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Theory of spin transport through an antiferromagnetic insulator
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A theoretical formulation for spin transport through an antiferromagnetic (AF) insulator is presented in
a case that is driven/detected by the direct/inverse spin Hall effect in two heavy-metal contacts. The spin
signal is shown to be transferred by the ferromagnetic correlation function of the antiferromagnet, which is
calculated based on a magnon representation. To cover the high-temperature regimes, we include an auxiliary
field representing short AF correlations and a temperature-dependent damping due to magnon scattering. The
diffusion length for spin is long, close to the degeneracy of the two AF magnons, and has a maximum as a
function of temperature near the Néel transition.
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Spin current injection to various materials has been a
crucial issue in spintronics. Of particular recent interest is spin
current propagation in antiferromagnetic insulators (AFIs).
Being a common material, AFIs have practical advantages
in the choice of materials. Moreover, insertion of an anti-
ferromagnetic (AF) layer between a ferromagnet and normal
metal was found to enhance spin current injection efficiency
[1,2]. Experimentally, spin current injection and propagation
efficiency in AF insulators is reported to vanish or to be very
small at T = 0, and to have a peak near the Néel transition
temperature TN, reducing at higher temperatures [2,3].

The transmission of spin information in antiferromagnets
is an intriguing issue as fundamental science. To describe
spin current injection in antiferromagnets, two issues need to
be clarified, namely, to what degree of freedom the incident
spin current couples, and how it propagates. Obviously, rigid
AF order does not react to spin current injection having a
particular spin polarization, and fluctuation is essential. There
are two branches of AF magnons, corresponding to opposite
spin angular momentum, and the coupling of the two modes is
essential, as noted previously [4,5]. The amplitude and decay
length of spin current propagation are expected to depend
strongly on the temperature because of the Bose distribution
function representing the number of AF magnon excitations.
In fact, the spin current amplitude was found experimentally
to have a peak near TN, and this feature was explained based
on a phenomenological theory using mixing conductance [2].
A sharp peak at TN was predicted in another theory evaluating
fluctuations around a mean-field solution in the spatially
uniform case [6]. The frequency dependence of the magnon
propagation length was theoretically studied in Ref. [3], al-
though the relation between AF magnon propagation and spin
current propagation remained untouched.

The objective of the present Rapid Communication is to
provide a transparent formalism to describe the propagation
of spin information through an AF insulator. We do not rely
on the conventional spin current picture, as it is ambiguous
due to the nonconservation of spin current. Moreover, in-
troducing phenomenological parameters such as spin mixing

conductance makes a straightforward understanding of the
phenomena difficult. Here, we follow the linear response
theory for an applied electric field by treating the exchange
interaction between spins in heavy metals and antiferro-
magnets perturbatively. The description is an application of
Ref. [7], indicating that spin current propagation is equivalent
to the correlation function of ferromagnetic (FM) spin fluctua-
tion or magnetic susceptibility. The ferromagnetic fluctuation
of antiferromagnets is represented by an exchange or pair
creation/annihilation of two AF magnons. The spin informa-
tion is therefore transferred by a magnon pair correlation prop-
agator, just in the same manner as the magnetic susceptibility
in FM metals is represented by electron-hole pair propagation.
The mismatch of frequencies of the FM excitation of GHz and
of the AF one of THz therefore does not matter as the magnon
pair correlation can absolve or emit low external frequencies.
Moreover, shortening the AF correlation at high tempera-
tures does not necessarily block spin current propagation,
because, on the contrary, the FM fluctuation grows. Instead,
the magnon lifetime at high temperatures is greatly reduced by
strong magnon scattering [8], resulting in a significant reduc-
tion of spin current propagation. As a result, the propagation
efficiency has a peak near TN, although the peak position,
determined by the competition between the fluctuation and
damping, does not necessarily coincide with TN.

