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Strongly fluctuating moments in the high-temperature magnetic superconductor RbEuFe4As4
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The iron-based superconductor RbEuFe4As4 undergoes a magnetic phase transition deep in the supercon-
ducting state. We investigate the calorimetric response of RbEuFe4As4 single crystals of the magnetic and the
superconducting phase and its anisotropy to in-plane and out-of-plane magnetic fields. Whereas the unusual
cusplike anomaly associated with the magnetic transition is suppressed to lower temperatures for fields along
the crystallographic c axis, it rapidly transforms to a broad shoulder shifting to higher temperatures for in-plane
fields. We identify the cusp in the specific-heat data as a Berezinskii-Kosterlitz-Thouless transition with fine
features caused by the three-dimensional effects. The high-temperature shoulder in high magnetic fields marks a
crossover from a paramagnetically disordered to an ordered state. This observation is further supported by Monte
Carlo simulations of an easy-plane two-dimensional Heisenberg model and a fourth-order high-temperature
expansion, both of which agree qualitatively and quantitatively with the experimental findings.

DOI: 10.1103/PhysRevB.99.180502

While superconductivity and magnetic order usually are
mutually exclusive due to their competitive nature, a series
of novel materials that feature the coexistence of both phases
has recently emerged [1–3]. In order to address open ques-
tions on the coexistence/interplay/competition between these
two phases of matter, it is crucial to study model systems,
where both phenomena can be tuned independently from
each other. The Eu-based pnictide superconductors—where
superconductivity occurs within the Fe2As2 layers, while the
magnetism is hosted by the Eu2+ ions—provides such a
model system [3]. Furthermore, each phenomenon appears
to be relatively robust against perturbing the other one. In
fact, chemical substitution of the parent nonsuperconducting
compound EuFe2As2, e.g., with P (on the As site), K, or
Na (on the Eu site) induces superconductivity [4–6] (with a
maximum Tc of 23, 30, and 35 K, respectively), while only
smoothly suppressing the magnetic order temperature Tm ∼
19 K. Recent syntheses [7,8] of members of the 1144 fam-
ily (CsEuFe4As4 and RbEuFe4As4 with Tc in the mid-30-K
range) have opened new possibilities to tune the separation,
and hence the interaction between neighboring Eu layers.

In this Rapid Communication we report a detailed calori-
metric characterization of single-crystal RbEuFe4As4: In
particular, we investigate the anisotropic response near the
magnetic phase transition at Tm = 14.9 K (well within the
superconducting state, Tc = 37 K) to external fields. Whereas
earlier studies on polycrystalline samples [8] have suggested
that the magnetic transition might be of third (higher-than-
second) order, we demonstrate that the behavior of the spe-
cific heat is broadly consistent with a Berezinskii-Kosterlitz-
Thouless (BKT) [9–11] transition with the europium moments
confined to the plane normal to the crystallographic c axis
by crystal anisotropy. This finding is based on two main
observations: First, the variation of the specific heat C in
the vicinity of the phase transition agrees qualitatively and
quantitatively with that of a BKT transition. In particular, the

BKT scenario naturally explains the absence of a singularity
at the transition point. Second, the anisotropic response of the
specific heat to different field directions clearly points towards
a strong ordering of the moments within the Eu planes. The
reported findings are supported by numerical Monte Carlo
simulations of a classical anisotropic two-dimensional (2D)
Heisenberg spin system.

Generally, a BKT transition separates a high-temperature
phase consisting of a liquid of magnetic vortices and antivor-
tices from a low-temperature phase where only bound vortex-
antivortex pairs are present. In a truely 2D case the average
magnetic moment would thus be destroyed by spin-wave fluc-
tuations even in the ordered phase. Weak interlayer coupling,
as present in RbEuFe4As4, promotes a small average in-plane
moment formed at very large scales, while at smaller scale
the behavior remains two dimensional. As a result the true
phase transition in this system belongs to the universality
class of the three-dimensional (3D) anisotropic Heisenberg
model. However, these 3D effects are only relevant within
a narrow range near the transition temperature and add fine
features modifying the overall 2D behavior. Similar scenarios
are realized in several layered magnetic compounds, such as
K2CuF4 [12,13] and Rb2CrCl4 [14,15].

The appearance of the superconducting phase below Tc =
36.8(6) K and a magnetic phase below Tm = 14.9 K is
clearly revealed in the calorimetric data (for measurement
details please refer to Supplemental Material A [16] and
Refs. [17,18]) obtained on zero-field cooling from room
temperature down to 2 K (see Fig. 1). Whereas the super-
conducting transition temperature is extracted through an
entropy conserving construction [see Fig. 1(f)], we determine
the magnetic transition temperature from the position of the
specific-heat cusp, which does not show signs of a first- or
second-order phase transition. This observation is in line with
previously reported results on polycrystalline CsEuFe4As4 [7]
and RbEuFe4As4 [8], and should be contrasted to results on
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FIG. 1. Entropy change (C/T ) in single-crystal RbEuFe4As4 and its dependence on the magnetic field strength when applied (a) along
and (b) perpendicular to the crystallographic c axis. The superconducting transition at Tc = 37 K and the magnetic transition at 15 K are
clearly visible in the zero-field calorimetric scan (c), as obtained from a room-temperature cooldown. The microscope image (d) shows the ac
nanocalorimeter platform with a RbEuFe4As4 single crystal mounted at its center. Following the evolution of the superconducting transition
in an applied field, (e), allows one to extract the phase diagram (f) and to evaluate the superconducting anisotropy � = 1.8. The apparent
discrepancy in the extrapolated Tc is within the experimental uncertainty.

