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Suppression of transport in nondisordered quantum spin chains due to confined excitations
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The laws of thermodynamics require any initial macroscopic inhomogeneity in extended many-body systems
to be smoothed out by the time evolution through the activation of transport processes. In generic quantum
systems, transport is expected to be governed by a diffusion law, whereas a sufficiently strong quenched disorder
can suppress it completely due to many-body localization of quantum excitations. Here, we show that the
confinement of quasiparticles can also suppress transport even if the dynamics are generated by nondisordered
Hamiltonians. We demonstrate this in the quantum Ising chain with transverse and longitudinal magnetic fields,
prepared in a paradigmatic state with a domain wall and thus with a spatially varying energy density. We
perform extensive numerical simulations of the dynamics which turn out to be in excellent agreement with
an effective analytical description valid within both weak and strong confinement regimes. Our results show that
the energy flow from “hot” to “cold” regions of the chain is suppressed for all accessible times. We argue that
this phenomenon is general, as it relies solely on the emergence of confinement of excitations.
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Introduction. Transport is the fundamental mechanism
which allows both classical and quantum isolated and ex-
tended statistical systems to smooth out any inhomogeneity
possibly present in their initial conditions, while relaxing
towards their stationary states. In the quantum realm, the
interest in this aspect of nonequilibrium dynamics [1–3] has
been recently prompted by an impressive advance in exper-
imental techniques with cold atoms, which made it possible
to maintain coherent quantum dynamics for sufficiently long
times [4–18].

Of paramount importance, in this context, is to understand
whether and how the transport of conserved physical quan-
tities, such as particle and energy densities, occurs [19,20].
Generically, the spatial spreading of local inhomogeneities is
expected to obey a diffusion law, whose microscopic origin
is usually traced back to inelastic collisions [21,22]. In the
specific case of integrable systems, instead—characterized by
an infinite set of (quasi-) local conserved quantities—transport
is enhanced by the existence of stable excitations traveling
ballistically with certain characteristic velocities, typically
exposed after a sudden change (quench) in the parameters
of the systems [23–27]. Correspondingly, a nonequilibrium
stationary state may arise, supporting ballistic transport and
thus finite currents at long times [28–38]. A completely dif-
ferent scenario emerges in the presence of strong disorder. In
fact, in the so-called many-body localized phase [39–41], the
localization of excitations [42–44] suppresses the energy and
particle transport and the system fails to thermalize: Initial
gradients of local quantities persist for arbitrarily long times
during the evolution [45–47].

Disordered-induced localization, however, is not the sole
mechanism which hampers the propagation of information in
many-body interacting systems [48–51]. Indeed, even in the
absence of disorder, the dynamical confinement of excitations
[52,53] can suppress the spreading of correlations [54]. How

can this be reconciled with the heuristic expectation that an
initial inhomogeneous configuration has to be smoothed out
by the evolution? In this Rapid Communication we address
this issue and show that a nonintegrable, nondisordered quan-
tum spin chain with confined excitations, initially prepared in
domain-wall states causing a finite energy gradient across the
system, can exhibit suppression of energy transport. Although
we focus here on the paradigmatic quantum Ising chain,
introduced further below, the results we obtain are general and
apply to a variety of physical systems since they solely rely
on the confinement of the excitations, which has been shown
to emerge in several other one-dimensional condensed-matter
models [55–61] as well as lattice gauge theories [62–64].

Model and protocol. We consider a ferromagnetic quantum
Ising chain with a transverse and a longitudinal magnetic field,
hz and hx, respectively,

H (hz, hx ) = −J
L−1∑

i=1

σ x
i σ x

i+1 − hz

L∑

i=1

σ z
i − hx

L∑

i=1

σ x
i . (1)

Here, σ
x,y,z
i are the Pauli matrices acting on the site i, J > 0

is the Ising exchange parameter, L the (even) system size, and
we consider open boundary conditions. For hx = 0, the model
is exactly solvable in terms of free fermions [65–67] which, in
the ferromagnetic phase with |hz| < J , physically correspond
to freely moving domain walls (or kinks) connecting the two
oppositely magnetized ground states with 〈σ x

j 〉 �= 0. A finite
hx �= 0 causes a nonperturbative modification of the spectrum
of the elementary excitations: It selects as a ground state the
one with 〈σ x

