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We analyze the evolution of the dynamics of a neutral s-wave superconductor between the BCS and BEC
regimes. We consider 2d case when a BCS-BEC crossover occurs already at weak coupling as a function of the
ratio of the two scales—the Fermi energy EF and the bound state energy for two fermions in a vacuum, E0. The
BCS and BEC limits correspond to EF � E0 and EF � E0, respectively. The chemical potential μ = EF − E0

changes the sign between the two regimes. We use the effective action approach, derive the leading terms in the
expansion of the effective action in the spatial and time derivative of the slowly varying superconducting order
parameter �(r, τ ), and express the action in terms of a derivatives of the phase φ(r, τ ) of �(r, τ ) = �eiφ(r,τ ).
The action contains (∇φ)2 and φ̇2 terms, which determine the dispersion of collective phase fluctuations, and
iπAφ̇ term. For continuous φ(r, τ ), the latter reduces to the contribution from the boundary and does not affect
the dynamics. We show that this long-wavelength action does not change through the BCS-BEC crossover. We
apply our approach to a moving vortex, for which φ is singular at the center of the vortex core, and iπAvortφ̇

term affects vortex dynamics. We find that this term has two contributions. One comes from the states away
from the vortex core and has Avort,1 = n/2, where n is the fermion density. The other comes from electronic
states inside the vortex core and has Avort,2 = −n0/2, where n0 is the fermion density at the vortex core. This
last term comes from the continuous part of the electronic spectrum and has no contribution from discrete levels
inside the core; it also does not change if we add impurities. We interpret this term as the contribution to vortex
dynamics in the continuum limit, when the spacing between energy levels ω is set to zero, while fermionic
lifetime τ can be arbitrary. The total Avort = (n − n0 )/2 determines the transversal force acting on the vortex
core, πAvortṘ × ẑ, where Ṙ is the velocity of the vortex core and ẑ a unit vector perpendicular to the 2d sample.
The difference (n − n0 )/2 changes through the BEC-BCS crossover as n0 nearly compensates n in the BCS
regime, but vanishes in the BEC regime.
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I. INTRODUCTION

The evolution of the static properties of a superconductor
between the BCS regime, when bound pairs of fermions
condense immediately once they form, and Bose-Einstein
condensation (BEC) regime, when bound pairs of fermions
form at a higher Tins and condense at a smaller Tc, has
been extensively discussed in the condensed matter context
[1–19] and also for optical lattices of ultracold atoms [20,21].
Experimental evidence for preformed pairs has been reported
for high-Tc cuprates [22] and, more recently, for Fe-based
superconductor FeSe1−xTex (Ref. [23]).

In this paper, we discuss the evolution of the dynamic
properties of a neutral superconductor between the BCS
and BEC regimes. We consider a 2d superconductor and
for definiteness focus on s-wave gap symmetry and assume
Galilean invariance, i.e., assume rotational symmetry and
k2/(2m) fermionic dispersion. Extensions to non-s-wave

*mozyrsky@lanl.gov
†achubuko@umn.edu

pairing and lattice systems are straightforward. We consider
2d case because in 2d, the BCS-BEC crossover can be
analyzed already within weak coupling, when calculations
are under control. Indeed, in 2d systems, two fermions form
a bound state already at arbitrary small attraction g. (In 3d
systems, the bound state of two fermions in a vacuum emerges
only once the interaction exceeds a certain cutoff, generally
of the order of fermionic bandwidth [6].) Such a bound state
has energy 2E0 = 2�e−2/(N0g), where N0 = m/(2π ) is the
free particle density of states per spin in 2d and � is the upper
cutoff for the attraction [1,3,24].

The crossover between the BCS and BEC regimes occurs
as a function of E0/EF . For EF � E0 the system is in the BCS
regime, and bound pairs condense almost instantly after they
form at Tins ∼ (EF E0)1/2. For E0 � EF , bounds pairs form at
Tins ∼ E0/ ln E0/EF and condense at a much smaller Tc ∼ EF ,
leaving a wide intermediate region of preformed pair behavior.
The chemical potential μ at T = 0 changes sign between the
two regimes: μ = EF − E0.

We use the effective action approach, and expand the action
in terms of time derivatives of the slowly varying order param-
eter �(r, τ ). We obtain the generic expressions for the terms
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up to second order in spatial and time derivatives, in terms
of the eigenfunctions of the Bogolubov-De Gennes equation,
and then apply the results to the case when the variations of
the order parameter predominantly occur via variations of its
phase, i.e., �(r, τ ) ≈ �eiφ(r,τ ). We obtain the action in terms
of spatial and time derivatives of φ. The action contains the
conventional terms ∇2φ and ∂2φ/∂τ 2, which fully describe
the dynamics when φ is a continuous function of a coordinate
and time

Scont ∝
∑
q,	

|φq,	|2
(

	2 − q2 v2
F

2

)
. (1)

The form of Scont does not change between the BCS and BEC
limits, and the velocity of phase fluctuations remains vF /

√
2

through the crossover.
Using our approach we also study the dynamics of vortices

and, in particular, the transverse force acting on a slowly
moving vortex. Such force is typically attributed to the terms
in the effective action that are linear in time derivatives of
the phase, i.e., proportional to

∫
drdτ φ̇. This term is often

referred to in the literature as the Berry phase term [25–32].
It reduces to the contribution from a boundary and does not
contribute to the dynamics if φ is well defined at any r and
τ . However, for vortices, as well as for other topological
defects, such as phase slips [33], such term does contribute to
the dynamics due to non-analytic behavior of φ at the center
of the vortex core, and gives rise to an effective transverse
force acting on a vortex [25,27,28,30,31,34–38]. The action
associated with this transverse force can be written as

Svort
Berry = iπAvort

∫
dt (X (t )Ẏ (t ) − Y (t )Ẋ (t )), (2)

with X and Y being the coordinates of the vortex core.
We show that the prefactor Avort has two contributions,

Avort = Avort,1 + Avort,2. The first one is the hydrodynamic
contribution, associated with superfluid motion of fermions
at the peripheral region of the vortex (this term is often termed
as the Magnus force). We find Avort,1 = n/2, where n =
2N0EF is the actual fermionic density. Another contribution is
a reaction force from normal fermions at the vortex core. For
this term, we find Avort,2 = −n0/2, where n0 = 2N0μθ (μ) is
the density of free fermions with the same chemical potential
μ = EF − E0 (same as the density of fermions inside the
vortex core). In the BCS regime EF > E0, the difference
n − n0 = 2N0E0 � n, i.e., these two forces nearly cancel each
other. The resulting Avort = N0E0. In the BEC regime, μ < 0,
i.e., all states of free fermions are above the chemical potential
and therefore are empty. Then n0 = 0, and only the Magnus
force contributes to Avort = Avort,1 = n/2 = N0EF . The van-
ishing of n0 once μ becomes negative is consistent with the
generic reasoning in Ref. [37] that free-fermion contribution
to Avort vanishes once the system undergoes a (fictitious)
Lifshitz transition, in which the (fictitious) Fermi surface of
free fermions with renormalized μ disappears. In our case,
this happens once E0 becomes larger than EF .

The Berry phase term in the effective action has
been analyzed earlier [25–31,34,37,39,40]. Several authors
[26,34,37,39,40] argued on general grounds that the value of
Avort depends on the interplay between the fermionic lifetime
τ and the separation between discrete levels in the vortex

core ω0 ∼ �2/EF (Refs. [34,41,42]). They argued that the
result Avort = (n − n0)/2, which we report, holds in the hydro-
dynamic limit ω0τ � 1, when the quantization of fermionic
states inside the vortex core can be neglected. In the opposite
limit ω0τ � 1 (which includes the most studied case of τ =
∞), these and other researchers argued [26,29,31,34,37,39]
that there should be a contribution to Avort from discrete levels
in the vortex core, which cancels out Avort,2, such that the total
Avort = Avort,1 = n/2.