EuFe2As2 which show a singularity [19–22]. The variation
of the specific heat in the vicinity of the phase transition
can be expressed [23] as C = a±|t |−α + b(t ). The first term
captures the critical behavior near t = 0 with t = T/Tm − 1
the reduced temperature, a± the critical amplitudes for t < 0
(−) and t > 0 (+), and α the critical exponent. The second
term captures all regular contributions (e.g., from phonons)
and is typically modeled by a linear form b(t ) = b0 + b1t in a
small temperature range around the transition. A nondivergent
specific heat implies α < 0, and hence the constant b0 ≡
C(Tm) assumes the value of the specific heat at the transi-
tion temperature. For each branch t ≶ 0, we find a critical
exponent α ≈ −1, a highly unusual value. For the critical am-
plitudes we find a+ = 18.5 J/mol K and a− = 4.76 J/mol K,
respectively (see fits in Fig. 2).

Contrary to earlier speculations [8], we find that this
transition with nonsingular behavior is consistent with a
Berezinskii-Kosterlitz-Thouless transition of the Eu2+ mag-
netic moments weakly influenced by 3D effects. A uniaxial
anisotropy forces the moments to orient within the crystallo-
graphic ab plane, effectively reducing the moment’s degrees
of freedom to that of a 2D XY spin system. A more detailed
justification shall be given below. The down-bending of the
calorimetric data below ∼10 K is attributed to the quantum
nature of the high-spin Eu2+ moments [24–26]. In applied
fields, the superconducting transition temperature is gradually
suppressed; the effect is stronger if the field is applied along
the c axis. The rate of Tc suppression, dTc/dH |ab = 0.14 K/T
and dTc/dH |c = 0.25 K/T, provides a uniaxial supercon-
ducting anisotropy of � = 1.8, as shown in Fig. 1. These
values agree with complementary magnetization and trans-
port measurements [26,27] on single-crystal RbEuFe4As4. No
influence on the step height �C/T or the phase boundary
from magnetism is detected in fields up to 9 T. In high fields,
0.4 T < μ0H < 9 T, the cusp of the magnetic transition
evolves into a broad magnetic hump with its center moving to

higher temperatures. At the highest field (9 T) these magnetic
fluctuations extend up to about 100 K—far above the super-
conducting transition—and provide a natural explanation for
the reported negative, normal-state magnetoresistance [26].
We attribute this hump to a field-induced polarization of the
Eu2+ moments along the field direction and their associated
fluctuations.

For a more detailed analysis of the magnetic transition,
we performed low-field calorimetric scans in the vicinity of
Tm. Given the robust superconductivity (low dTc/dH) and
the clear separation of energy scales kBTm � kBTc, the low-
field changes in the calorimetric data can be attributed to the
magnetism. To accentuate these, we have to subtract an overall
background. However, subtracting a phonon-type background
turns out to be difficult because of other (in particular, su-
perconducting) contributions. We therefore subtract the 9-T
specific-heat data (field along the c axis). While the latter still
contains magnetic and superconducting contributions, both
are essentially featureless in the temperature range of interest
(see Fig. 1). As shown in Fig. 2, for small applied fields along
the c axis, the specific-heat cusp at the magnetic transition
shifts to lower temperatures while broadening slightly and a
shoulder in the specific heat appears on the high-temperature
side. Defining the phase boundary Tm(H ) as the position of
the cusp (see Fig. 3), a mean-field fit provides the empiric law
Tm(H ) = Tm[1 − (H/H0)2], with μ0H0 ≈ 0.93 T. This sug-
gests that at this field value the planar anisotropy is overcome
at all temperatures, i.e., at zero temperature the magnetic
moments fully align with the field normal to the ab plane.
A comparable saturation field can be deduced from low-
temperature magnetization curves [26]. For in-plane fields,
the position of the cusp is almost field independent, while its
size is readily suppressed (disappearing at 0.14 T) and a pro-
nounced shoulder appears on the high-temperature side. As
discussed below, we attribute the cusp to a weak 3D coupling
between Eu layers. The appearance of the high-temperature
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FIG. 2. Specific heat subtracted by the 9-T background curve around the magnetic transition upon applying fields from 0.02 to 0.3 T out
of plane (left) and in plane (right). The sharp kink indicating the ordering of the Eu2+ moments in the plane while the broad hump developing
at higher temperatures shows the gradual magnetization of the sample parallel to the applied field.

feature marks the onset of magnetic polarization, as discussed
above. This hump is not a sharp phase boundary but should
rather be understood as a crossover from a paramagnetically
disordered to an ordered state. Due to anisotropy effects, this
occurs more rapidly for in-plane than for out-of-plane fields.

Further insight into the response of RbEuFe4As4 is gained
through a detailed study of a model spin system describing the
key features of this compound, implemented using a Monte
Carlo [28,29] algorithm (see Supplemental Material B [16]).
More specifically, we have investigated the magnetic and
thermodynamic properties of a two-dimensional square lattice
of [Heisenberg-type, O(3)] classical spins si governed by the
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FIG. 3. Boundaries of the magnetic phase as obtained from mea-
sured and simulated calorimetric data. The transition to an ordered
magnetic phase is shown by green symbols, and agrees well with the
empiric law Hm = H0(1 − T/Tm )1/2, when the field is applied along
the c axis. A broad hump in the specific heat marks the crossover to a
field-driven polarized state of Eu2+ moments and is shown for fields
parallel (blue) and normal (red) to the c axis.

