure, the full Voigt symmetry
of indexes permutation is conserved only at the hydrostatic
pressure, while it is absent at other types of loads [19,25].

In the case of the adiabatic elastic constants of the com-
pressed crystal all the above-mentioned considerations are
preserved. The elastic constants are defined by the derivatives
of the enthalpy H over the deformation components ηi j at
constant entropy S [23]. Note, that for C̃i jkl all the expressions
of the elasticity theory, including Christoffel equations, the
Born rule of mechanical stability, and stress-strain relations
have the same form as in the absence of the load [19,27].

III. CALCULATION OF SOECs AND TOECs FOR hcp
CRYSTAL AT HYDROSTATIC PRESSURE

Using Eqs. (3)–(5), we express C̃i jkl... via the derivatives
of the free energy F and pressure P. We expand �F/V0 at a
given P in the series over deformation tensor components up
to the third order

�F

V0
= �F1

V0
+ �F2

V0
+ �F3

V0
. (6)

The expressions for �F1−3

V0
are given in Appendix A

[Eqs. (A1)–(A3)].
The volume of the studied system in the deformed state

is given by the expression V = JV0, where J = det |αi j | [19],
then �V/V0 = J − 1. Let us express αi j in terms of ηkl . For
this purpose, we write αi j as

αi j = δi j + ui j, (7a)

where ui j = ∂ui/∂Rj (ui = ri − Ri). Then using Eq. (1) we
write

ηi j = 1
2 (ui j + u ji + ukiuk j ). (7b)

Since the energy of the crystal does not depend on the
rotation of the crystal “as a whole,” we consider here the case
of the “pure” deformation, without any rotation. In this case
ηi j = ui j + 1

2 ukiuk j and ui j = ηi j − 1
2 ukiuk j . Substituting this

expression in Eq. (7a) and neglecting the terms, which are
higher than the third order terms we obtain

αi j = δi j + ηi j − 1
2ηkiηk j + 1

2ηrkηriηk j . (8)

Using Eq. (8), it is possible to express J via the components
of η. The expressions are given in Appendix B.

Using Eqs. (3), (4), (6), (A1)–(A3) and expressions for
�V/V0, Eqs. (B1)–(B4), as well as combining the expressions
with the same set of deformation components, we obtain the
relations between C̃αβ.. and Cαβ.., given in Table I.

Thus, for calculations of the elastic constants of com-
pressed crystals we need to find elastic constants Cαβ.. cor-
responding to the volume V0 and the pressure P from the
dependence of the Helmholtz free energy F on the finite
deformations tensor components ηi j [see Eqs. (A1)–(A3)],
followed by the determination of С̃αβ.. using relations from
Table I.

In Refs. [14–18] SOECs at V0 corresponding to pressure P
were calculated using Eq. (5) with the condition of constant
(in the second order over η) atomic volume, which requires
a special choice of deformed states. This approach is not
applicable in the calculation of the third and higher order ECs
(the atomic volume should be constant in the third and higher

TABLE I. The relations between C̃αβ.. and Cαβ.. for hcp crystal

C̃αβ C̃αβγ

C̃11 = C11 − P C̃111 = C111 + 3P C̃144 = C144 − P
C̃12 = C12 + P C̃112 = C112 − P C̃155 = C155 + P
C̃13 = C13 + P C̃113 = C113 − P C̃222 = C222 + 3P
C̃33 = C33 − P C̃123 = C123 + P C̃333 = C333 + 3P
C̃44 = C44 − P C̃133 = C133 − P C̃344 = C344 + P
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FIG. 1. Pressure dependences of elastic constants C̃11 and C̃33 of
hcp-Fe calculated T = 0 K. C̃11 calculated in this work are denoted
with open triangles. Squares denote calculations from Refs. [14,43],
diamonds denote calculations from Refs. [16,18]; C̃33 calculated
in this work are denoted with open circles, right triangles show
calculations of Refs. [14,43], left triangles denote calculations of
Refs. [16,18].

order over η), since the choice of the required number of such
states is almost impossible.