In our approach, Avort,1 = n/2 comes from the states far
away from the vortex core, and by this reason is unsensitive
to whether ω0τ is small or large, i.e., it exists at ω0τ � 1
and ω0τ � 1. The contribution Avort,2 = n0/2 is more tricky.
On one hand, it does come from the states within the vortex
core, and in our calculations we kept fermionic lifetime to
be infinite. On the other, this contribution to the Berry phase
comes solely from the term in the action at vanishing � → 0,
when the distance between energy levels in the core vanishes,
and the fermionic spectrum in the vortex core becomes con-
tinuous. This implies that in our analysis ω0 = 0 and τ = ∞,
so ω0τ is ill defined. Still, we emphasize that our Avort,2 comes
from continuous (i.e., nonquantized) states, and we will also
argue that it remains the same in the presence of impurities,
i.e., at a finite τ . By these two reasons, we believe that it is
meaningful to compare our Avort with the one obtained in ear-
lier works at ω0τ � 1. Then our and earlier results fully agree.

There is, however, one aspect in which our result seems
to differ from earlier works. Namely, these works speculated
[26,34,37,39,40] that at a finite ω0τ there should be a con-
tribution to Avort from discrete levels in the vortex core. We
did not find such contribution in our microscopic approach (in
our case, this would be the contribution to Avort from discrete
levels in the vortex core in the term in the action in which �

is finite). We explicitly show this using a finite system size
D for the regularization of the integrals and taking the limit
D → ∞ only at the end of calculations. It remains to be seen
whether such contribution emerges if one goes beyond the
approximations we made in the derivation of the action for
phase variable.

There is one additional element in our calculation, which
was not emphasized in earlier works [25,27,28,38] and forced
us to derive the action in step-by-step calculations, starting
from Hubbard-Stratonovich transformation and keep terms at
a finite � and at � → 0. Namely, in some earlier calculations,
Avort,1 was argued to come from the action at a finite �. The
full contribution to the Berry phase from this term, however,
contains an additional, formally infinite piece,

∑
k (1), where

the sum is over all momenta. The authors of earlier works
have argued that this “parasitic” term should not be present
in Avorx,1 by physical reasons, but did not show explicitly how
this term get canceled. In our calculation below, we show ex-
plicitly that the parasitic divergent term from a finite � piece
in the action get canceled by the counter-term from the part of
the action at � → 0 (the original divergent contribution and
the counter-term both come from the states far away from a
vortex core).

The paper is organized as follows. In the next section, we
introduce the effective action of a superconductor in terms of
its fluctuating order parameter �(r, τ ). In Sec. III, we develop
a systematic expansion of the action in terms of (imaginary)
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time derivatives of the order parameter. We evaluate the
zeroth order term and obtain the condensation energy of a
superconductor. We then obtain terms with one and two time
derivatives, and express them in terms of eigenfunctions of the
Bogoliubov-de Gennes equation. We next focus on the small
wavelength limit and express the action in terms of spatial
and time derivatives of the phase of a superconducting order
parameter, including the term, linear in time derivative. This
last term becomes a meaningful Berry phase term when the
phase of the superconducting order parameter is not defined
globally, which is the case of a vortex. In Sec. IV, we compute
the effective action for a moving vortex in a neutral s-wave
superconductor in 2d. Section V is the summary of our results.

II. GENERAL FORMULATION

The effective action for an order parameter of an s-wave
superconductor can be obtained by departing from a micro-
scopic model with the local four-fermion attractive interac-
tion −g (g > 0) and introducing the pairing field �(r, τ )
to decoupling the four-fermion interaction via the Hubbard-
Stratonovich transformation [43]. This procedure is well doc-
umented (see, e.g., Ref. [44]), and we just quote the results.

The partition function Z is expressed via the integral over
the Grassmann fields as

Z =
∫

dψdψ̄e−S[ψ,ψ̄], (3)

where ψ = ψα (r, τ ) and ψ̄ = ψ̄α (r, τ ) are the spin-full coor-
dinate and time dependent Grassmann fields, and

S[ψ, ψ̄] =
∫

drdτ (ψ̄α (r, τ )∂τψα (r, τ ) + H[ψ, ψ̄]). (4)

Here, τ is the imaginary (Matsubara) time τ = it and

H[ψ, ψ̄] =
[
ψ̄σ (r, τ )

(
−∇2

2m
− μ

)
ψσ (r, τ )

]

− gψ̄↑(r, τ )ψ̄↓(r, τ )ψ↓(r, τ )ψ↑(r, τ ). (5)

The four-fermion interaction is decoupled by the Hubbard-
Stratonovich transformation

e
ax2

2 = 1√
2πa

∫
dy e(− y2

2a +yx). (6)

In our case, we introduce two Hubbard-Stratonovich fields
�(r, τ ) and �∗(r, τ ) and rewrite the partition function as

Z =
∫

dψdψ̄d�d�∗e−S[ψ,ψ̄,�,�∗], (7)

where now

S[ψ, ψ̄,�,�∗] =
∫

drdτ

(
ψ̄α (r, τ )∂τψα (r, τ )

+ |�(r, τ )|2
g

+ H[ψ, ψ̄,�,�∗]

)
(8)

and

H[ψ, ψ̄,�,�∗] =
[
ψ̄σ (r, τ )

(
− ∇2

2m
− μ

)
ψσ (r, τ )

+�(r, τ )ψ̄↑(r, τ )ψ̄↓(r, τ )

+�∗(r, τ )ψ↓(r, τ )ψ↑(r, τ )

]
. (9)

The action S[ψ, ψ̄,�,�∗] can be reexpressed in a more
compact form by introducing a Gorkov-Nambu spinor ψ =
[ψ↑, ψ̄↓]T . Then

S[ψ, ψ̄,�,�∗] =
∫

drdτ
|�(r, τ )|2

g

−
∫

drdτ ψ̄ (r, τ )Ĝ−1ψ (r, τ ), (10)

where the Ĝ−1 is an operator

Ĝ−1 = −∂τ − K̂ (r) − �̂(r, τ ), (11)

with

K̂ (r) =
[−(1/2m)∇2 − μ 0

0 (1/2m)∇2 + μ

]

and

�̂(r, τ ) =
[

0 �(r, τ )

�∗(r, τ ) 0

]
.

The Green’s function for the fermions Ĝ(r, τ ; r′, τ ′) satisfies
the following operator identity:

(−∂τ − K̂ (r) − �̂(r, τ, λ))Ĝ(r, τ ; r′, τ ′)

= δ(r − r′)δ(τ − τ ′). (12)

Integrating over ψ and ψ̄ we then obtain

Z =
∫

d�d�∗e−S[�,�∗] (13)

and

S[�,�∗] =
∫

drdτ
|�(r, τ )|2

g
− Tr ln Ĝ−1. (14)

The logarithm in the effective action can be eliminated
by introducing an auxiliary variable λ and making �,
and hence G, λ-dependent, subject to �(r, τ, 1) = �(r, τ )
and �(r, τ, 0) = 0. Indeed, because Ĝ−1(r, τ ) = Ĝ−1

0 (r, τ ) −
�̂(r, τ ), we have ln Ĝ−1 = ln Ĝ−1

0 −∑
n=1(Ĝ0�̂)n/n. The

product Ĝ�̂ = ∑
n=1(Ĝ0�̂)n is represented by the same ex-

pansion, but without 1/n. The 1/n can be reintroduced by
using the identity∫ 1

0
dλ Tr

[
∂�̂(λ)

∂λ
Ĝ0(�̂(λ)Ĝ0)n−1

]
= 1

n
Tr[(�̂(1)Ĝ0)n].