Hamiltonian

H = − J
∑

〈i, j〉
sis j + K

∑

i

(
2s2

i,z − 1
) − h

∑

i

si. (1)

Here, J defines the isotropic coupling between nearest-
neighbor spin pairs 〈i, j〉, and K introduces a uniaxial
anisotropy in spin space. The last term describes the coupling
to an external magnetic field h. Without limiting the generality
of the foregoing, we set |si| = 1. A similar approach has been
extensively used in the past to explore the 2D XY model (see
Refs. [30–34]).

The simulated system is purely two dimensional, and
hence neglects the coupling between neighboring Eu layers.
This choice is motivated by the observation that the parent
nonsuperconducting compound EuFe2As2 displays small in-
terlayer interactions compared to the intralayer interactions.
We expect the coupling between Eu layers to be even weaker
in RbEuFe4As4, as the separation between Eu layers doubled
and two superconducting layers are in between. The inter-
layer coupling becomes relevant only at temperatures near
the transition and for small magnetic fields. In the Hamilto-
nian (1), the spin anisotropy is modeled by a crystalline term
∝s2

i,z. The Eu2+ ions have a vanishing angular momentum
(L = 0), which excludes a crystalline anisotropy originating
from spin-orbit coupling. However, the coupling between the
Eu2+ moments and Fe d electrons—the latter are known
to feature an easy-plane anisotropy [35,36]—naturally leads
to such a term (see Supplemental Material D [16]). Other
sources of anisotropy such as dipolar interactions, considered
elsewhere [37], are neglected. The anisotropic term causes
the system to fall into the universality class of 2D XY spin
systems, where a BKT transition is known to occur at a finite
temperature Tm > 0 [38]. In contrast to our model, an isotropic
(in spin space) 3D Heisenberg model with anisotropic nearest-
neighbor coupling (J in plane versus J ′ = λJ between Eu
layers) fails to capture an anisotropic susceptibility, while
the isotropic (in spin space) two-dimensional Heisenberg
model does not undergo a phase transition at finite temper-
atures [39–42].

180502-3



K. WILLA et al. PHYSICAL REVIEW B 99, 180502(R) (2019)

12 14 16 18 20

0

2

4

6

8

H || c H || ab
0.075T
0.150T
0.225T
0.3T

μ0H = 0T 0.5T

C
-C

9T
[J

/K
m

ol
]

T[K]

(a)

10 20 30 40
-8

-6

-4

-2

0

2

4

6

8

10 20 30 40
-8

-6

-4

-2

0

2

4

6

8

C
-C

9T
[J

/m
ol

K
]

T[K]

μ0H = 0T
H || c H || ab

0.225T
0.5T
1T
2T

(b)

H || ab
0T 0.4T
1T 3T
5T 7T

C
-C

[J
/m
ol
K
]

T [K]

superconducting
transition

FIG. 4. Simulated specific heat of the anisotropic 2D Heisenberg spin system and its dependence on temperature for different magnetic
fields and their orientations; red (in plane), blue (out of plane), and black (zero field). For all curves the 9-T background data is subtracted
[conversion to real units using Eq. (2)]. (a) shows the low-field features and their anisotropic response near the magnetic transition. The specific
heat at larger fields, and over a wider temperature range, is shown in (b). The experimental signature of the superconducting transition near
37 K (see inset) is not captured in the simulations.

We investigate several response functions in this sys-
tem: the (direction-dependent) magnetic susceptibility χα (T )
(α = x, y, z), the specific heat C(T, h), the total magneti-
zation S(T, h) = ∑

i si, and the spin-spin correlation func-
tion G(r) ≡ 〈s(0)s(r)〉. For convenience we introduce the
temperature scale T0 ≡ J/kB. From high-temperature simu-
lations (typically T/T0 ∈ [4, 9]), we fit the inverse magnetic
susceptibility to a Curie-Weiss law χ−1

α (T ) ∝ T − �C,α to
extract the Curie temperatures �C,α . A comparison between
the measured and the simulated susceptibility can be found in
Supplemental Material C3 [16]. Any nonzero value of K re-
sults in an anisotropy between the in-plane (�C,x) and out-of-
plane (�C,z) Curie temperature. By comparing the anisotropy
ratio �C,x/�C,z with the reported [26] value of 1.075 for
RbEuFe4As4 obtained from magnetization measurements, we
find an agreement for the specific value K = 0.1J , where
�C,x = 1.20T0 and �C,z = 1.12T0. All further simulations are
performed for this anisotropy parameter. The influence of the
anisotropy parameter on the shape of C(T ) dependence at h =
0 and the location of the cusp is considered in Supplemental
Material C4 [16].

In zero magnetic field, the simulated specific heat shows
a clear cusp at Tm/T0 = 0.7, a value that we identify with
the transition temperature Tm = 14.9 K of the calorimetric
experiment. It is known, however, that the true BKT transition
temperature TBKT is slightly below the specific-heat cusp. The
correlation function is expected to decay as a power law r−1/4

at the transition, providing a value TBKT = 0.66T0, i.e., about
6% below the cusp in the specific heat. At the same time, the
correlation function decays as G(r) ∝ exp[−r/ζ (T )], with
a correlation length ln[ζ (T )] ∝ (T − TBKT)−1/2 that diverges
upon approaching the transition from above. Evaluation of
ζ (T ) and its singular behavior yields a consistent result (see
Supplemental Material C2 [16]).