The presented method has several advantages. First, Eq. (3)
gives a unified definition of the elastic constants: the elastic
constants are the nth order derivatives of the characteristic
functions, which are the thermodynamic potentials at the
given conditions. Second, the full set of elastic constants of
required order at given P is found from the dependence of
the free energy F (and from the internal energy for the adia-
batic elastic constants) on deformation. Arbitrarily deformed
states can be considered since the volume conservation is
not mandatory. Finally, the equation of state can be obtained
simultaneously with the elastic constants. As it is seen from
Figs. 1 and 2, the results of our SOEC calculations at the
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FIG. 2. Pressure dependence of elastic constants C̃12, C̃13, and
C̃44 of hcp-Fe calculated at T = 0 K. C̃12 calculated in this work
are denoted with open triangles. Filled down-triangles denote cal-
culations from Refs. [14,43], filled up triangles denote calculations
from Refs [16,18]; C̃13 calculated in this work are denoted with
open circles, small filled circles show calculations of Refs [14,43]
right triangles show calculations of Refs. [16,18]; C̃44 calculated
in this work are denoted with open squares, black squares show
calculations of Refs [14,43], left triangles are calculations from
Refs. [16,18], open points show the room temperature experimental
data of Refs. [13].

different pressures are in a good agreement with the data ob-
tained under the condition of volume conserving distortions.

IV. DETAILS OF CALCULATIONS

We assume that the initial (undistorted) state of a crystal at
pressure P has volume V0. To find five SOECs and ten TOECs
from Eqs. (A1)–(A3) we need to consider at least ten different
deformations of the hcp crystal. Various simple deformations
and the corresponding combinations of the elastic constants
are given in Table II. Here we use the following notations:
�F2/V0 = 1

2 Aη2 and �F3/V0 = 1
6 Bη3.

TABLE II. The coefficients A and B for the different deformations of hcp crystal.

No. Deformationa
А В

1 η1 = η C11 C111

2 η3 = η С33 С333

3 η1 = −η2 = η 2(С11 − С12) 4(С111 − С222)
4 η1 = η3 = η С11 + 2С13 + С33 С111 + 3С133 + С333 + 3С113

5 η6 = 2η 2(С11 − С12) –
6 η4 = 2η 4С44 –
7 η1 = −η3 = η С11 − 2С13 + С33 С111 − 3С113 + 3С133 − С333

8 η1 = η2 = η 2(С11 + С12) 4С111 + 6С112 − 2С222

9 η3 = η, η6 = 2η 2(С11 − С12) + С33 С333 + 6С113 − 6С123

10 η1 = η, η4 = 2η С11 + 4С44 С111 + 12С144

11 η2 = η, η4 = 2η С11 + 4С44 С222 + 12С155

12 η3 = η, η4 = 2η С33 + 4С44 С333 + 12С344

aOther components of the deformation tensor are equal to zero.
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TABLE III. The equation of state and SOECs of the hcp-Fe at various pressures (T = 0 K). Pressures and elastic constants are given in GPa.

V0, Å
3

P B C̃11 C̃12 C̃13 C̃33 C̃44

8.886 54.30 521.1 912.5 336.5 300.6 991.6 253.7
576a 307a 324a 539a 237a

599(33)b 403(20)b 318(22)b 650(45)b 187(40)b

8.354 90.70 664.1 1134 444.5 399.4 1224 300.7
7.954 126.6 799.4 1341 547.6 493.9 1444 343.7
7.639 162.1 929.5 1538 647.2 585.8 1654 384.3
7.366 197.4 1055 1727 744.6 675.8 1855 422.3
7.138 232.4 1178 1910 840.2 763.5 2049 458.1
6.939 267.3 1297 2088 934.4 849.6 2237 492.3
6.764 302.1 1415 2260 1027 935.3 2421 525
6.683 319.4 1473 2345 1073 977.6 2511 540.9
6.607 336.6 1530 2429 1118 1020 2601 556.7

aExperiment [12]. Radial x-ray diffraction (RXD). P = 52 GPa. T = 300 K
bExperiment [12]. Inelastic x-ray scattering (IXS+EOS). P = 52 GPa. T = 300 K

The lattice vectors in the deformed state are given by
the relation ri = αi jR j , where the deformation gradient αi j

is expressed via the Lagrangian finite deformations tensor
using Eq. (8). The total energy calculations of hcp-Fe (T =
0 K) at different values of V0 and ηi j were performed in the
framework of the DFT as implemented in the VASP code [30].
Pressure and the elastic constants were found using the least
squares fit to the total energies calculated for 30 points with
0.003 step in the range of η = ±0.045 from Eq. (6) and
Table II.