The correlation of spin transport with magnetic correlation
has been pointed out experimentally in Refs. [2,9,10]. In the
case of spin pumping into a heavy metal, the efficiency of
spin current injection was argued to be determined by the
imaginary part of the magnetic susceptibility of a heavy metal
divided by an external angular frequency [11], although their
treatment of the external angular frequency was theoretically
not comprehensive

Let us develop step by step a linear response theory to
describe the nonlocal direct and inverse spin Hall effects
separated by an AFI (Fig. 1) [12]. The key interaction is the
coupling between heavy metals (HMs) and AFI at the inter-
faces. Here, we consider an sd exchange interaction between
electron spin polarization in the HM and FM components of
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FIG. 1. Setup of nonlocal direct and inverse spin Hall effects.
HM1 and HM2 are heavy-metal leads for spin current generation and
detection, respectively. In the conventional picture, “spin current”
generated by the spin Hall effect in HM1 is transmitted through
AFI and measured at HM2 by the inverse spin Hall effect. The
coupling between HM1 and HM2 at interfaces I1 and I2, respectively,
is induced by the interface exchange interaction JI between the
spin polarization in HMs and FM spin component � of AFI. “Spin
current propagation” through AFI is expressed by the FM correlation
function C(r, r′) of �. The moment � is related to the Néel vector n as
� ∝ n × ṅ, and it turns out that spin information is transferred only
if n ‖ x̂ in the present geometry.

AFI, namely,

HI =
∑
i=1,2

JI

∫
Ii

d3r

a3
� · (c†σc), (1)

where Ii (i = 1, 2) denotes the interface between HMi and
AFI, JI is a coupling strength, σ denotes the Pauli matrix, and
c† and c are electron field operators. The FM moment of AFI
is defined as � ≡ (SA + SB)/S, where SA and SB are spins on
the two sublattices A and B, respectively (S ≡ |SA| = |SB|).
This coupling is natural as the first approximation as the
electron wave-function overlap would smear out the staggered
(Néel) component of localized spin in AFI. Coupling of
the spin accumulation to the uncompensated Néel vector as
discussed for the case of spin pumping in Ref. [5] is not taken
into account in the present study.

Let us start with the inverse spin Hall effect (ISHE) in
HM2. In the context of linear response theory, the driving field
of ISHE is a nonequilibrium FM moment � of AFI in Eq. (1).
The output electric current is thus described by a correlation
function of current and spin density χ̃ JS

ik as ji = JIχ̃
JS
ik �k

(suppressing spatial coordinates). (The exact expression is
presented in Ref. [12].) The FM moment � near I2 is generated
nonlocally by the spin Hall effect (SHE) in HM1. The SHE is
described by the correlation function χ̃SJ , the reciprocal of
χ̃ JS , as ssh,l = χ̃SJ

l j E j , where ssh,l and Ej are the spin density
induced by SHE and the applied electric field in HM1, respec-
tively [7]. Taking account of HI, the FM moment � induced
near I2 by the spin accumulation at I1 as a result of SHE
is written using the nonlocal FM spin correlation function
C(r) as �k (r1) = JI

∫
I2

d3r2Ckl (r1 − r2)χ̃SJ
l j (r2)Ej (r2), where

subscripts k and l denote the spin direction. As the FM
moment is expressed as a composite field of two AF magnons,
the correlation function C(r) is a two-magnon propagator, as
we shall see below.

Summarizing, the inverse spin Hall current is represented
as a product of three correlation functions as

ji(r) = (JI )2
∫

I1

d3r1

∫
I2

d3r2

∫
HM1

d3r′χ̃ JS
i j (r − r2)

×Ckl (r2 − r1)χ̃SJ
lm (r1 − r′)Em(r′). (2)

The correlation functions in Eq. (2) turn out to be the
physical correlation function χ JS determined by the lesser
component divided by the external frequency �, i.e., χ̃ JS

i j ≡
− lim�→0

1
i�χ JS

i j (�) [12]. The correlation function χ JS is
linear in � because the equilibrium spin accumulation does
not generate an electric current that is dissipative, and thus
χ̃ JS has a static component. Moreover, considering HM as a
bulk, inversion symmetry is present and the spatially uniform
component of the current-spin correlation vanishes, meaning
that χ JS

i j starts from the first order in the external wave vector
q [7]. Thus, direct and inverse spin Hall effects with current
perpendicular to the spin accumulation profile are described
in the ballistic case by the correlation function χ̃ JS

i j (q,�) =
iλshεi jkqk , where εi jk is the totally antisymmetric tensor. A co-
efficient λsh, determined by the spin-orbit interaction strength,
is related to the dimensionless spin Hall angle θsh(≡ js/ j)
as θsh = λsh/(σBτe), where σB and τe are the Boltzmann
conductivity and elastic electron lifetime, respectively [7].
Taking account of the diffusive electron motion in HMs, the
function is multiplied by a diffusion factor Ds(q) ≡ 1