At finite fields, the calorimetric and magnetic responses
strongly depend on the field orientation. For fields applied
along the spin plane, the U (1) circular degeneracy is lifted

and no BKT transition occurs. The system’s response follows
a typical ferromagnetic behavior (gradual magnetization upon
cooling) reaching a fully ordered state at lowest temperatures.
The specific heat gradually broadens and shifts to higher
temperatures. On the contrary, a field applied perpendicular
to the spin lattice preserves the U (1) rotational symmetry and
the BKT transition shifts to lower temperatures. Here, the
magnetic field acts as an anisotropic term favoring the spin
orientation along the z axis, hence retarding the transition
to an in-plane spin orientation. The numerical simulations
are in excellent qualitative and quantitative agreement with
the experimental data (see Figs. 2 and 4). Additionally,
the simulations reproduce the behavior of the magnetization
and the susceptibility which is discussed in Supplemental
Material C3 [16]. The phase boundaries extracted from the
simulation data (converted to appropriate units) are shown in
Fig. 3. The green curve corresponds to the suppression of the
BKT transition due to a field normal to the spin plane. The
two other curves correspond to a crossover where magnetic
moments are polarized along the field (blue, H‖c and red,
H‖ab). The simulation result reproduces the experimental
data extremely well, with only minor deviations for low
fields along the ab plane. This difference is attributed to 3D
effects close to the transition that are not accounted for in the
simulations.

Having identified realistic values for the dimensionless
parameters T/T0 (from calorimetry) and K/J (from high-
temperature magnetization), we can rewrite the model Hamil-
tonian in Eq. (1) in a dimensional form

Hreal = − J
∑

〈i, j〉
mim j + 2K

∑

i

m2
i,z − HM, (2)

where a constant shift has been omitted. Here, M = ∑
i mi

denotes the total magnetization of the individual constituents
|mi| ≈ 7μB, J = 0.6 × 10−23 J/μ2

B (=10K) providing the
relevant energy scale for the ferromagnetic interactions
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(the anisotropy). It is useful to express the simulated fields
h in dimensional units via h → μ0H = 4.53h[T].

The numerical results are backed up by a high-temperature
expansion of the model described by Eq. (1) (see Supplemen-
tal Material C1 [16]). Here, the anisotropy ratio in the Curie
temperature takes the simple form

�C,x

�C,z
= 1 + K/5J

1 − 2K/5J
, (3)

and yields the value 1.06 for K = 0.1J . This relation reiterates
that for an easy-plane anisotropy K > 0 the ratio of Curie
temperatures �C,x/�C,z is larger than unity, whereas an easy-
axis system (K < 0) has �C,x/�C,z < 1. Note that the sign of
the anisotropy may change for different Eu-containing com-
pounds. We find that the presumed “high-temperature” range
T/T0 ∈ [4, 9] (corresponding to 50–200 K) is only captured
properly when the high-temperature expansion is taken to
quartic order in βH [the susceptibility is expanded to cubic
order in β = (kBT )−1]. This explains the noticeable discrep-
ancy between the “exact” values �C,x/T0 = 4/3 + 4K/15J
(=1.36) and �C,z/T0 = 4/3 − 8K/15J (=1.28) obtained in
the high-temperature limit and their numerical counterparts
1.20 and 1.12 (see above).

We have assumed that the third dimension, perpendicular
to the easy plane, plays a marginal role in the calorimetric
response of the magnetic order. A weak coupling J ′ = λJ
(|λ| � 1) between ferromagnetically ordered Eu layers will
add a fine structure on top of the leading features. Very
close to the transition, when the correlation length ζ (T )
reaches the in-plane length scale 1/

√
λ at the temperature [38]

T − Tm ∼ Tm ln−2(1/λ), the three-dimensional effects lead to
a full ordering of the system. On general ground, these effects
should sharpen the specific-heat cusp in close vicinity of the
transition [31,34]. The nature of this three-dimensional order
depends on the interlayer interactions: While a simple cou-
pling J ′ between neighboring layers results in a trivial ferro-
(J ′ > 0) or A-type antiferromagnet (J ′ < 0), more compli-
cated helical and fanlike orders can be found if longer-range
interactions along z are considered [43,44]. In the latter cases
there is the typical in-plane magnetic field scale B3D = J ′/|m|
aligning the moments in different layers in the same directions
and eliminating the magnetic transition.

In conclusion, we have investigated the magnetic transition
in RbEuFe4As4 by specific-heat measurements and by Monte
Carlo simulations. The magnetic transition at 14.9 K shifts

to lower temperatures in fields along the c axis. This is well
reproduced by the simulations of the 2D anisotropic Heisen-
berg system. This allows us to identify the ab plane as the
magnetic easy plane and the specific-heat curve indeed shows
a dominant BKT character. A magnetic field normal to the
Eu layers shifts the magnetic transition to lower temperature.
Applying the field along the Eu planes lifts the rotational
symmetry required for a BKT transition. The latter is replaced
by a broad crossover from a paramagnetically disordered to a
field-ordered state. With a quantitative comparison between
our simulation and experimental data, we have extracted the
coupling constants J = 0.6 × 10−23 J/μ2

B and the anisotropy
K = 0.1J . The extraction of the phase boundary of the BKT
transition and the crossover lines for in- and out-of-plane
fields further underline the excellent agreement between ex-
periment and simulations.