j 〉 along hx and raises the energy of configurations
with domains of reversed spins by an amount proportional
to their extension. This corresponds to a linear, V-shaped in-
teraction potential between two consecutive kinks delimiting
a domain, which therefore become confined into composite
objects called mesons, in analogy with the low-energy limit of
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FIG. 1. Evolution of the energy density 〈Hi(t )〉 (left panel) and of the energy current density 〈Ji(t )〉 (right panel) profiles, governed by
the Hamiltonian (1) starting from the inhomogeneous domain-wall state (2), obtained from TEBD simulations, for a range of increasing field
values hz = 0.2 (L = 50), 0.4 (L = 100), and hx = 0.15, 0.3, 0.6, varying as indicated by the axes. (Units are fixed such that J = 1.) The same
qualitative behavior as that illustrated here persists up to long times t = 103. Note the oscillations of the profiles around the junction, with
spatial amplitude ∝hz/hx and frequency ∝hx , while there is no evidence for the activation of transport.

quantum chromodynamics. This modification of the spectrum
has been studied both in the vicinity of the critical point
hz → 1 exploiting field-theoretical methods [52,68,69], and
far away from it in the regime of low-density excitations for
small hx [70].

In order to investigate transport processes it is convenient
to consider a so-called inhomogeneous quench [71,72] in
which two complementary subsystems are initially prepared
in two different equilibrium states and then they are joined
at time t = 0, such that they evolve according to a common,
homogeneous Hamiltonian. Here, we consider a domain-wall
initial state with a single kink in the middle of the chain which
reads, in terms of the eigenstates |↑〉 j and |↓〉 j of σ x

j ,

|�0〉 =
L/2⊗

j=1

|↑〉 j

L⊗

j=L/2+1

|↓〉 j ≡ |↑↑ · · · ↑↑↓↓ · · · ↓↓〉, (2)

and which is also an eigenstate of H (0, hx ). At time t > 0, the
transverse field hz �= 0 is suddenly switched on and we study
the nonequilibrium evolution of the energy density profile
〈H j (t )〉 as a function of j, where

H j = −Jσ x
j σ

x
j+1 − hz

2

(
σ z

j + σ z
j+1

) − hx

2

(
σ x

j + σ x
j+1

)
. (3)

For hx = 0, the initial energy density 〈H j (0)〉 is equal on the
two sides of the junction, due to the Z2 symmetry. However,
in the presence of a nonvanishing hx > 0, the chain acquires
an initial macroscopic energy imbalance between the left

(“cold”) part and the right (“hot”) part. In particular, the latter
may be viewed as a “false vacuum” whose energy lies in
the middle of the many-body spectrum, and may thereby be
expected to decay into a finite density of traveling excita-
tions upon activating the transverse field hz �= 0, leading to
a meltdown of the initial imbalance after a transient [73]. In
the following, we provide compelling evidence against this
expectation.

Numerical analysis. In order to explore numerically the
nonequilibrium evolution of the chain, we employ time-
evolving block decimation (TEBD) simulations [74]. It turns
out that the entanglement grows slowly up to moderate values
of the field hz � 0.4J , which allows us to extend the simula-
tions to long times tM = 103J−1 with modest computational
efforts, as in the case of Ref. [54]. We investigate the behavior
of 〈H j (t )〉 [see Eq. (3)] and of the associated current 〈J j (t )〉,
with

J j = Jhz
(
σ x

j−1σ
y
j − σ

y
j σ

x
j+1

)
, (4)

for various values of hx,z. The results of the simulations are
illustrated in Fig. 1 only up to times t = 50J−1, as no quali-
tative differences are observed up to tM . In both the “strong”
(hx 
 hz) and “weak” (hx � hz) confinement regime, energy
transfer between the two halves of the chain is suppressed
even at late times. As shown in Fig. 1, the main dynamical
effect of switching on hz is given by pronounced oscillations
of the profiles around the position j = L/2 of the junc-
tion, with characteristic emergent amplitudes and frequencies
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which depend on the values of the fields. In particular, the
energy current density is zero everywhere apart around the
junction, where it oscillates between positive values (aligned
with the energy gradient) and negative values (against the
energy gradient). We emphasize that, within our protocol, an
increase in the energy gradient between the two halves, caused
by a stronger hx, does not result in the activation of transport:
On the contrary, it turns out that the oscillations at the junction
acquire an even smaller amplitude (see Fig. 1 from top to
bottom).

Effective dynamics. The oscillations of the profiles shown
in Fig. 1 may be interpreted as the quantum motion of the
isolated kink initially localized at the junction, triggered by
the transverse field hz �= 0. In fact, the kinetic energy asso-
ciated with this motion has a finite bandwidth ∼hz on the
lattice, and therefore, because of energy conservation, the
kink quasiparticle can travel, in the linear confining potential
V (l ) ∼ −hxl , at most a distance lconf ∼ hz/hx (confinement
length scale), before bouncing back and oscillating. This
phenomenon is analogous to the Wannier-Stark localization
of electrons in a one-dimensional crystal subject to a constant
electric field [75,76].