Using this trick, we can replace S in (14) by

S =
∫ ∞

−∞
dτ

∫
dr
∫ 1

0
dλ Tr

[
Ĝλ(r, τ ; r, τ )

∂

∂λ
�̂(r, τ, λ)

]

+
∫

dτ

∫
dr

|�(r, τ, 1)|2
g

+ Snorm, (15)
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where

Snorm = −Tr ln Ĝ−1
�→0. (16)

Note that in Eq. (15) the trace is over the Gorkov-Nambu
2 × 2 matrices only, while in Eq. (16) the trace is assumed
to be over the infinite-dimensional matrix Ĝ−1 as well as over
the Gorkov-Nambu 2 × 2 structure.

A similar trick has been used in Ref. [45], where an
auxiliary variation of the coupling constant was introduced
instead of λ dependence. Writing the action in the form of
Eq. (15) helps with the computations and will also allow us
to establish a connection with the Wess-Zumino formalism,
which has been used in earlier works [31,37,40] to evaluate
the Berry phase and the Magnus force for topological defects,
such as vortices.

III. ADIABATIC EXPANSION

We set �̂(r, τ, λ) to be a slowly varying function of τ and
expand it around a particular τ ′ as

�̂(r, τ, λ) = �̂(r, τ ′, λ) + ∂τ ′�̂(r, τ ′, λ)(τ − τ ′)

+ (1/2)∂2
τ ′�̂(r, τ ′, λ)(τ − τ ′)2 + . . . (17)

Consequently, we seek for the solution of Eq. (12) in the form

Ĝλ(r, τ ; r′, τ ′) = Ĝ(0)
λ (r, τ −τ ′; r′, τ ′) + Ĝ(1)

λ (r, τ −τ ′; r′, τ ′)

+ Ĝ(2)
λ (r, τ − τ ′; r′, τ ′) + . . . , (18)

with Ĝ(0)
λ being of the order (∂τ�)0, Ĝ(1)

λ being of the order
(∂τ�)1, etc. The functional in Eq. (15) can then be written as
a series

S = Snorm + S0 + S1 + S2 + . . .

= Snorm +
∫

dτ

[
L(0)(τ ) +

∫
dr

|�(r, τ, 1)|2
g

]

+
∫

dτL(1)(τ ) +
∫

dτL(2)(τ ) + . . . (19)

with

L(k)(τ ) =
∫

dr
∫ 1

0
dλ Tr

[
Ĝ(k)

λ (r, τ ; r, τ )
∂

∂λ
�̂(r, τ, λ)

]
.

(20)

Again we emphasize that in Eq. (20) the trace is taken over
the 2 × 2 matrices only. In what follows, we derive the first
three terms in the expansion in Eqs. (19) and (20) and obtain
S = S0 + S1 + S2 + Snorm.

A. The expansion of the action for a generic �(τ, r)

We start with Eq. (19). Substituting Eqs. (17) and (18)
into Eq. (12), we find that the zeroth-order Green’s function
Ĝ(0)

λ (r, τ − τ ′; r′, τ ′) satisfies the operator identity

[−∂τ − H(r, τ ′, λ)]Ĝ(0)
λ (r, τ ; r′, τ ′) = δ(r − r′)δ(τ − τ ′),

(21)

where

H(r, τ ′, λ) = K̂ (r) + �̂(r, τ ′, λ). (22)

The solution of this equation can be written as

Ĝ(0)
λ (r, τ − τ ′; r′, τ ′) =

∫
dω

2π
Ĝ(0)

λ (r, ω; r′, τ ′) e−iω(τ−τ ′ ),

(23)

with

Ĝ(0)
λ (r, ω; r′, τ ′) =

∑
n

|χn,λ(r, τ ′)〉〈χn,λ(r′, τ ′)|
iω − En,λ

, (24)

where |χn,λ(r, τ ′)〉 are the eigenfunctions of the correspond-
ing Bogolubov-De Gennes equation:

H(r, τ ′, λ)|χn,λ(r, τ ′)〉 = En,λ(τ ′)|χn,λ(r, τ ′)〉 , (25)

which satisfy the completeness relation∑
n

|χn,λ(r)〉〈χn,λ(r′)| = δ(r − r′). (26)

The eigenfunctions |χn,λ(r, τ ′)〉 depend parametrically on
λ and τ ′. Continuing with the expansion, we find higher-order
contributions in Eq. (18) to be

Ĝ(1)
λ (r, ω; r′, τ ′) = i

∫
dr1 Ĝ(0)

λ (r, ω; r1, τ
′)[∂τ ′�̂(r1, τ

′, λ)]
∂

∂ω
Ĝ(0)

λ (r1, ω; r′, τ ′), (27)

Ĝ(2)
λ (r, ω; r′, τ ′) = −1

2

∫
dr1 Ĝ(0)

λ (r, ω; r1, τ
′)
[
∂2
τ ′�̂(r1, τ

′, λ)
] ∂2

∂ω2
Ĝ(0)

λ (r1, ω; r′, τ ′) − λ2
∫

dr1dr2
∂

∂ω
Ĝ(0)

λ (r, ω; r1, τ
′)

× [∂τ ′�̂(r1, τ
′, λ)]Ĝ(0)

λ (r1, ω; r2, τ
′)[∂τ ′�̂(r2, τ

′, λ)]
∂

∂ω
Ĝ(0)

λ (r2, ω; r′, τ ′). (28)

We now substitute Eqs. (23), (24), (27), and (28) into Eqn. (20). The zeroth-order term gives

L(0)(τ ) =
∫ 1

0
dλ

∫
dω

2π
eiωε+ ∑

n

〈χn,λ|∂λ�̂(τ )|χn,λ〉
iω − En,λ

=
∑

n

∫ 1

0
dλ 〈χn,λ|∂λ�̂(τ )|χn,λ〉θ (−En,λ), (29)

where θ (x) = 1 for x > 0 and θ (x) = 0 for x < 0. Here and below, we use the notation

〈χn,λ| . . . |χn,λ〉 =
∫

dr〈χn,λ(r)| . . . |χn,λ(r)〉. (30)
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The integral over λ in (29) can be evaluated if we note that ∂λ�̂(τ ) = ∂λĤ . Then

〈χn,λ|∂λ�̂(τ )|χn,λ〉 = 〈χn,λ|∂λĤ |χn,λ〉 = ∂λ〈χn,λ|Ĥ |χn,λ〉 = ∂λEn,λ. (31)

Substituting this into (29), integrating over λ, and substituting the result into (19), we obtain the zeroth-order (adiabatic) term in
the expansion of S:

S0 =
∑

n

∫ ∞

−∞
dτ [En(τ ) − E (|�|→0)

n (τ )]θ [−En(τ )] +
∫ ∞

−∞
dτ

∫
dr

|�(r, τ )|2
g

. (32)

En(τ ) in this expression are the eigenenergies En(τ ) of the Bogolubov-De Gennes equation (25) with λ = 1. [Note that
∑

n En(τ )
is proportional to the area S of a 2d system, so both terms in (32) scale as S.] The counter-term with E (|�|→0)

n comes from the
lower limit of the integration over λ.

To derive the term in the action with the first derivative over time, S1 = ∫
dτL(1)(τ ), we substitute Eq. (27) into Eq. (20).