Dq2τ+γsf
,

where D is a diffusion constant, γsf is related to a static spin
diffusion length �sf in HM as �sf = √

3�e/
√

γsf , �e = kF τe/m
being the electron elastic mean free path, as [7]

χ̃ JS
i j (q) = λshεi jk iqkDs(q). (3)

The current is therefore expressed as

ji(r) = (λshJI )2εi jkεlmn

∫
I1

d3r1

∫
I2

d3r2∇r
jDs(r − r2)

×
∫

HM1
d3r′Ckl (r2 − r1)∇r′

mDs(r1 − r′)En(r′), (4)

where the spin diffusion propagator is Ds(r) = 3�sf a0

2�e
2 e− r

�sf

(a0 is the lattice constant of HM). The spatial derivative of
spin diffusions in Eq. (4) represents the spin current flow of
the conventional picture, as the spin current is proportional to
a gradient of spin density in the diffusive regime. In the com-
mon setup in Fig. 1, the derivatives are in the perpendicular
direction, which we choose as the z direction. The derivative
at I1 of HM1 is evaluated as ∇zDs|r=0 = − 3a0

2�e
2 . For HM2, we

discuss the averaged current for the thickness of HM2, tHM,
i.e., j ≡ 1

tHM

∫ tHM

0 dz j(z), where we use 1
tHM

∫ tHM

0 dz∇zDs(z) =
− 3�sf a0

2tHM�e
2 (1 − e−tHM/�sf ).

The correlation function of AFI, Ckl , is calculated later and
we proceed here using the results. It turns out to vanish for
the spin direction perpendicular to the Néel vector n, and the
spatial dependence is exponential in most cases. We denote
the direction in the spin space of AFI as (1, 2, 3) to remember
that spin space is independent of the coordinate space, and n is
chosen along the 3-direction. As shown below, the correlation
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FIG. 2. Schematic picture showing that the FM moment � is
proportional to n × ṅ. For both sublattices A and B with opposite
spin, SA � Sn and SB � −Sn, SA × ṠA and SB × ṠB (large arrows)
point in the same direction.

function of AFI is Ckl = δk3δl3C(r), where

C(r) = c0
a

2ξ
e−|r|/ξ , (5)

with a dimensionless constant c0 and a FM correlation length
ξ (a is the lattice constant of AFI). Choosing the applied
current direction as the y axis (Fig. 1), the antisymmetric
tensors in Eq. (4) indicate that “spin current” propagates only
if n(= 3̂) = x̂.

The ISH current is opposite to the applied electric field.
Defining an effective nonlocal conductivity σ as j ≡ −σE ,
we have

σ

σB
= 3

8
(θsh )2(JI )2ντ

(
a0

�e

)2 c0a

ξ
e−d/ξ �s

tHM
(1 − e−tHM/�s ),

(6)

where d is the distance between HM1 and HM2, and ν is the
electron density of states. The electron properties are insensi-
tive to the temperature around room or lower temperatures.
According to the analysis below, the ratio c0a

ξ
of AFI does

not depend much on the temperature either, as both c0 and
ξ have similar temperature profiles [Fig. 3(b)], and thus the
dominant temperature dependence is expected to arise from
e−d/ξ (T ). Equation (6) indicates that the interface exchange
coupling constant JI can be determined experimentally from
the magnitude of ISHE.

Let us start a study of the correlation in AFI. We first note
that the FM moment is expressed by n as � = 1

6SJ0
(n × ṅ),

where J0 is the AF exchange coupling. This relation, rigor-
ously derived in Ref. [12], is understood by noting that S × Ṡ
points in the same direction for the spins of both sublattices
A and B (Fig. 2). The Néel vector has a classical expectation
value n3 along the direction 3̂ below the AF transition temper-
ature TN. The fluctuation is represented by a two-component
AF magnon field ϕ as n = (ϕ(1), ϕ(2), n3), neglecting the
second order of the magnon field. The FM moment around n
is therefore represented by a combination of the two magnons
as �3 = ϕ(1)ϕ̇(2) − ϕ̇(1)ϕ(2), while the orthogonal components
are linear in the magnon field. Considering the fact that AF
dynamics (typically in the THz regime) is much faster than the
FM one (GHz), only the moment �3 has a low-energy coupling
to AF magnons. Namely, the spin polarization parallel to n
can be transported for a long distance, while AFI does not
react to the perpendicular polarization, resulting in Ckl (q) ≡
δk3δl3Cq. This feature is in agreement with a recent experiment
[13]. The two magnon modes ϕ(1) and ϕ(2) carry opposite
angular momentum, and thus the FM moment is induced by
an exchange of the two modes (ordinary process) or by a
pair annihilation or creation (anomalous processes). In terms
of magnon creation/annihilation operators a(i) and a(i)† (i =
1, 2), introduced as ϕi(k) =