In order to rationalize the above intuition and make a quan-
titative treatment of the evolution of the profiles, we propose
a simple analytical approach based on dressing the meson
quasiparticles perturbatively in the transverse field hz � J ,
with arbitrary hx. (This regime differs from the one hx � J ,
hz < J , of validity of the semiclassical technique of Ref. [70].)
The approximation consists in neglecting the creation of new
quasiparticles, which, in our setup, only affect the quantum
fluctuations in the two homogeneous bulks away from the
junction, as recognized in Refs. [54,70]. In fact, we show that
the dynamics at the junction is very well captured within this
scheme up to moderate values of hz.

In the spirit of an effective quasiparticle description of
mesons [77], we map the motion of the isolated kink onto
the problem of a single quantum particle hopping on a
one-dimensional lattice, by projecting the many-body Hilbert
space onto the single-kink linear subspace [78]. As the nu-
merical results indicate (see Fig. 1), for hz � J and arbitrary
hx,1 the dynamics can be approximated within this subspace,
spanned by the states {|n〉} with a single domain wall lo-
cated between sites n and n + 1, with n = 1, 2, . . . , L − 1.
The corresponding unperturbed energy eigenvalues are En =
2J + 2hx(L − n) + EGS where EGS = −J (L − 1) − hxL is
the ground state energy. The resulting matrix elements
〈n | H (hz, hx ) | m〉 of the Hamiltonian (1) read EGSδn,m +
(H eff )nm, with

(H eff )nm = [2J + 2(L − n)hx]δn,m − hz(δn,m+1 + δn,m−1).

(5)

1Note, however, that resonances occur at particular values of hx ,
commensurate with 2J . Correspondingly, it costs no energy to break
a single meson into multiple mesons by flipping individual spins.
These transitions cause quantitative but not qualitative modifications
to the evolution of the energy profile, which are not captured by
the single-kink subspace projection discussed here. Evidence of this
aspect can be found in the Supplemental Material.

We note that the off-diagonal perturbation produces an
effective hopping amplitude for the kink quasiparticle.
Accordingly, the effective Hamiltonian H eff describes the
dynamics in terms of a single-particle hopping in a one-
dimensional lattice in the presence of a linear potential, where
the state of the particle is described by a vector {ψn} with
n = 1, 2, . . . , L − 1. The absolute value squared of the nth
component of the wave function ψn(t ) is equal to the probabil-
ity that the particle is at site n at time t . Within this picture, the
initial state in Eq. (2) maps to ψn(0) = δn,L/2, corresponding
to a particle completely localized at the junction between
the two chains. Similarly, the magnetization 〈σ x

j (t )〉 at site j
and time t can be expressed [78] within this single-particle
picture as

mj (t ) ≡ 1 − 2
j−1∑

n=1

|ψn(t )|2, (6)

where ψn(t ) = ∑
m[exp(−iH efft )]nmψm(0) is the time

evolved state within the projected space.
In order to test the accuracy of our approximation, we

compare the dynamics obtained from the above effective
single-particle problem with the exact dynamics generated
by H [see Eq. (1)] in the full many-body Hilbert space,
starting from the domain-wall initial state |�0〉 of Eq. (2)
as obtained via both exact diagonalization (ED) and TEBD
techniques.2 The comparison between mL/2(t ) and 〈σ x

L/2(t )〉 is
shown in Fig. 2. In particular, we observe that the agreement
is fairly good up to moderate values of the transverse field
hz � 0.4J .

Similarly, the relevant nonequilibrium profiles of the en-
ergy and energy current densities can be studied within the
above effective single-particle description. This is achieved by
projecting the energy density H j at site j in Eq. (3) onto the
single-kink subspace,
(
Heff

j

)
nm

= 1
2 [J (2δ j,n − 1) − hx sgn(n − j)]δn,m

− hz

2
(δ j,m+1 + δ j+1,m+1)δn,m+1 + (m ↔ n), (7)

where the sign function sgn(x) equals 1 for x > 0, −1 for
x < 0, and 0 for x = 0. From the continuity equation

dHeff
j

dt
= i

[
H eff,Heff

j

] = J eff
j − J eff

j+1, (8)

we can infer the corresponding effective expression for the
energy current density operator J j at site j, i.e.,