Evaluating the trace with the use of (26), we obtain

S1 = i
∫

dτ

∫ 1

0
dλ

∫
dω

2π

∑
n,m

〈χn,λ|∂τ �̂|χm,λ〉
iω − En,λ

∂

∂ω

〈χm,λ|∂λ�̂(τ )|χn,λ〉
iω − Em,λ

=
∫

dτ

∫ 1

0
dλ
∑
n,m

〈χn,λ|∂τ �̂|χm,λ〉〈χm,λ|∂λ�̂|χn,λ〉(θn,λ − θm,λ)

(En,λ − Em,λ)2
. (33)

We used Eq. (30) and a shorthand notation θn,λ ≡ θ (En,λ). To proceed further, we use the identities

〈χn,λ|∂λ�̂(τ )|χm,λ〉 = 〈χn,λ|∂λĤ |χm,λ〉 = 〈∂λχn,λ|χm,λ〉(En,λ − Em,λ) (m �= n), (34)

〈χn,λ|∂τ �̂(τ )|χm,λ〉 = 〈χn,λ|∂τ Ĥ |χm,λ〉 = 〈∂τχn,λ|χm,λ〉(En,λ − Em,λ) (m �= n). (35)

Substituting them into (33), we get rid of the denominator.
Integrating the rest by parts, we obtain

S1 =
∫

dτ

∫ 1

0
dλ
∑

n

[〈∂λχn,λ|∂τχn,λ〉−〈∂τχn,λ|∂λχn,λ〉]θn,λ.

(36)

One can make sure [46] that the term inside the brackets is

d

dλ

[〈χn(τ )|∂τχn(τ )〉 − 〈
χ (|�|→0)

n (τ )
∣∣∂τχ

(|�|→0)
n (τ )

〉]
. (37)

Then

S1 =
∑

n

∫
dτ
[〈χn(τ )|∂τχn(τ )〉

− 〈
χ (|�|→0)

n (τ )
∣∣∂τχ

(|�|→0)
n (τ )

〉]
θn,λ. (38)

The derivation of the second order term in the action S2 =∫
dτL(2)(τ ) is more cumbersome. We present the details in

Appendix. The result is

S2 = −1

2

∑
m �=n

∫
dτ

[ |〈χn(τ )|∂τχm(τ )〉|2(θn − θm)

En(τ ) − Em(τ )

−
∣∣〈χ (|�|→0)

n (τ )
∣∣∂τχ

(|�|→0)
m (τ )

〉∣∣2(θn − θm)

E (|�|→0)
n (τ ) − E (|�|→0)

m (τ )

]
. (39)

We emphasize that in Eqs. (38) and (39), the wave func-
tions |∂τχn,λ(τ )〉 and energies En(τ ) satisfy Bogoluibov-De

Gennes equations, in which the order parameter �(r, τ ) de-
pends on coordinate r and on τ .

Finally, consider Snorm = −Tr ln Ĝ−1
�→0, Eq. (16). We argue

that it also contains the term linear in time derivative. The
most straightforward way to see this is to keep � small but
finite and apply a gauge transformation under the logarithm
to get rid of the φ dependence of �(φ) = �eiφ , i.e., re-
place Ĝ−1

�→0 by Û †Ĝ−1
�→0Û , where Û is chosen such that in

Û †Ĝ−1
�→0Û , � appears without eiφ factor (Ref. [25,47]). A

simple experimentation shows that one should choose Û in
the form

Û (r, τ ) =
[

eiφ(r,τ )/2 0

0 e−iφ(r,τ )/2

]
. (40)

Once �(φ) is stripped of the phase, its magnitude can be
safely set to zero. However, because Ĝ−1 contains time and
spatial derivatives, Û †Ĝ−1

�→0Û acquires the terms with φ̇ and
∇φ. These terms are additional to the ones in S1 because to
obtain the latter we used the expansion in powers of �, while
here we treat � as infinitesimally small and do not expand
in it.

Using (12) and (40), we obtain, keeping only time deriva-
tive of φ,

Snorm = −Tr ln

[
Ĝ−1

0 − i

2
σzφ̇(r, τ )

]
, (41)

where

Ĝ−1
0 =

[
−∂τ + (1/2m)(∇ + (i/2)∇φ)2 + μ 0

0 −∂τ − (1/2m)(∇ − (i/2)∇φ)2 − μ

]
. (42)
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Snorm in Eqs. (41) and (42), as well as S0, S1, and S2,
can be expanded in terms of space and time derivatives of
φ. This will be carried out in the next section, where we
will analyze the long wavelength and low-frequency limit
of the effective action derived in this section and obtain
the Anderson-Bogolubov-Goldstone (ABG) mode of gapless
phase fluctuations. A special attention is required when the
phase φ contains a vortex, in which case an expansion in ∇φ

fails in the vicinity of the vortex core. Instead we expand
of Snorm in terms of small displacements of the vortex core
and show that there is a transverse reaction force associated
with the readjustments of the normal component to the vortex
displacement. The corresponding analysis will be carried out
in Sec. IV.

B. The long-wavelength limit

The expansion of the action in the previous section holds
for any function �(τ, r). In this section, we consider slowly
varying the order parameter and derive an effective action in
terms of its spatial and time derivatives. We compute each
term in S = S0 + S1 + S2 + Snorm separately

1. The action S0: the condensation energy and the (∇φ)2 term

The term S0 is given by Eq. (32). To express it in terms of
spatial derivatives of �, we need to find the solutions to the
Bogolubov-de Gennes equation:[

−(1/2m)∇2 − μ |�(r, τ )|eiφ(r,τ )

|�(r, τ )|e−iφ(r,τ ) (1/2m)∇2 + μ

][
un(r, τ )

vn(r, τ )

]

= En(τ )

[
un(r, τ )

vn(r, τ )

]
. (43)

To get rid of the complex phase of �(r, τ ), we redefine the
wave function in Eq. (43) as |χn(r, τ )〉 = eiφ(r,τ )σz/2|χ̃n(r, τ )〉.
The eigenfunction |χ̃n(r, τ )〉 satisfies the equation{

Ĥ0 − i

4m
[∇(∇φ) + (∇φ)∇] + σ̂z

8m
(∇φ)2

}
|χ̃n(r, τ )〉

= En(τ )|χ̃n(r, τ )〉, (44)

where

Ĥ0 =
[−(1/2m)∇2 − μ |�(r, τ )|

|�(r, τ )| (1/2m)∇2 + μ

]
. (45)

Due to slow variation of φ on r, the last two terms in Eq. (44)
can be treated as perturbations. We define V̂1 and V̂2 as
follows:

V̂1 = − i

4m
[∇(∇φ) + (∇φ)∇], V̂2 = σ̂z

8m
(∇φ)2. (46)

In V̂1, the free-standing gradient in the first term acts on the
bra state on the left, and in the second term, it acts on the ket
state on the right.

In the following, we restrict our analysis to terms quadratic
in spatial derivatives. It is easy to verify that to this order, one
can neglect the spatial fluctuations of |�(r, τ )| as the spatial
dependence of |�| only gives rise to third-order terms like
(∇φ)2(∇�), etc.