The exchange and correlation effects were considered
using the generalized gradient approximation (GGA) with
PW91 parametrization [31]. The projector augmented wave
(PAW) method, as implemented in VASP code, was used to
consider the electron-ion interaction [32]. The integration
over the Brillouin zone (BZ) was performed using the k
points set with the 28 × 28 × 18 points mesh, obtained by
the Monkhorst-Pack method [33]. The mesh centering and
reduction of the k- point number in the z direction were done
in accordance with the crystal symmetry. The cut-off energy
was set to 600 eV. All initial configurations of the compressed
crystals were optimized with respect to the c/a lattice pa-
rameters ratio. The Methfessel-Paxton algorithm [34] with
broadening 0.2 eV was used for the structure optimization.
The tetrahedron method for the BZ integration with Blöchl
corrections [35] was applied for the total energy calculations.
A detailed description of the computational scheme and con-
vergence issues of the used methodology can be found in
Ref. [24].

For the calculations of the phonon dispersion relations, we
employed the density functional perturbation theory as imple-
mented in software package QUANTUM ESPRESSO [36,37]. We
used 3 × 3 × 3 uniform q-point grid resulting in six dynam-
ical matrices. For these calculations we also used the PAW
[32] potential Fe.pbe-spn-kjpaw_psl.0.2.1.UPF. The exchange
and correlation effects were considered using the GGA with
Perdew-Burke-Ernzerhof parametrization [38]. The integra-
tion over the BZ was performed using the k points set with
the 20 × 20 × 13 points mesh, obtained by the Monkhorst-
Pack method [33]. The Methfessel-Paxton algorithm [34] with
broadening 0.05 Ry ensured the convergence of Grüneisen

parameters to 0.04 at a given k-point mesh. The cut-off
energy was set to 110 Ry. The fully relaxed cells were used
at all considered volumes to ensure the hydrostatic pressure
conditions.

V. RESULTS AND DISCUSSION

The calculated equation of state and pressure dependence
of the SOECs for ε-Fe at are summarized in Table III. Here V0

is the volume per atom at pressure P, B is the bulk modulus
defined for hcp structure by the relation [39]

B = C̃33(C̃11 + C̃12) − 2C̃2
13

C̃11 + C̃12 + 2C̃33 − 4C̃13
. (9)

Our calculated equation of state is in good agreement with
earlier DFT calculations [14,17]. The mechanical stability
requirements for the hcp lattice are [39]

С̃11 � |C̃12|, C̃33(C̃11 + C̃12) � 2(C̃13)2,

C̃11C̃33 � (C̃13)2, С̃44 � 0.

Our calculations show that they are fulfilled for hcp Fe in
the whole range of pressure studied in this work.

The isotropy conditions for crystals with the hexagonal
symmetry are as follows [39]: C̃11 = C̃33, C̃12 = C̃13 and
C̃11 − C̃12 = 2C̃44. From Table III one calculates that even
at the highest pressure considered in this work P = 336 GPa
С̃33/С̃11 = 1.071, C̃12/C̃13 = 1.096, (C̃11 − C̃12)/(2C̃44) =
1.177, indicating that ε-Fe is quite isotropic. In fact, the
isotropy varies very little with pressure.

Assuming central interatomic forces (independent of an-
gle), and ions at the centers of symmetry, one arrives at the
Cauchy relations for the elastic constants of hexagonal closed-
packed lattice for the SOECs and TOECs [39,40]:

C12 = C66, C11 = 3C12, C13 = C44, C122 = C266,

C112 = C166, C113 = C155 and C123 = C144 = C366 = C456.

Note that Cαβ and Cαβγ are defined by Eq. (5) and
do not include the pressure correction. The expressions
for C122,C166,C266,C366,C456 are given in Appendix C,
Eq. (C4). Using the data for SOECs and TOECs from
Tables III and IV, as well as the relations between C̃αβ. and
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TABLE IV. TOECs of the hcp Fe at various pressures (T = 0 K). All values are given in 10−1 GPa.