(
J eff

j

)
nm = 2iJhzδn,m+1 δm, j−1 − i

2
h2

z δm, j−2 δn,m+2

− i

2
h2

z δm, j−1 δn,m+2 − (m ↔ n). (9)

The time-dependent expectation value of the energy density
at site j within this single-particle picture can therefore be

2In this case, the simulations based on exact diagonalization of
the Hamiltonian can be pushed until sufficiently late times because
finite-size effects such as revivals are suppressed, due to the fact that
excitations are confined [54].
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FIG. 2. Comparison between the numerical results 〈σ x
L/2(t )〉, 〈HL/2(t )〉, 〈JL/2(t )〉 (symbols), and the analytical predictions mL/2(t ), eL/2(t ),

jL/2(t ) (solid lines) for the magnetization (left panel), energy density (central panel), and energy density current (right panel), respectively,
at the junction j = L/2, as obtained from ED (with L = 16) or TEBD (with L = 50 or 100), and from the effective single-particle model,
respectively. These curves refer to hx = 0.45, hz = 0.2 (top row), and hx = 0.3, hz = 0.4 (bottom row). (Units are fixed such that J = 1.)
Note that discrepancies between symbols and solid lines appear as time increases, due to the neglected multikink processes. The associated
timescale, however, increases upon decreasing hz.

written as

e j (t ) ≡
∑

n,m

ψ∗
n (t )

(
Heff

j

)
nmψm(t ), (10)

with an analogous expression for the current j j (t ) in terms
of J eff

j . In Fig. 2 we compare the time evolution of eL/2(t )
and jL/2(t ) with the corresponding exact quantities 〈HL/2(t )〉
and 〈JL/2(t )〉 as obtained from the TEBD simulations. [One
can show that the spectrum of the effective Hamiltonian (5)
consists of multiples of 2hx, which results in exactly periodic
behavior of the blue lines in Fig. 2.] It is remarkable that, in
spite of the simplicity of this approach, the agreement is excel-
lent for small values hz = 0.2J of the transverse field, whereas
for larger values hz = 0.4J , small quantitative discrepancies
appear, still retaining a fairly good qualitative agreement.

Conclusions. In a homogeneous quench, the confinement
of excitations has been recently shown to hinder the spreading
of correlations in the quantum Ising chain (1) with both
transverse and longitudinal magnetic fields [54]. (Anomalous
nonequilibrium evolution had already been reported in the
same model, but within a different regime of parameters,
in Refs. [77,79].) In this Rapid Communication, we have
shown that this phenomenon has significant consequences
even in inhomogeneous setups, as it can lead to suppression
of energy transport. This lack of transport in the presence of
an initial gradient actually mirrors the fact that the spatial
inhomogeneity in the longitudinal magnetization persists at
long times, meaning that the system fails to locally relax to
the thermal ensemble up to the largest accessible and explored
times, tM = 103J−1, which are longer than those currently
accessible in experiments.

We emphasize that in the problem discussed here the
specific choice of the class of inhomogeneous initial states
plays an important role. As we have shown, the nonequilib-
rium dynamics is accurately captured by the boundary Bloch
oscillations of a single macroscopically large “meson.” Based

on extensive numerical work, it has been recently suggested
in Ref. [80] that the Hamiltonian (1) is characterized by a
pattern of atypical energy eigenstates with nonthermal fea-
tures carrying over to the thermodynamic limit, which violate
the eigenstate thermalization hypothesis [81]. In this light,
our results may represent a dynamical manifestation of this
phenomenon. In particular, if the initial states have significant
overlap with those “single-meson” nonthermal eigenstates,
the initial inhomogeneity would persist to infinite time. How-
ever, we argue that more general initial states, with magnetic
domains separated by distances much larger than the confine-
ment length scale, would also retain their inhomogeneity for
a correspondingly long time.

The phenomenon reported here may be interpreted as a dra-
matic slowdown or suppression of “string breaking” in one-
dimensional quantum models with confinement of excitations.
As such, we expect it to occur rather generically in this con-
text, e.g., in XXZ spin chains [55–58], one-dimensional ex-
tended Bose-Hubbard models [60,82], spin-1 quantum chains
[61,83], and systems with long-range interactions [59,84],
as well as lattice models of quantum electrodynamics [64].
Similarly, we observe that recent works have reported the oc-
currence of localization phenomena—and thereby of suppres-
sion of information spreading—within the context of lattice
gauge theories, where confinement of elementary excitations
naturally arises as well [62–64,82,85–87]. In future work we
plan to investigate the very origin of this seemingly ubiquitous
phenomenon, as well as to address the important problem of
estimating the relaxation timescales.
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