The eigenstates of (44) at V̂1 = V̂2 = 0 are the conventional
Bogolubov solutions, for which n is a continuous 2d variable,
which we label as k. For the particle branch, we have

|χ̃ (+)
k (r)〉 ≡

[
ũk

ṽk

]
eikr =

⎡
⎣
√

1
2 + ξk

2|Ek|√
1
2 − ξk

2|Ek|

⎤
⎦eikr

√
S

, (47)

where En(τ ) = E (+)
k (τ ) = +

√
ξ 2

k + |�(τ )|2 and we remind
that S is the area of the sample. For the hole branch, we have

|χ̃ (−)
k (r)〉 ≡

[
ṽk

−ũk

]
eikr =

⎡
⎣
√

1
2 − ξk

2|Ek|
−
√

1
2 + ξk

2|Ek|

⎤
⎦eikr

√
S

(48)

where En(τ ) = E (−)
k (τ ) = −

√
ξ 2

k + |�(τ )|2.
(a) The condensation energy. We label by S0,a the term in

S0, which does not contain gradients. It is given by

S0,a(�) =
∫

dτ

∫
dr
[
−
∫

d2k
(2π )2

{√
ξ 2

k + |�(τ )|2 − |ξk|
}

+ |�(τ )|2
g

]
. (49)

In equilibrium, �(τ ) = �0 + δ�(τ ), where �0 � δ�(τ ).
Substituting this �(τ ) into (49) and using ∂S0,a(�)/∂ (δ�) =
0, we obtain a conventional gap equation

S
�0

g
= �0

∑
ω,k

�0

ω2 + �2
0 + ξ 2

k

, (50)

which after the integration over Matsubara frequency becomes

1

g
= N0

2

∫ �

−μ

dξ√
ξ 2 + �2

0

. (51)

Integrating further over ξ in (51) and re-expressing the result
in terms of the bound state energy 2E0 = 2�e−2/(N0g), we
obtain the relation [1,3,24]√

μ2 + �2
0 − μ = 2E0 . (52)

The self-consistency equation for μ in turn follows from the
condition that the total number of fermions, including bound
pairs, is conserved [3]. This gives another relation√

μ2 + �2
0 + μ = 2EF . (53)

Solving Eqs. (52) and (53), we obtain

μ = EF − E0 , �0 = 2
√

EF E0. (54)

We will use these formulas below when we evaluate the
prefactors for φ̇, (φ̇)2, and (∇φ)2 terms in the crossover
region between the BCS and BEC behavior. We recall that
BCS behavior holds when the bound state energy E0 is much
smaller than EF (and �0 � μ) and BEC behavior holds when
E0 � EF . A negative μ at EF < E0 implies that the Fermi
momentum kF , defined as position of the minimum of the
fermionic dispersion Ek =

√
(εk − μ)2 + �2

0 ), is zero [7].
Equations (53) and (54) allow one to obtain the condensa-

tion energy of a superconductor in the whole crossover range
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between the BCS and BEC regimes. We have

Econd − NS(μ − μ0) = S0,a + δSfree, (55)

where δSfree is the difference between 2
∑

k ξknk in the normal
state at chemical potentials μ and μ0. Using N = 2N0EF , μ −
μ0 = −E0 and evaluating δSfree = SN0(μ2

0 − μ2) for μ > 0
and δSfree = SN0μ

2
0 for μ < 0, we obtain

Econd = −SN0E2
0 + S0,a, μ > 0;

= −SN0

(
�2

2
− E2

F

)
+ S0,a, μ < 0. (56)

Using (51) and introducing x = μ/�0 and y = ξ/�0, we re-
express S0,a in (49) as

S0,a = SN0
�2

0

2
I (x), (57)

where

I (x) =
∫ ∞

−x
dy

(
1√

y2 + 1
− 2

√
y2 + 1 + |y|

)
. (58)

This integration yields

I (x) = − 1
2 + x2 − x

√
1 + x2, x > 0;

= − 1
2 − x2 + |x|

√
1 + x2, x < 0. (59)

Substituting the expressions for μ and �, we obtain

S0,a = SN0

(
−�2

0

2
+ E2

0

)
, μ > 0;

= −SN0E2
F , μ < 0. (60)

The combination of (56) and (60) yields

Econd = −SN0
�2

0

2
(61)

independent on the ratio E0/EF . The same result (the inde-
pendence of Econd on E0/EF ) has been also obtained [24,32]
by directly evaluating the kinetic and the potential energy of a
superconductor (see also Ref. [48]).

(b) The ∇φ term. The leading term in ∇φ in S0 can be
calculated by treating ∇φ terms in the Hamiltonian in Eq. (44)
as perturbations. To the first order, this contribution is given by
V̂2. We label the corresponding term in S0 as S0,b. We have

S0,b = −
∫

dτ
∑

k

[〈χ̃ (−)
k |V̂2|χ̃ (−)

k 〉�

−〈χ̃ (−)
k |V̂2|χ̃ (−)

k 〉�→0]θ (−Ek )

= −
[

1

S

∑
k

(
ξk

|Ek| − ξk

|ξk|
)]∫

dr
(∇φ)2

8m
. (62)

The k integral is ultraviolet convergent. Note that due to the
presence of θ (−En) in Eq. (32), the summation in Eq. (62)
involves only the hole states |χ̃ (−)

k 〉. Evaluating the integral,
we find

−1

S

∑
k

(
ξk

|Ek| − ξk

|ξk|
)

= −
∫

d2k
(2π )2

(
ξk

|Ek| − ξk

|ξk|
)

= N0(
√

μ2 + |�(τ )|2 − |μ|) . (63)

This term can be equivalently re-expressed as∫
d2k

(2π )2

(
1 − ξk

|Ek|
)

−
∫

d2k
(2π )2

(
1 − ξk

|ξk|
)

= 2
∫

d2k
(2π )2

((
ṽ2

k

)
�

− ṽ2
k (� = 0)

) = n − n0, (64)

where

n = 2
∫

d2k
(2π )2

(
ṽ2

k

)
�

= (
√

μ2 + |�(τ )|2 + |μ|) = 2N0EF

(65)

is the density of fermions and

n0 = 2
∫

d2k
(2π )2

(
ṽ2

k

)
�=0 = 2N0μθ (μ) (66)

is the density of free electrons in the normal state at the actual
chemical potential μ. Using these notations, we find

S0,b = (n − n0)
∫

dr
(∇φ)2

8m
. (67)

The last contribution to S0 comes from V̂1. The first-order
contribution from V̂1 is zero. The contribution to order (V̂1)2

is given by

S0,c = (S0,c)� − (S0,c)�=0, (68)

where

(S0,c)� =
∑

k,k′,i=±

〈χ̃ (−)
k |V̂1

∣∣χ̃ (i)
k′
〉〈
χ̃

(i)
k′
∣∣V̂1|χ̃ (−)

k 〉
E (−)

k − E (i)
k′

= (S−+
0,c )� + (S−−

0,c )�. (69)

Consider (S−+
0,c )� and (S−−

0,c )� separately. For i = +, we use

Eq. (47) for |χ̃ (+)
k (r)〉 and Eq. (48) for |χ̃ (−)

k (r)〉 and obtain

〈χ̃ (−)
k |V̂1|χ̃ (+)

k′ 〉〈χ̃ (+)
k′ |V̂1|χ̃ (−)

k 〉

= (ũkṽk′ − ṽkũk′ )2
(k j + k′

j )
2

2m

×
∫

drdr′ (∇ jφ)(∇′
jφ)

8m
ei(k−k′ )(r−r′ ) , (70)

where j = x, y. Using the forms of ũk and ṽk , we then obtain

(S−+
0,c )� = − 1

S2

∑
k,k′

EkEk′ − ξkξk′ − �2
0

2EkEk′ (Ek + Ek′ )

(k j + k′
j )

2

2m

×
∫

drdr′ (∇ jφ)(∇′
jφ)

8m
ei(k−k′ )(r−r′ ), (71)

where in the prefactor we can use the zero-order expression
Ek =

√
ξ 2

k + �2
0 . For (S−−

0,c )� the computation along the same
lines yields

(S−−
0,c )� = − 1

S2

∑
k,k′

EkEk′ + ξkξk′ + �2
0

2EkEk′ (Ek − Ek′ )

(k j + k′
j )

2

2m

×
∫

drdr′ (∇ jφ)(∇′
jφ)

8m
ei(k−k′ )(r−r′ ) . (72)
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The total contribution (S0,c)� = (S−+
0,c )� + (S−−