The unique feature of RbEuFe4As4 is that the magnetic
transition takes place deep inside the superconducting phase.
We expect that the superconductivity has almost no influence
on the intralayer exchange interaction between Eu moments
and may only modify the interlayer interactions. Therefore,
the direct impact of superconductivity on magnetism is likely
to be minor. The effects caused by the opposite influence
of magnetism on superconductivity are expected to be more
pronounced. The presence of the magnetic subsystem with a
large susceptibility drastically modifies the macroscopic mag-
netic response of the superconducting material in the mixed
state [45]. The source of the microscopic interaction between
the magnetic and superconducting subsystems is an exchange
coupling between the Eu moments and Cooper pairs. Even
though this coupling is not strong enough to completely de-
stroy superconductivity, such as, e.g., in ErRh4B4 [46], it may
cause a noticeable suppression of superconducting parameters
at the magnetic transition. Having established the nature of the
robust magnetic order, this work serves as a starting point for
further exploring the phenomena related to the influence of
magnetism on the superconducting state.
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[2] M. L. Kulić and A. I. Buzdin, Coexistence of singlet super-
conductivity and magnetic order in bulk magnetic supercon-
ductors and SF heterostructures, in Superconductivity: Conven-
tional and Unconventional Superconductors, edited by K. H.
Bennemann and J. B. Ketterson (Springer, Berlin, 2008), p. 163.

[3] S. Zapf and M. Dressel, Europium-based iron pnictides: A
unique laboratory for magnetism, superconductivity and struc-
tural effects, Rep. Prog. Phys. 80, 016501 (2017).

[4] G. Cao, S. Xu, Z. Ren, S. Jiang, C. Feng, and Z. Xu, Su-
perconductivity and ferromagnetism in EuFe2(As1−xPx )2, J.
Phys.: Condens. Matter 23, 464204 (2011); H. S. Jeevan,
D. Kasinathan, H. Rosner, and P. Gegenwart, Interplay of
antiferromagnetism, ferromagnetism, and superconductivity in
EuFe2(As1−xPx )2 single crystals, Phys. Rev. B 83, 054511
(2011).

[5] H. S. Jeevan, Z. Hossain, D. Kasinathan, H. Rosner,
C. Geibel, and P. Gegenwart, High-temperature supercon-
ductivity in Eu0.5K0.5Fe2As2, Phys. Rev. B 78, 092406
(2008).

180502-5

https://doi.org/10.1088/0034-4885/64/8/202
https://doi.org/10.1088/0034-4885/64/8/202
https://doi.org/10.1088/0034-4885/64/8/202
https://doi.org/10.1088/0034-4885/64/8/202
https://doi.org/10.1088/0034-4885/80/1/016501
https://doi.org/10.1088/0034-4885/80/1/016501
https://doi.org/10.1088/0034-4885/80/1/016501
https://doi.org/10.1088/0034-4885/80/1/016501
https://doi.org/10.1088/0953-8984/23/46/464204
https://doi.org/10.1088/0953-8984/23/46/464204
https://doi.org/10.1088/0953-8984/23/46/464204
https://doi.org/10.1088/0953-8984/23/46/464204
https://doi.org/10.1103/PhysRevB.83.054511
https://doi.org/10.1103/PhysRevB.83.054511
https://doi.org/10.1103/PhysRevB.83.054511
https://doi.org/10.1103/PhysRevB.83.054511
https://doi.org/10.1103/PhysRevB.78.092406
https://doi.org/10.1103/PhysRevB.78.092406
https://doi.org/10.1103/PhysRevB.78.092406
https://doi.org/10.1103/PhysRevB.78.092406


K. WILLA et al. PHYSICAL REVIEW B 99, 180502(R) (2019)

[6] Y. Qi, Z. Gao, L. Wang, D. Wang, X. Zhang, and Y. Ma, Super-
conductivity at 34.7 K in the iron arsenide Eu0.7Na0.3Fe2As2,
New J. Phys. 10, 123003 (2008).

[7] Y. Liu, Y.-B. Liu, Q. Chen, Z.-T. Tang, W.-H. Jiao, Q. Tao,
Z.-A. Xu, and G.-H. Cao, A new ferromagnetic superconductor:
CsEuFe4As4, Sci. Bull. 61, 1213 (2016).

[8] Y. Liu, Y.-B. Liu, Z.-T. Tang, H. Jiang, Z.-C. Wang, A.
Ablimit, W.-H. Jiao, Q. Tao, C.-M. Feng, Z.-A. Xu, and
G.-H. Cao, Superconductivity and ferromagnetism in hole-
doped RbEuFe4As4, Phys. Rev. B 93, 214503 (2016).

[9] V. L. Berezinskii, Destruction of long-range order in one-
dimensional and two-dimensional systems having a continuous
symmetry group. I. Classical systems, Zh. Eksp. Teor. Fiz. 59,
907 (1971) [Sov. Phys. JETP 32, 493 (1971)].

[10] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability
and phase transitions in two-dimensional systems, J. Phys. C
6, 1181 (1973).

[11] J. M. Kosterlitz, The critical properties of the two-dimensional
xy model, J. Phys. C 7, 1046 (1974).

[12] K. Hirakawa, H. Yoshizawa, and K. Ubukoshi, Neutron
scattering study of the phase transition in two-dimensional
planar ferromagnet K2CuF4, J. Phys. Soc. Jpn. 51, 2151
(1982).

[13] K. Hirakawa, Kosterlitz-Thouless transition in two-dimensional
planar ferromagnet K2CuF4 (invited), J. Appl. Phys. 53, 1893
(1982).

[14] C. A. Cornelius, P. Day, P. J. Fyne, M. T. Hutchings, and P. J.
Walker, Temperature and field dependence of the magnetisation
of Rb2CrCl4: A two-dimensional easy-plane ionic ferromagnet,
J. Phys. C: Solid State Phys. 19, 909 (1986).