√
g

ω
(i)
k

(a(i)
k + a(i)†

−k ) (g = 3J0), the

expectation value of the induced moment with wave vector q
reads

〈�3(q, t )〉 = 1

2S

∑
k

1√
ω

(1)
k ω

(2)
k+q

[(
ω

(2)
k+q − ω

(1)
k

)
[F−k,k+q(t, t )

− F k,−(k+q)(t, t )] + (
ω

(2)
k+q + ω

(1)
k

)[
D(21)

k+q,k(t, t )

− D(12)
−k,−(k+q)(t, t )

]]
, (7)

where ω
(i)
k ≡

√
(vk)2 + (�(i) )2 is the magnon energy for

branch i (v and �(i) being the magnon velocity and gap,
respectively) and

F−k,k+q(t, t ′) ≡ −i
〈
a(1)

−k(t )a(2)
k+q(t ′)

〉
,

D(i j)
k+q,k(t, t ′) ≡ −i

〈
a(i)

k+q(t )a( j)†
k (t ′)

〉
, (8)

are anomalous and ordinary path-ordered Green’s functions
on a complex time path and F ≡ F ∗. The static component
of 〈�3〉 induced by SHE in HM1 is written using a correlation
function Cq as 〈�3(q)〉 ≡ JICqssh,3(q), where

Cq = g

2S

∑
k

Re

⎡
⎣ 1

ω
(1)
k ω

(2)
k+q

⎛
⎝(

1 + n(1)
k + n(2)

k+q

) (
ω

(2)
k+q − ω

(1)
k

)2

ω
(2)
k+q + ω

(1)
k − i(ηk + ηk+q)

− (
n(2)

k+q − n(1)
k

) (
ω

(2)
k+q + ω

(1)
k

)2

ω
(2)
k+q − ω

(1)
k − i(ηk + ηk+q)

⎞
⎠

⎤
⎦.

(9)

Here, n(i)
k ≡ [eβω

(i)
k − 1]−1 is Bose distribution function [β ≡

1/(kBT ), kB being the Boltzmann constant], ηk represents
magnon damping, and Re denotes the real part. The first
term of the right-hand side of Eq. (9) without a Bose
distribution function is the quantum contribution that exists

at T = 0. Spin current can thus transmit though the anti-
ferromagnet at T = 0, where no magnons are excited. (The
quantum pair creation process has been shown to be essential
for the neutron scattering of Haldane antiferromagnets at
T = 0 [14].)

180405-3



GEN TATARA AND CHRISTIAN ORTIZ PAUYAC PHYSICAL REVIEW B 99, 180405(R) (2019)

0 0.1 0.2 0.3
0

0.2

0.4

(a)

0 0.1 0.2 0.3
0

200

400

0 0.1 0.2 0.3
0

0.001

0.002

(b)

FIG. 3. Plots of (a) c0 and (b) dimensionless FM correlation length ξ̃ ≡ ξ/a as functions of normalized temperature, T̃ ≡ kBT/ωmax, where
ωmax ≡ vkmax is the maximum magnon energy, kmax ≡ π/a. Dotted lines are without an auxiliary field λ(≡ λ̃ω2

max) and for η1 = 0, the dashed
lines are with λ and for η1 = 0, and solid lines are physical ones including both λ and η̃1 ≡ η1/ωmax = 0.3. Bare damping is η0/ωmax = 10−4,
and the two energy gaps are � and �δ, with �/ωmax = 0.03 and δ = 0.2, 0.5, and 0.8. The Néel temperature in the present model is T̃N � 0.16.
The inset of (b) shows the ratio c0

ξ̃
, which governs the amplitude of the ISH signal [Eq. (6)]. Anomalous behaviors in the high-temperature

regime with ξ � 0 indicate the breakdown of our model.