0,c )� is, after
symmetrization over k and k′

(S0,c)� = − 1

2S2

∑
k,k′

EkEk′ − (ξkξk′ + �2
0)

EkEk′ (Ek + Ek′ )

(k j + k′
j )

2

2m

×
∫

drdr′ (∇ jφ)(∇′
jφ)

8m
ei(k−k′ )(r−r′ ) . (73)

To proceed, assume that (∇ jφ(r))(∇′
jφ(r′)), viewed as a

function of δr = r − r′, drops at some characteristic scale
D0, which is much smaller than the system size 2D, but
much larger than interatomic spacing a0. The corresponding
characteristic δk = |k − k′| are of order 1/D0, which satis-
fies 1/D � 1/D0 � 1/a0. Such δk are, on one hand, much
smaller than kF , and, on the other hand, are large enough such
that the discreteness of momentum δkm = πm/D is irrelevant.
As the consequence, the expression for (S0,c)� can be re-
expressed, to leading order in the derivatives, as

(S0,c)� = −limδk→0χ j (δk)
∫

dr
(∇ jφ)2

8m
, (74)

where we introduced

χ j (δk) = 1

S

∑
k

Ek−Ek+ − (
ξk+ξk− + �2

0

)
Ek+Ek− (Ek+ + Ek− )

k2
j

m
(75)

with k± = k ± δk/2, and used

∫
d (δk j )

2π

∫ D0

−D0

d (δr j )e
iδk jδr j = 2

π

∫ ∞

0

sin x

x
dx = 1. (76)

The quantity χ (δk) is, up an overall factor, a particle-hole
bubble made out of superconducting Green’s functions. At a
finite �, it vanishes at δk → 0 because the term in the numer-
ator in (75) tends to zero in this limit. Accordingly, (S0,c)� =
0. However, for (S0,c)�→0, the corresponding χ (δk) is a
free-fermion static susceptibility in the normal state, and it
tends to a finite value when δk is small but finite. We now
use the fact that at small δk the integration over k in (75)
is confined to k = kF and pull k2

j /m ≈ (k2
F ) j/m from the

sum. Performing the remaining integration with Ek = |ξk| and
using the symmetry between j = x and j = y and the fact that

N0k2
F /m = 2N0μθ (μ) = n0, we obtain

(S0,c)�→0 = −N0
k2

F

m

∫
dr

(∇φ)2

8m
= −n0

∫
dr

(∇φ)2

8m
.

(77)

Substituting this into (68), we obtain

S0,c = n0

∫
dr

(∇φ)2

8m
. (78)

Combining (67) and (78), we obtain the total term with (∇φ)
and no time derivative in the form

S0,b + S0,c = n
∫

dτ

∫
dr

(∇φ)2

8m
. (79)

We see that the prefactor for the (∇φ)2 term in the action is
the full density. The consideration can be readily extended to
the case when impurity scattering is present. The result is that
n is replaced by the superfluid density ns. In our consideration,
we do not distinguish between n and ns.

2. The actions S1 and Snorm—the linear term in φ̇

The calculation of the first-order term in the derivative
over τ is quite straightforward. We start with S1 term. From
Eqs. (38) and (48), we obtain∑

n

〈χn(τ )|∂τχn(τ )〉 − 〈
χ (|�|→0)

n (τ )
∣∣∂τχ

(|�|→0)
n (τ )

〉
θn,λ

(80)

= i
∫

dr
φ̇(r, τ )

2

1

S

∑
k

[(
ṽ2

k − ũ2
k

)
� �=0 − (

ṽ2
k − ũ2

k

)
�=0

]

= i
∫

dr
φ̇(r, τ )

2

1

S

∑
k

(
ξk

|ξk| − ξk

|Ek|
)

. (81)

Substituting this into Eq. (38) and using Eq. (63), we obtain

S1 = iN0

2

∫
dτ

∫
dr (

√
μ2 + |�(τ )|2 − |μ|) φ̇(r, τ )

= i
∫

dτ

∫
dr

n(τ ) − n0

2
φ̇(r, τ ). (82)

Note that this expression again contains fluctuating �(τ )
rather than equilibrium �0.

Equation (82) can be cast in the form of the Wess-Zumino
action for a superconductor [31,37,40]. To see this, let us
recall the derivation of S1, e.g., Eq. (38), and write it as a
slightly modified version of Eq. (33),

S1 =
∫ ∞

−∞
dτ

∫ 1

0
dλ

∑
n,m

〈χn,λ|∂λ�̂|χm,λ〉〈χm,λ|∂τ �̂|χn,λ〉(θn,λ − θm,λ)

(En,λ − Em,λ)2
. (83)

Since Eq. (83) already contains double gradients (over τ and λ), we can treat states |χn,λ〉 and energies En,λ in this
equation adiabatically, i.e., use Eq. (47) and E (+)

k,λ (τ ) = +
√

ξ 2
k + |�(τ, λ)|2 for the particle branch and use Eq. (48) and

E (−)
k,λ

(τ ) = −E (+)
k,λ

(τ ) for the hole branch.
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The integrand in Eq. (83) can then be written as

1

S2

∑
k,k′

1

(Ek,λ + Ek′,λ)2

∫
drdr′ei(k−k′ )(r−r′ ){[∂λ�(r)vk,λvk′,λ − ∂λ�

∗(r)uk,λuk′,λ][∂τ�
∗(r′)vk,λvk′,λ − ∂τ�(r′)uk,λuk′,λ]

− (same with � → �∗)} . (84)

In the long-wavelength limit, we can replace (1/S2)
∑

k,k′ ei(k−k′ )(r−r′ )v2
k,λv

2
k′,λ/(Ek,λ + Ek′,λ)2 by Cv δ(r − r′) with

Cv = 1

S2

∑
k,k′

v2
k,λv

2
k′,λ

(Ek,λ+Ek′,λ)2
(2π )2δ(k − k′) = 1

S

∑
k

v4
k,λ

4E2
k,λ

,

etc. Then Eq. (84) reduces to a single integral over r, which can be expressed as

1

S

∑
k

u2
k,λ − v2

k,λ

4E2
k,λ

∫
dr (∂λ�∂τ�

∗ − ∂τ�∂λ�
∗) , (85)

where we have used that v2
k,λ + u2

k,λ = 1. Finally, using

1

S

∑
k

u2
k,λ − v2

k,λ

4E2
k,λ

= 1

2

∂n

∂ (|�|2)
,

where n is particle density, we express the action S1 as

S1 = 1

2

∫
dr
∫ ∞

−∞
dτ

∫ 1

0
dλ

∂n

∂ (|�|2)
(∂λ�∂τ�

∗−∂τ�∂λ�
∗). (86)

This action has the same form as Wess-Zumino action for s-wave superconductor [31,37]. Note, however, that Eq. (86) is only
valid in the long wave length limit, e.g., it does not account for the bound states that may arise in a vortex core [41], whereas
Eq. (38) is more general because it includes all types of states.