P −С̃111 −С̃222 −С̃333 −С̃112 −С̃113 −С̃123 −С̃133 −С̃144 −С̃155 −С̃344

54.30 1021 918.5 919.6 118.1 99.71 18.95 201.2 47.01 135.2 220.1
90.70 1231 1105 1103 144.2 124.4 19.69 245.8 57.73 161.6 266.3
126.6 1424 1277 1280 169.2 145.9 19.73 286.8 67.46 186.0 308.3
162.1 1603 1436 1440 193.0 167.7 20.05 326.1 76.70 209.0 348.0
197.4 1772 1586 1590 215.9 188.8 21.39 363.8 85.45 231.0 385.9
232.4 1934 1728 1733 237.1 209.5 22.43 399.0 93.81 252.3 423.0
267.3 2089 1865 1872 256.7 229.8 23.47 433.3 102.0 273.1 460.0
302.1 2243 2001 2012 274.8 249.4 24.56 466.9 110.0 293.3 497.2
319.4 2318 2066 2082 284.0 259.4 25.27 483.8 114.0 303.3 516.0
336.6 2392 2130 2152 293.0 269.2 25.68 501.2 118.0 313.4 535.0

Cαβ. from Table I, we obtain the following ratios between
the elastic constants at P = 336 GPa: С11/3С12 = 1.18,
С66/С12 = 1.27, С44/С13 = 1.31, С266/С122 = 1.20,
С166/С112 = 1.39, С155/С113 = 1.47, С144/С123 = 1.42,
С456/С366 = 1.49. The calculated ratios depend very little on
pressure and show that the Cauchy relations for ε-Fe fulfilled
better for SOECs than for TOECs.

Though the calculations reproduce well the experimental
pressure dependences of SOECs, their absolute values are
different (see Table III, the second line). The largest disagree-
ment is observed for C̃11 and C̃33 (for other elastic constants
this difference is much smaller). The discrepancy is well
known [14–18] and reflects certain limitations of the DFT
calculations. It has been recently shown that by including cor-
relation effects one improves the description of the equation
of state of ε-Fe [41]. On the other hand, one should remember
that the high-pressure experiments (the scattering or diffrac-
tion of x rays under nonhydrostatic pressure [12]) are carried
out on polycrystalline samples of ε-Fe. Thus, the experimental
elastic constants of single crystals are not extracted directly,
and the extraction is not a straightforward task [10,42]. The
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FIG. 3. Pressure dependence of elastic constants C̃111 (triangles),
C̃222 (circles), and C̃333 (squares) of hcp Fe calculated at T = 0 K.

discrepancy between the experimental values measured in
different experiments (see Table III), can be considered as the
indication of this.

The pressure dependences of the elastic constants С̃αβ are
shown in Figs. 1 and 2. Earlier first principles calculations are
also shown in the figures for comparison. It is seen that our re-
sults are in a good agreement with the data from the literature,
confirming the numerical reliability of the proposed compu-
tational scheme. All five SOECs increase monotonously with
pressure. Interestingly, C̃11 and C̃33 follow each other quite
closely, while C̃12 follows C̃13. At the same time, the variation
of C̃44 with P is much weaker than for other elastic constants.
In addition, Fig. 2 shows elastic modulus C̃44 of ε-Fe and
its pressure dependence, which were deduced from Raman
measurements using the phenomenological three-body force
model for the hcp solid with a nonideal c/a ratio [13,44].
It is shown that the experimental and theoretical pressure
dependences of C̃44 are similar, although the absolute values
are different (∼15–20%).

Table IV and Figs. 3 –5 show TOECs for hcp Fe calculated
at T = 0 K. It is seen that all TOECs are negative. Their
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FIG. 4. Pressure dependence of elastic constants C̃133(triangles),
C̃155 (circles), and C̃344 (squares) of hcp Fe calculated at T = 0 K.
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FIG. 5. Pressure dependence of elastic constants C̃112(up trian-
gles), C̃113(circles), C̃144(squares) and C̃123 (down triangles) of hcp
Fe calculated at T = 0 K.

absolute values increase with the increasing pressure. The
values of elastic constants C̃111, C̃222, and C̃333 are quite close
to each other, though C̃222 is closer to C̃333 than to C̃111. On
the other hand, they are almost an order of magnitude larger
than the C̃112, C̃113, C̃133, C̃155, and C̃344. The lowest absolute
values are calculated for C̃123 and C̃144.