[15] S. Bramwell, P. Holdsworth, and M. Hutchings, Static and
dynamic magnetic properties of Rb2CrCl4: Ideal 2D-XY be-
haviour in a layered magnet, J. Phys. Soc. Jpn. 64, 3066
(1995).

[16] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.99.180502 for a description of the experi-
mental and numerical methods, the anisotropic 2D Heisenberg
model, its high-temperature expansion, the scaling of the mag-
netic correlation, the susceptibility and magnetisation, and the
quantitative role of the magnetic anisotropy.

[17] S. Tagliati, V. M. Krasnov, and A. Rydh, Differential
membrane-based nanocalorimeter for high-resolution measure-
ments of low-temperature specific heat, Rev. Sci. Instrum. 83,
055107 (2012).

[18] K. Willa, Z. Diao, D. Campanini, U. Welp, R. Divan, M. Hudl,
Z. Islam, W.-K. Kwok, and A. Rydh, Nanocalorimeter platform
for in situ specific heat measurements and x-ray diffraction at
low temperature, Rev. Sci. Instrum. 88, 125108 (2017).

[19] H. S. Jeevan, Z. Hossain, D. Kasinathan, H. Rosner, C.
Geibel, and P. Gegenwart, Electrical resistivity and specific
heat of single-crystalline EuFe2As2: A magnetic homologue of
SrFe2As2, Phys. Rev. B 78, 052502 (2008).

[20] Z. Ren, Z. Zhu, S. Jiang, X. Xu, Q. Tao, C. Wang, C. Feng,
G. Cao, and Z. Xu, Antiferromagnetic transition in EuFe2As2:
A possible parent compound for superconductors, Phys. Rev. B
78, 052501 (2008).

[21] U. B. Paramanik, P. L. Paulose, S. Ramakrishnan, A. K. Nigam,
C. Geibel, and Z. Hossain, Magnetic and superconducting
properties of Ir-doped EuFe2As2, Supercond. Sci. Technol. 27,
075012 (2014).

[22] A. Oleaga, A. Salazar, A. Thamizhavel, and S. Dhar, Thermal
properties and Ising critical behavior in EuFe2As2, J. Alloys
Compd. 617, 534 (2014).

[23] J. Wosnitza, From thermodynamically driven phase transitions
to quantum critical phenomena, J. Low Temp. Phys. 147, 249
(2007).

[24] M. Bouvier, P. Lethuillier, and D. Schmitt, Specific heat in
some gadolinium compounds. I. Experimental, Phys. Rev. B 43,
13137 (1991).

[25] D. C. Johnston, R. J. McQueeney, B. Lake, A. Honecker,
M. E. Zhitomirsky, R. Nath, Y. Furukawa, V. P. Antropov,
and Y. Singh, Magnetic exchange interactions in BaMn2As2: A
case study of the J1-J2-Jc Heisenberg model, Phys. Rev. B 84,
094445 (2011).

[26] M. P. Smylie, K. Willa, J.-K. Bao, K. Ryan, Z. Islam, H. Claus,
Y. Simsek, Z. Diao, A. Rydh, A. E. Koshelev, W.-K. Kwok,
D. Y. Chung, M. G. Kanatzidis, and U. Welp, Anisotropic su-
perconductivity and magnetism in single-crystal RbEuFe4As4,
Phys. Rev. B 98, 104503 (2018).

[27] V. S. Stolyarov, A. Casano, M. A. Belyanchikov, A. S.
Astrakhantseva, S. Y. Grebenchuk, D. S. Baranov, I. A.
Golovchanskiy, I. Voloshenko, E. S. Zhukova, B. P. Gorshunov,
A. V. Muratov, V. V. Dremov, L. Y. Vinnikov, D. Roditchev,
Y. Liu, G. H. Cao, M. Dressel, and E. Uykur, Unique in-
terplay between superconducting and ferromagnetic orders in
EuRbFe4As4, Phys. Rev. B 98, 140506(R) (2018).

[28] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, Equation of state calculations by fast
computing machines, J. Chem. Phys. 21, 1087 (1953).

[29] W. K. Hastings, Monte Carlo sampling methods using Markov
chains and their applications, Biometrika 57, 97 (1970).

[30] J. Tobochnik and G. V. Chester, Monte Carlo study of the planar
spin model, Phys. Rev. B 20, 3761 (1979).

[31] W. Janke and T. Matsui, Crossover in the XY model from three
to two dimensions, Phys. Rev. B 42, 10673 (1990).

[32] R. Gupta and C. F. Baillie, Critical behavior of the two-
dimensional XY model, Phys. Rev. B 45, 2883 (1992).

[33] A. Cuccoli, V. Tognetti, P. Verrucchi, and R. Vaia, Quantum
effects on the Berezinskii-Kosterlitz-Thouless transition in the
ferromagnetic two-dimensional XXZ model, Phys. Rev. B 51,
12840 (1995).

[34] P. Sengupta, A. W. Sandvik, and R. R. P. Singh, Specific heat of
quasi-two-dimensional antiferromagnetic Heisenberg models
with varying interplanar couplings, Phys. Rev. B 68, 094423
(2003).

[35] X. F. Wang, T. Wu, G. Wu, H. Chen, Y. L. Xie, J. J. Ying, Y. J.
Yan, R. H. Liu, and X. H. Chen, Anisotropy in the Electrical
Resistivity and Susceptibility of Superconducting BaFe2As2

Single Crystals, Phys. Rev. Lett. 102, 117005 (2009).
[36] W. R. Meier, T. Kong, U. S. Kaluarachchi, V. Taufour, N. H.