We now turn to the contribution from Snorm, Eqs. (41) and (42). Expanding then to first order in φ̇, we obtain

Snorm = S0 + i

2

∫
dτ

∫
drφ̇(r, τ )Tr[G0(r, τ ; r, τ )σz], (87)

where S0 does not depend on φ. Introducing Fourier transformation for relative time and relative coordinate, replacing the integral
over momentum by N0

∫
dξ , and keeping e±iωδ factors (with infinitesimally small δ > 0) for particle and hole components of

the Nambu Green’s function in the normal state, we obtain for the second term in Eq. (87)

i

2

∫
dτ

∫
drφ̇(r, τ )Tr[G0(r, τ ; r, τ )σz] = i

2

∫
dτ

∫
dr φ̇(r, τ )N0

∫ ∞

−μ

dξ

∫
dω

2π

(
eiωδ

iω − ξ
− e−iωδ

iω + ξ

)

= i
∫

dτ

∫
dr φ̇(r, τ )N0

∫ ∞

−μ

dξθ (−ξ ) = i
n0

2

∫
dτ

∫
dr φ̇(r, τ ) . (88)

Then

Snorm = S0 + i
n0

2

∫
dτ

∫
dr φ̇(r, τ ) . (89)

Combining S1 from (82) and Snorm, we obtain

S1 + Snorm = S0 + i

2

∫
dτn(τ )

∫
dr φ̇(r, τ ) . (90)

3. The action S2: the φ̇2 term

(a) Contribution from Eq. (39). To obtain the φ̇2 term
from Eq. (39), we we need the matrix elements 〈χn,λ|∂τχm,λ〉
between particle and hole states. Using Eqs. (48) and (47), we
obtain after straightforward algebra

S2 =
∫

dτ

∫
drdr′ φ̇(r, τ )φ̇(r′, τ )B(r − r′) , (91)

where

B(r − r′) = 1

S2

∑
k,k′

[
EkEk′ − ξkξk′ + �2

0

EkEk′ (Ek + Ek′ )
− |ξk||ξk′ | − ξkξk′

|ξk||ξk′ |(|ξk| + |ξk′ |)
]

ei(k−k′ )(r−r′ ) , (92)
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where the last term due to the � → 0 term in Eq. (39). In the long-wavelength limit, B(r − r′) can be approximated as
B0δ(r − r′), where

B0 = 1

S2

∑
k,k′

[
EkEk′ − ξkξk′ + �2

0

EkEk′ (Ek + Ek′ )
− sign(−ξk ) − sign(−ξk′ )

ξk − ξk′

]
(2π )2δ(k − k′) . (93)

In Eq. (93), we have rewritten the last term in the brackets
of Eq. (92), which corresponds to the familiar susceptibility
of a normal (free) electron gas. This contribution is, however,
canceled out by the second-order contribution from Snorm in
Eq. (41),

S (2)
norm = S (1)

norm + (1/8)Tr[Ĝ0σzφ̇Ĝ0σzφ̇] , (94)

where we have expanded the logarithm up to the second order
in σ̇ . The Green’s function Ĝ0 in Eq. (94) can be written in
(Fourier representation) as

Ĝ0(ω, k) =
[

(iω − ξk )−1 0

0 (iω + ξk )−1

]
, (95)

where we have dropped ∇φ-dependent terms as they lead to
higher- (than the second-) order contributions. Then we obtain

that

Tr[Ĝ0σzφ̇Ĝ0σzφ̇] =
∫

dq
(2π )2

∫
dω

2π
|ωφ(ω, q)|2

∫
d	

2π

×
∫

dk
(2π )2

[
1

i	 − ξk

1

i(	 + ω) − ξk+q

+ 1

i	 + ξk

1

i(	 + ω) + ξk+q

]
. (96)

Integrating over 	 and taking low-frequency limit, i.e., setting
ω = 0 in the resulting expression, one obtains

Tr[Ĝ0σzφ̇Ĝ0σzφ̇] =
∫

dq
(2π )2

∫
dω

2π
|ωφ(ω, q)|2

∫
dk

(2π )2

[
sign(−ξk ) − sign(−ξk+q)

ξk − ξk+q

]

=
∫

dτ |φ̇(q)|2
∫

dq
(2π )2

dk
(2π )2

[
sign(−ξk ) − sign(−ξk+q)

ξk − ξk+q

]
. (97)

It is clear now that the second order term in the right-hand side
(RHS) of Eq. (94) is exactly the negative of the contribution
produced by the last term in the brackets in Eqs. (92) and
(93) and therefore only the first term in the RHS of Eq. (93)
contributes.

Performing integration over the momenta, we obtain

S2 =
∫

dτN0

(
1 + μ√

μ2 + �2(τ )

) ∫
dr

φ̇2

8
. (98)

(b) Another contribution to the prefactor for the φ̇2 term.
We now show that fluctuations of |�(τ )| give rise to an
additional term in the action, Sextra, with the same structure
as in Eq. (98). For this we note that the components of actions
S0, S1, etc., are expressed in terms of fluctuating |�(τ )| rather
than in terms of constant �0. That is, the magnitude of �

fluctuates around its equilibrium value �0: |�(τ )| = �0 +
δ�(τ ), and these longitudinal fluctuations are present in the
action S = S0 + S1 + S2. They are small at weak coupling
and are not important for the (∇φ)2 in Eq. (79) and for the
φ̇2 term in Eq. (98), but they give rise to (δ�)2 term in S0,
coming from S0,a(�) in Eq. (49) and to φ̇δ� term in S1,
coming from expanding the prefactor for φ̇ term in (82) in
δ�(τ ). The combination of these two pieces gives rise to the
additional φ̇2 term in the action, which we now compute.

Within our approximation, �(τ ) is independent of r, hence
one can simply expand Eqn. (49) to the second order in
δ�. The linear term is zero because �0 corresponds to the

minimum in the free energy, but the second-order term is
finite. Using Eqs. (50), (52), and (53), we obtain after some
straightforward algebra that

S0,a(�) = S0,a(�0) + SN0

∫
dτ

�2
0

4E0(E0 + EF )
(δ�)2,

(99)

where, we recall, S is the area of a 2d sample.
Similarly, we expand in Eq. (82) to linear order in δ�(τ ),

use Eqs. (52) and (53), and obtain S1 in terms of �0 with the
extra term with the product of first derivatives:

S1 = −(iN0/2)
∫

dτ

∫
dr
[

(
√

μ2 + �2
0 − |μ|)φ̇

+ �0

E0 + EF
φ̇δ�

]
. (100)

Combining the last terms in (99) and (100) together, we
obtain the extra piece in the action, δS , associated with
longitudinal gap fluctuations:

δS = N0

2

∫
dτ

∫
dr
[

�2
0

2E0(E0 + EF )
(δ�)2

− i
�0

E0 + EF
φ̇δ�

]
. (101)

Averaging over the Gaussian fluctuations of δ� [which is
the same as completing the square in (101)], we obtain an
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additional contribution to the action, Sextra, in the form

Sextra =
∫

dτN0

(
1 − μ√

μ2 + |�0|2

) ∫
dr

φ̇2

8
. (102)

Combining this with φ̇2 term in S2 in (98), we obtain

S2 + Sextra = N0

∫
dτ

∫
dr

φ̇2

4
. (103)

C. The full long-wavelength action

Combining the (∇φ)2 and φ̇2 terms, Eqs. (79) and (103),
we obtain the regular part of the action in the form

Sreg = N0

∫
dτ

∫
dr
[

(
√

μ2 + |�(τ )|2 + μ)
(∇φ)2

8m
+ φ̇2

4

]
.