Figure 6 shows the phonon dispersion relations of hcp-
Fe calculated at P = 75 GPa and P = 300 GPa. We do not
observe any softening of the phonon branches in the given
pressure interval, and with increasing pressure the phonon
spectrum behaves in a usual way (it becomes “harder”). These
facts confirm the stability of the hcp structure of iron in
the investigated pressure interval at low temperatures. It is
seen that at P = 75, as well as at P = 300 GPa the acoustic
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FIG. 6. Phonon dispersion relations of hcp Fe along high sym-
metry directions. Solid line shows results calculated at P = 75 GPa,
dashed line is for P = 300 GPa.
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FIG. 7. Pressure dependence of long-wave acoustic modes
Grüneisen parameters. Up triangles, diamonds, and circles are the
transverse modes with [001]/[100], [100]/[001], and [100]/[010]
propagation directions/polarizations, respectively, Squares and down
triangles are the longitudinal modes [001], [100]. Open symbols
show the GPs calculated from elastic constants. Filled symbols
show the GPs derived from the phonon frequencies. Open points
denote experimental results for the Grüneisen parameter averaged
over all the acoustic branches of the vibrational spectrum γv, the
experimental error is ±0.1, see Refs. [47,48].

branches of the transverse vibrations for the Г-К and Г-M
directions are practically degenerate near the BZ centrum.

Using the SOECs and TOECs data for a compressed ε-Fe,
we calculated the pressure dependence of Grüneisen param-
eters (GPs) for the long-wave longitudinal and transverse
acoustic modes, propagating along the sixfold axis, as well
as in the perpendicular plane. They are defined as [39]

γ j = −(V0/ω j )(dω j/dV )P, (10)

where ω j is frequency of j-th normal vibrational mode. γ j is
determined by the volume change of ω j and characterizes the
lattice anharmonicity. Thermodynamic Grüneisen parameter
γ is a weighted average of the γ j (γ = ∑

γ jCjv/
∑

Cjv ,
where Cjv is the heat capacity associated with the mode j and
frequency ω j at constant volume).

The general expression for γ j of a crystal with arbitrary
symmetry at zero pressure is given in Eq. (12) of Ref. [45].
The GPs are expressed via the elastic constants defined in
Eq. (5) for unloaded crystal. In our case when the crystal is
under hydrostatic pressure, Cαβ.. Eq. (12) of [45] should be
replaced by C̃αβ.. defined in Eq. (3). The obtained expression
for the hcp crystal is given in Appendix C [Eq. (C1)].

In Fig. 7 the GPs for long-wave acoustic modes prop-
agating in the high symmetry directions (along the sixfold
axis and in the perpendicular plane) are shown. The trans-
verse waves are as follows: (i) for propagation direction
[001] and polarization [100] velocity υ1 =

√
C̃44/ρ; (ii) for

propagation direction [100] and polarization [010] velocity

184101-6
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υ2 =
√

(C̃11 − С̃12)/2ρ; (iii) for propagation direction [100]
and polarization [001] velocity υ3 =

√
C̃44/ρ. The longitudi-

nal waves are as follows: (iv) for propagation direction [001]
velocity υ4 =

√
C̃33/ρ; (v) for propagation direction [100]

velocity υ5 =
√

C̃11/ρ. In the expressions above ρ denotes the
density of the material at the corresponding pressure.

One can see that the GPs of hcp Fe for the longitudinal
modes exceed those for the transverse modes. The vibrational
frequencies increase with increasing pressure (Fig. 7), and
this also demonstrates that the lattice is dynamically stable
in the studied pressure interval. However, at high pressures
this increase slows down, and with further pressure increase
the softening of the transverse modes frequencies would occur
first.

In Refs. [47,48] the experimental values of the vibrational
GP averaged over all the acoustic branches of the vibrational
spectrum γv for hcp-Fe have been obtained in the pressure
interval 0–330 GPa (T = 300 K). This was done by measur-
ing the intensity change of x-ray diffraction lines upon com-
pression. As a result, the Debye temperature θ was obtained
as a function of V/V0. From the Debye relationship, γv =
−(∂ ln θ/∂ ln V )T , the experimental data on γv versus P were
determined. The results are shown in Fig. 7. The experimental
data in the investigated pressure range is determined with an
error ±0.1 [47]. Taking into account the fact that γv is the
average value, we conclude that our calculated results are in
good agreement with the experimental data and show the same
tendency to decrease with increasing pressure.