The correlation function determines the spatial profile of
steady “spin current propagation.” Long-range behavior is
determined by the small q behavior,

Cq = c0 + c2q2 + O(q4). (10)

For the degenerate case, ω
(1)
k = ω

(2)
k , the uniform contribution

c0 vanishes. When the two spin waves have different gaps
as a result of magnetic anisotropy (as in the case of NiO),
the uniform component c0 is finite, which leads to efficient
“spin current propagation.” The length scale of the spin in-
formation propagation, a diffusion length of spin, is given by

ξ ≡
√

− c2
c0

, as the response function is approximately written

as Cq � c0
1+ξ 2q2 + O(q4), which leads in the real space to an

exponential decay within a distance of ξ , Eq. (5).
Figure 3 shows numerical results of c0 and ξ as functions

of temperature in nondegenerate cases with the two energy
gaps �(1) = � and �(2) = �δ. Close to the degeneracy,
δ ∼ 1, spin transport is long ranged (larger ξ ) as the transport
is mediated by the mixing of the two magnon branches. In
contrast, c0 representing the magnitude of spin transmission
is suppressed for larger δ, simply due to an increase of �(2).

Magnon representation is usually applied to low tempera-
tures compared to TN. However, the representation itself does
not necessarily break down even above TN as far as short-
ranged AF correlation persists for a length longer than the
lattice constant, just as the case of FM magnons well defined
in the presence of structures such as a domain wall. A short-
ranged correlation is theoretically described by introducing
an auxiliary field λ(T ) to impose the constraint |n| = 1 by
the saddle-point approximation [15]. The field contributes
to a temperature-dependent gap and modifies the magnon
dispersion to be ω

(i)
k =

√
v2k2 + (�(i) )2 + λ. The static AF

correlation length, ξ
(i)
AF = v/

√
(�(i) )2 + λ + η2

k , including

damping ηk , is usually shorter than the FM correlation length
governing spin propagation (see Figs. 6 and 7 of Ref. [12]).
The auxiliary field description is known to describe well the
AF correlation length above TN [15,16].

What is most essential for transport at high temperatures
is the magnon damping due to magnon interactions at high
densities. The effect of magnon interactions on damping was
studied theoretically in detail in Ref. [8]. It was shown that
the scattering induces a self-energy proportional to T 3 and
ω2

k for low-energy magnons. We here include the effect in the
damping constant η as

η(T, k) = η0 + η1

(
k

kmax

)2( kBT

ωmax

)3

, (11)

where η0 and η1 are constants, and kmax ≡ π/a and ωmax ≡
vkmax are the cutoffs for high wave vector and energy, respec-
tively. The spin propagation efficiency c0 and FM correlation
length ξ are significantly suppressed by the temperature-
dependent damping at high temperatures as seen in Fig. 3
(solid and dashed lines). The peak temperature, determined by
the competition between the magnon excitation number and
damping, is close to TN.

Considering the case of NiO, ωmax/(2π ) = 30 THz,
�(1) = 1 THz, �(2) = 0.2 THz, and a = 4.2 Å [4], and our
calculation (�̃ = 0.03, δ = 0.2) indicates a spin transport
length ξ of the order of 20 nm around room temperature,
which appears to be roughly consistent with an experiment
indicating a diffusion length of 10 nm [9]. For quantitative
calculations, however, our model, assuming a square lattice
with nearest-neighbor hopping, is too simple and more realis-
tic modeling is necessary.

We have presented a theoretical formulation of spin in-
jection into an antiferromagnetic insulator (AFI) using direct
and inverse spin Hall effects. The spin current propagation,
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induced by AF magnon pair propagation, was shown to be
represented by a ferromagnetic (FM) correlation function Cq

or a q-resolved FM susceptibility. Although Cq may appear to
be similar to the conductivity for the spin current in analogy
with the case of a charge current, this is not the case because
a correlation function of the spin current representing the spin
current conductivity cannot be written by a spin correlation
as spin is not conserved. The correlation function was studied
based on a magnon representation including an auxiliary field
in the stationary-field approximation to cover the temperatures
above the Néel temperature TN. The decay length of spin
propagation ξ was calculated from a pair propagation process
for the nondegenerate case. It is different from (longer than)
the AF correlation length ξAF determined by individual AF
magnon propagation, similarly to the electron case where
transport lengths are longer than the elastic mean free path.

ξ (T ) has a peak near TN as a result of suppression due to the
damping arising from magnon scattering at high temperatures.
The dominant temperature dependence of the spin propaga-
tion efficiency through AFI for a distance of d is thus expected
to be e−d/ξ (T ).
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