Jo, G. Drachuck, A. E. Böhmer, S. M. Saunders, A. Sapkota,
A. Kreyssig, M. A. Tanatar, R. Prozorov, A. I. Goldman, F. F.
Balakirev, A. Gurevich, S. L. Bud’ko, and P. C. Canfield,
Anisotropic thermodynamic and transport properties of single-
crystalline CaKFe4As4, Phys. Rev. B 94, 064501 (2016).

[37] Y. Xiao, Y. Su, W. Schmidt, K. Schmalzl, C. M. N. Kumar, S.
Price, T. Chatterji, R. Mittal, L. J. Chang, S. Nandi, N. Kumar,
S. K. Dhar, A. Thamizhavel, and T. Brueckel, Field-induced
spin reorientation and giant spin-lattice coupling in EuFe2As2,
Phys. Rev. B 81, 220406(R) (2010).

180502-6

https://doi.org/10.1088/1367-2630/10/12/123003
https://doi.org/10.1088/1367-2630/10/12/123003
https://doi.org/10.1088/1367-2630/10/12/123003
https://doi.org/10.1088/1367-2630/10/12/123003
https://doi.org/10.1007/s11434-016-1139-2
https://doi.org/10.1007/s11434-016-1139-2
https://doi.org/10.1007/s11434-016-1139-2
https://doi.org/10.1007/s11434-016-1139-2
https://doi.org/10.1103/PhysRevB.93.214503
https://doi.org/10.1103/PhysRevB.93.214503
https://doi.org/10.1103/PhysRevB.93.214503
https://doi.org/10.1103/PhysRevB.93.214503
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1143/JPSJ.51.2151
https://doi.org/10.1143/JPSJ.51.2151
https://doi.org/10.1143/JPSJ.51.2151
https://doi.org/10.1143/JPSJ.51.2151
https://doi.org/10.1063/1.330706
https://doi.org/10.1063/1.330706
https://doi.org/10.1063/1.330706
https://doi.org/10.1063/1.330706
https://doi.org/10.1088/0022-3719/19/6/011
https://doi.org/10.1088/0022-3719/19/6/011
https://doi.org/10.1088/0022-3719/19/6/011
https://doi.org/10.1088/0022-3719/19/6/011
https://doi.org/10.1143/JPSJ.64.3066
https://doi.org/10.1143/JPSJ.64.3066
https://doi.org/10.1143/JPSJ.64.3066
https://doi.org/10.1143/JPSJ.64.3066
http://link.aps.org/supplemental/10.1103/PhysRevB.99.180502
https://doi.org/10.1063/1.4717676
https://doi.org/10.1063/1.4717676
https://doi.org/10.1063/1.4717676
https://doi.org/10.1063/1.4717676
https://doi.org/10.1063/1.5016592
https://doi.org/10.1063/1.5016592
https://doi.org/10.1063/1.5016592
https://doi.org/10.1063/1.5016592
https://doi.org/10.1103/PhysRevB.78.052502
https://doi.org/10.1103/PhysRevB.78.052502
https://doi.org/10.1103/PhysRevB.78.052502
https://doi.org/10.1103/PhysRevB.78.052502
https://doi.org/10.1103/PhysRevB.78.052501
https://doi.org/10.1103/PhysRevB.78.052501
https://doi.org/10.1103/PhysRevB.78.052501
https://doi.org/10.1103/PhysRevB.78.052501
https://doi.org/10.1088/0953-2048/27/7/075012
https://doi.org/10.1088/0953-2048/27/7/075012
https://doi.org/10.1088/0953-2048/27/7/075012
https://doi.org/10.1088/0953-2048/27/7/075012
https://doi.org/10.1016/j.jallcom.2014.08.094
https://doi.org/10.1016/j.jallcom.2014.08.094
https://doi.org/10.1016/j.jallcom.2014.08.094
https://doi.org/10.1016/j.jallcom.2014.08.094
https://doi.org/10.1007/s10909-007-9309-x
https://doi.org/10.1007/s10909-007-9309-x
https://doi.org/10.1007/s10909-007-9309-x
https://doi.org/10.1007/s10909-007-9309-x
https://doi.org/10.1103/PhysRevB.43.13137
https://doi.org/10.1103/PhysRevB.43.13137
https://doi.org/10.1103/PhysRevB.43.13137
https://doi.org/10.1103/PhysRevB.43.13137
https://doi.org/10.1103/PhysRevB.84.094445
https://doi.org/10.1103/PhysRevB.84.094445
https://doi.org/10.1103/PhysRevB.84.094445
https://doi.org/10.1103/PhysRevB.84.094445
https://doi.org/10.1103/PhysRevB.98.104503
https://doi.org/10.1103/PhysRevB.98.104503
https://doi.org/10.1103/PhysRevB.98.104503
https://doi.org/10.1103/PhysRevB.98.104503
https://doi.org/10.1103/PhysRevB.98.140506
https://doi.org/10.1103/PhysRevB.98.140506
https://doi.org/10.1103/PhysRevB.98.140506
https://doi.org/10.1103/PhysRevB.98.140506
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1103/PhysRevB.20.3761
https://doi.org/10.1103/PhysRevB.20.3761
https://doi.org/10.1103/PhysRevB.20.3761
https://doi.org/10.1103/PhysRevB.20.3761
https://doi.org/10.1103/PhysRevB.42.10673
https://doi.org/10.1103/PhysRevB.42.10673
https://doi.org/10.1103/PhysRevB.42.10673
https://doi.org/10.1103/PhysRevB.42.10673
https://doi.org/10.1103/PhysRevB.45.2883
https://doi.org/10.1103/PhysRevB.45.2883
https://doi.org/10.1103/PhysRevB.45.2883
https://doi.org/10.1103/PhysRevB.45.2883
https://doi.org/10.1103/PhysRevB.51.12840
https://doi.org/10.1103/PhysRevB.51.12840
https://doi.org/10.1103/PhysRevB.51.12840
https://doi.org/10.1103/PhysRevB.51.12840
https://doi.org/10.1103/PhysRevB.68.094423
https://doi.org/10.1103/PhysRevB.68.094423
https://doi.org/10.1103/PhysRevB.68.094423
https://doi.org/10.1103/PhysRevB.68.094423
https://doi.org/10.1103/PhysRevLett.102.117005
https://doi.org/10.1103/PhysRevLett.102.117005
https://doi.org/10.1103/PhysRevLett.102.117005
https://doi.org/10.1103/PhysRevLett.102.117005
https://doi.org/10.1103/PhysRevB.94.064501
https://doi.org/10.1103/PhysRevB.94.064501
https://doi.org/10.1103/PhysRevB.94.064501
https://doi.org/10.1103/PhysRevB.94.064501
https://doi.org/10.1103/PhysRevB.81.220406
https://doi.org/10.1103/PhysRevB.81.220406
https://doi.org/10.1103/PhysRevB.81.220406
https://doi.org/10.1103/PhysRevB.81.220406