The GPs have also been calculated from the volume depen-
dence of the phonon frequencies at selected pressures as

γ j = −V0

ω j

dω j

dV
≈ −1

2

V0

ω j

[
ω j (V0) − ω j (V0 − 0.01V0)

0.01V0

+ ω j (V0 + 0.01V0) − ω j (V0)

0.01V0

]
, (11)

where V0 is the volume at the corresponding pressure, ω j

is the frequency of j-th normal vibrational mode with the
corresponding wave vector and the polarization, and ω j (V0 ±
0.01V0) are the frequencies at the volumes corresponding to
±1% deviation from the original volume. The obtained results
are shown in Fig. 7 for comparison with GPs calculated from
the elastic constants. The agreement between the two sets is
satisfactory.

VI. CONCLUSION

We studied the nonlinear elastic properties of the epsilon
phase of iron in the pressure range 50–340 GPa. We pre-
formed ab initio DFT calculations of the second and the
third order elastic constants. The obtained results for the third
order elastic constants may be used for the interpretation of
x-ray diffraction data at nonhydrostatic pressure. We derived
the expressions for the long-wave acoustic modes Grüneisen
parameters for hcp structures in terms of the second and
third order elastic constants and calculated these parameters
for longitudinal and transverse acoustic modes for high-
symmetry directions in the considered pressure interval. In
addition, we have calculated the phonon dispersion relations
and Grüneisen parameters for the corresponding acoustic
modes directly from the volume dependence of vibrational
frequencies obtained in quasiharmonic approximation. Our
results demonstrate that hcp iron remains stable in the studied
pressure interval and at low temperatures.
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APPENDIX A: DEPENDENCE OF FREE ENERGY ON
DEFORMATION FOR THE hcp LATTICE

Let us consider Eq. (6). For �F1/V0 we obtain

�F1

V0
= −P(η1 + η2 + η3). (A1)

Here and below components of the Lagrangian strain ten-
sor ηα are given in Voigt notations: 11 → 1, 22 → 2, 33 → 3,

23 → 4, 13 → 5, 12 → 6. The expressions for the others two
terms in Eq. (6) depend on crystal symmetry. The crystals
with the hexagonal symmetry (groups 622, 6/mmm, 6m2, and
6mm) have five SOECs Cαβ and ten TOECs Cαβγ [19]. The
elastic constants are given in Voigt notations. Using the results
of Refs. [28,29] we present the relations �F2/V0 and �F3/V0

for the hcp crystal in the following form:

�F2/V0 = 1
2C11

(
η2

1 + η2
2

) + C12η1η2 + 1
4 (C11 − C12)η2

6 + C13(η1η3 + η2η3) + 1
2C44

(
η2

4 + η2
5

) + 1
2C33η

2
3, (A2)

�F3/V0 = C111
(

1
6η3

1 + 1
2η2

2η1 − 1
4η1η

2
6 + 1

4η2η
2
6

) + C112
(

1
2η2

1η2 + 1
2η2

2η1 − 1
8η1η

2
6 − 1

8η2η
2
6

)
+C113

(
1
2η2

1η3 + 1
2η2

2η3 + 1
4η3η

2
6

) + C123
(
η1η2η3 − 1

4η3η
2
6

) + 1
2C133

× η2
3

(
η1 + η2

) + 1
2C144

(
η1η

2
4 + η2η

2
5 − η4η5η6

) + 1
2C155

(
η2η

2
4 + η1η

2
5 + η4η5η6

)
+C222

(
3
8η1η

2
6 + 1

6η3
2 − 1

2η2
2η1 − 1

8η2η
2
6

) + 1
6C333η

3
3 + 1

2C344
(
η3η

2
4 + η3η

2
5

)
. (A3)

Here Cαβ and Cαβγ are formally defined in Eq. (5) but the derivatives are calculated at volume V0 corresponding to the

pressure P.
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APPENDIX B: DEPENDENCE OF J ON DEFORMATION

Using Eq. (8), we present the Jacobian of the variables ri with respect to the variable Rj as the sum of terms up to the third
power of ηi j :