STRONGLY FLUCTUATING MOMENTS IN THE HIGH- … PHYSICAL REVIEW B 99, 180502(R) (2019)

[38] S. Hikami and T. Tsuneto, Phase transition of quasi-two dimen-
sional planar system, Progr. Theor. Phys. 63, 387 (1980).

[39] A. Polyakov, Interaction of goldstone particles in two dimen-
sions. Applications to ferromagnets and massive Yang-Mills
fields, Phys. Lett. B 59, 79 (1975).

[40] E. Brézin and J. Zinn-Justin, Renormalization of the Nonlinear
σ Model in 2 + ε Dimensions—Application to the Heisenberg
Ferromagnets, Phys. Rev. Lett. 36, 691 (1976); Spontaneous
breakdown of continuous symmetries near two dimensions,
Phys. Rev. B 14, 3110 (1976).

[41] D. R. Nelson and R. A. Pelcovits, Momentum-shell recursion
relations, anisotropic spins, and liquid crystals in 2 + ε dimen-
sions, Phys. Rev. B 16, 2191 (1977).

[42] S. H. Shenker and J. Tobochnik, Monte Carlo renormalization-
group analysis of the classical Heisenberg model in two dimen-
sions, Phys. Rev. B 22, 4462 (1980).

[43] T. Nagamiya, K. Nagata, and Y. Kitano, Magnetization pro-
cess of a screw spin system, Prog. Theor. Phys. 27, 1253
(1962).

[44] D. C. Johnston, Magnetic structure and magnetization of heli-
cal antiferromagnets in high magnetic fields perpendicular to
the helix axis at zero temperature, Phys. Rev. B 96, 104405
(2017).

[45] V. K. Vlasko-Vlasov, A. E. Koshelev, M. Smylie, J.-K. Bao,
D. Y. Chung, M. G. Kanatzidis, U. Welp, and W.-K. Kwok, Self-
induced magnetic flux structure in the magnetic superconductor
RbEuFe4As4, Phys. Rev. B 99, 134503 (2019).

[46] M. B. Maple, H. C. Hamaker, L. D. Woolf, H. B. Mackay, Z.
Fisk, W. Odoni, and H. R. Ott, in Crystalline Electric Field and
Structural Effects in f-Electron Systems, edited by J. E. Crow,
R. P. Guertin, and T. W. Mihalisin (Plenum, New York, 1980),
pp. 533–543.

180502-7

https://doi.org/10.1143/PTP.63.387
https://doi.org/10.1143/PTP.63.387
https://doi.org/10.1143/PTP.63.387
https://doi.org/10.1143/PTP.63.387
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1103/PhysRevLett.36.691
https://doi.org/10.1103/PhysRevLett.36.691
https://doi.org/10.1103/PhysRevLett.36.691
https://doi.org/10.1103/PhysRevLett.36.691
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1103/PhysRevB.16.2191
https://doi.org/10.1103/PhysRevB.16.2191
https://doi.org/10.1103/PhysRevB.16.2191
https://doi.org/10.1103/PhysRevB.16.2191
https://doi.org/10.1103/PhysRevB.22.4462
https://doi.org/10.1103/PhysRevB.22.4462
https://doi.org/10.1103/PhysRevB.22.4462
https://doi.org/10.1103/PhysRevB.22.4462
https://doi.org/10.1143/PTP.27.1253
https://doi.org/10.1143/PTP.27.1253
https://doi.org/10.1143/PTP.27.1253
https://doi.org/10.1143/PTP.27.1253
https://doi.org/10.1103/PhysRevB.96.104405
https://doi.org/10.1103/PhysRevB.96.104405
https://doi.org/10.1103/PhysRevB.96.104405
https://doi.org/10.1103/PhysRevB.96.104405
https://doi.org/10.1103/PhysRevB.99.134503
https://doi.org/10.1103/PhysRevB.99.134503
https://doi.org/10.1103/PhysRevB.99.134503
https://doi.org/10.1103/PhysRevB.99.134503