J − 1 = J1 + J2 + J3, (B1)

J1 = η1 + η2 + η3, (B2)

J2 = η1η2 + η1η3 + η2η3 − 1
2

(
η2

1 + η2
2 + η2

3 + η2
4 + η2

5 + η2
6

)
, (B3)

J3 = η1η2η3 + η4η5η6 + 1
2

(
η3

1 + η3
2 + η3

3 + η3η
2
5 − η1η

2
2 − η1η

2
3 − η1η

2
4 + η1η

2
5

+ η1η
2
6 − η2η

2
3 + η2η

2
4 − η2

1η2 − η2
1η3 − η2

2η3 − η2η
2
5 + η2η

2
6 + η3η

2
4 − η3η

2
6

)
. (B4)

APPENDIX C: GRÜNEISEN PARAMETERS OF LONG WAVE ACOUSTIC MODES FOR hcp CRYSTAL

Consider the vibrational mode with unit vector �N = {N1, N2, N3} in the direction of propagation and with the unit polarization
vector �U = {U1,U2,U3}. For a crystal with hcp symmetry, using Eq. (12) of [45], we have

γ j = − 1

2Kw

{
1 + 2w · [(S̃11 + S̃12)

(
U 2

1 + U 2
2

) + S̃13
(
1 + U 2

3

) + S̃33U
2
3

] + (S̃11 + S̃12 + S̃13)

× [
(C̃111 + C̃112)N2

1 U 2
1 + 2(C̃112 + C̃122)N1N2U1U2 + 2(C̃123 + C̃113)(N1N3U1U3 + N2N3U2U3)

+ (C̃122 + C̃222)N2
2 U 2

2 + 2C̃133N2
3 U 2

3 + C̃166(N1U2 + N2U1)2 + (C̃144 + C̃155)

×[
(N1U3 + N3U1)2 + (N2U3 + N3U2)2

] + C̃266(N1U2 + N2U1)2
] + (S̃33 + 2S̃23)

× [
C̃113

(
N2

1 U 2
1 + N2

2 U 2
2

) + C̃333N2
3 U 2

3 + 2C̃123N1N2U1U2 + 2C̃133(N1N3U1U3 + N2N3U2U3)

+ C̃366(N1U2 + N2U1)2 + C̃344[(N1U3 + N3U1)2 + (N2U3 + N3U2)2]
]}

. (C1)

Here w = ρυ2. ρ is the crystal density, ν is the sound velocity in the direction �N with polarization �U :

w = C̃11
(
N2

1 U 2
1 + N2

2 U 2
2

) + 2C̃12N1N2U1U2 + 2C̃13(N1N3U1U3 + N2N3U2U3) + C̃33N2
3 U 2

3

+ C̃44[(N2U3 + N3U2)2 + (N1U3 + N3U1)2] + C̃66(N1U2 + N2U1)2. (C2)

K = C̃11+C̃12+2C̃33−4C̃13

C̃33(C̃11+C̃12 )−2C̃2
13

is the volume compressibility [39].

The compliances S̃αβ are connected with the elastic constants by the following relations [46]:

S̃11 = C̃11C̃33 − C̃2
13

(C̃11 − C̃12)
[
2C̃2

13 − C̃33(C̃11 + C̃12)
] , S̃12 = C̃2

13 − C̃12C̃33

(C̃11 − C̃12)
[
2C̃2

13 − C̃33(C̃11 + C̃12)
] ,

S̃13 = C̃13[
2C̃2

13 − C̃33(C̃11 + C̃12)
] , S̃33 = C̃11 + C̃12

C̃33(C̃11 + C̃12) − 2C̃2
13

. (C3)

Besides, the additional elastic constants are expressed via the independent C̃αβ.. [28];

С̃66 = (С̃11 − С̃12)/2, С̃122 = С̃111 − С̃222 + С̃112, С̃166 = 3
4 С̃222 − 1

2 С̃111 − 1
4 С̃112,

С̃266 = 1
2 С̃111 − 1

4 С̃222 − 1
4 С̃112, С̃366 = 1

2 (С̃113 − С̃123), С̃456 = 1
2 (С̃155 − С̃144). (C4)

In the above expressions we do not take into account the differences between isothermal and adiabatic elastic constants and
compliances because the numerical calculations are done at T = 0 K.
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