(104)

To our accuracy, the prefactor for (∇φ)2 term can be evaluated
at |�(τ )|2 = �2

0. We then obtain

Sreg = N0

∫
dτ

∫
dr
[

EF

4m
(∇φ)2 + φ̇2

4

]
. (105)

The coefficient in front of (∇φ)2 in Eq. (105) can be rewrit-
ten as more familiar n/8m (Refs. [10,49]). Transforming to
Fourier components (momentum q and real frequency 	), we
obtain from (105) Scont ∝ ∑

q,	 |φq,	|2(	2 − q2v2
F /2). The

prefactor for |φq,	|2 is the inverse susceptibility of phase
fluctuations. We see that it has a pole at 	 = ±(vF /

√
2)q. The

pole position corresponds to the frequency of a gapless phase
fluctuation mode, whose velocity is vF /

√
2, independent on

the ratio of EF /E0.
The full term linear in φ̇ (the Berry phase term) is obtained

by setting �(τ ) = �0 in Eq. (90):

SBerry = iA
∫

dτ

∫
drφ̇, (106)

where

A = n

2
= N0

2

(√
μ2 + �2

0 + μ
)

(107)

and n is the actual electron density.
The result for A agrees with Refs. [25,27,28,34,38]. Note,

however, that there is one element in our calculation, which
has not been emphasized in earlier works. Namely, the ab-
sence of n0 in (107) could be interpreted as if there is no
contribution from � → 0. We argue that this is not entirely
true. In our calculation, there are two contributions from
� → 0: the term S1 in the limit λ = 0 and the term Snorm.
The n0/2 pieces from these two terms do cancel out, however,
the full contribution to A from � → 0 does not vanish and
gives (1/2)

∑
k[ξk/|ξk| + (1 − ξk/|ξk|)] = (1/2)

∑
k (1). This

formally divergent piece cancels out the divergence in the
contribution to the prefactor from S1 at λ = 1 (i.e., at nonzero
�), which is (−1/2)

∑
k (ξk/Ek ) = n/2 − (1/2)

∑
k (1). With-

out this cancellation, the coefficient for φ̇ term would contain
a parasitic, formally infinite term. The same holds for the
coefficient for the (∇φ)2 term in the action: if we were to
neglect the contributions from � → 0, the prefactor would
be (−1/8m)

∑
k (ξk/Ek ) = (1/8m)(n −∑

k (1)). The parasitic

∑
k (1) term is canceled out by the sum of the two contribu-

tions from � → 0, as we showed above.
If φ is well defined for all r and τ , the Berry phase

term reduces to the contribution from the boundary and does
not affect the dynamics. The situation changes when φ is
singular, as in the case of a moving vortex with coordinates
X (τ ) and Y (τ ). Then the Berry phase term in the action
becomes proportional to

∫
dτX (τ )Ẏ (τ ) − Y (τ )Ẋ (τ ), which

cannot be expressed as a total derivative and contributes to the
vortex dynamics. We show that the action (106) describes the
contribution to the Berry term from fermions far away from
the vortex core. We show that there is another contribution,
which comes from the states right at the center of the vortex
core. This last term originates from ∇φ terms in Snorm.

IV. THE BERRY PHASE TERM IN THE ACTION
FOR A MOVING VORTEX

The order parameter for a moving vortex in 2d can be
written as

�(τ, r) = �[r − R(τ )] = |�[r − R(τ )]|eiφ[r−R(τ )] , (108)

where R(τ ) is vortex center,

φ(τ, r) = tan−1

[
y − Y (τ )

x − X (τ )

]
, (109)

and |�(r)| → �0 for r � λ, where λ is the penetration depth.
The spectrum of the Bogolubov-DeGennes equation

[Eq. (43)] near a vortex has been extensively studied
[27–29,38,41,42,47,50] and is known to posses both contin-
uous and discrete branches corresponding to delocalized and
localized eigenstates, respectively. The localized eigenstates
are known as Caroli, de Gennes, Matricon states [41]. The
continuous part of the spectrum covers the range |Ec

n | > �0,
while discrete states have energies |Ed

n | < �0.
The contributions to the vortex motion come from the

occupied states with negative energies. A generic eigenstate,
corresponding to En < 0, can be expressed as

|χ−
v (r)〉 = ei(σ̂z/2)φ(r−R)|χ̃−

ν (r)〉; |χ̃−
ν (r)〉

= eiνφ(r−R)

[
ṽν (|r − R|)

−ũν (|r − R|)
]
, (110)

where ν = n + 1/2 and n is an integer, φ(r − R) is given by
Eq. (109), and the radial functions ub

ν (r) and vb
ν (r) and their

derivatives with respect to r are continuous for all r.
The eigenfunctions for the localized states are proportional

to J|ν±1/2|(kF r) at small r � λ (upper sign for ũν , lower for
ṽν). At large distances, when r � λ, both |ṽν |2 and |ũν |2 decay
exponentially (Ref. [50]). The eigenfunctions for continuous
states are expressed via J|ν±1/2|(k r) at small r � λ (where
k is generally a function of ν), while for r � λ, they are
parameterized by ν and momentum k, which becomes an
independent variable (Refs. [41,42,47]):

ũν (r) = ũν,k (r) = ukJ|ν|(kr), ṽν (r) = ṽν,k (r) = vkJ|ν|(kr),

(111)
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where

uk =
(

1

2
+ ξk

2|E (−)
k |

)1/2

, vk =
(

1

2
− ξk

2|E (−)
k |

)1/2

, (112)

and E (−)
k = −

√
ξ 2

k + |�0|2 . The full solution of the
Bogolubov-DeGennes equation for a vortex is expressed
via Hankel functions, which are linear combinations of the
Bessel and Neumann functions. The Neumamm functions
Y|ν±1/2|(x) and Y|ν|(x), however, grow when the index ν

becomes larger than the argument x, and the sums over ν in
(115) do not converge. The Bessel functions J|ν|(x), on the
contrary, decay exponentially when ν gets larger than x. By
this reason, we only consider the solutions expressed via the
Bessel functions.

Because both localized and extended states are present,
specified by a discrete parameter ν, it is not a priori guar-
anteed that we can use the results from the previous section,
which were obtained using the eigenfunctions far away from
the vortex core, when ν can be treated as a continuous
variable.

In this section, we re-evaluate the prefactor for φ̇ term
using the exact eigenfunctions |χ−

ν (r)〉. We first re-evaluate
the terms S1 and Snorm and show that they are determined by
fermions far away from the vortex core and have the same
forms as we found in the previous section. Then we take a
closer look at seemingly innocent part of Snorm, which does
not contain φ̇, but does depend on ∇φ. We argue that it also
contributes to the Berry phase term for a moving vortex, and
this contribution comes from fermions inside the vortex core.

A. The S1 term for the vortex motion

The S1 term in the action is given by Eq. (38), which is
valid for arbitrary |χ−

ν (r)〉. To obtain S1 for a vortex we need
to evaluate ∑

ν

∫
dr〈χ−

ν (τ, r)|∂τχ
−
ν (τ, r)〉 . (113)

with |χ−
ν (r)〉 from (110). Substituting these |χ−

ν (r)〉 into
(113), we obtain∑

ν

∫
dr〈χ−

ν (τ, r)|∂τχ
−
ν (τ, r)〉

= i
∫

dr �(r − R(τ ))∂τφ[r − R(τ )] , (114)

where

�(|r|) =
∑

ν

[
|ũν (r)|2

(
ν − 1

2

)
+ |ṽν (r)|2

(
ν + 1

2

)]
.

(115)

Using (109), one can re-express ∂τφ[r − R(τ )] as

∂τφ[r − R(τ )] = Ẋ (τ )

[
y − Y (τ )

(x − X (τ ))2 + (y − Y (τ ))2

]

− Ẏ (τ )

[
x − X (τ )

(x − X (τ ))2 + (y − Y (τ ))2

]
,

(116)

such that∑
ν

∫
dr〈χ−

ν (τ, r)|∂τχ
−
ν (τ, r)〉 = i[Ẋ (τ )Qx − Ẏ (τ )Qy],

(117)

where

Qx =
∫

dr
[

y − Y (τ )

(x − X (τ ))2 + (y − Y (τ ))2

]
�(r − R(τ )) ,

Qy =
∫

dr
[

x − X (τ )

(x − X (τ ))2 + (y − Y (τ ))2

]
�(r − R(τ )).

(118)

We show below that Qx ∝ Y (τ ) and Qy ∝ X (τ ). It is then
tempting to compute the prefactors by evaluating the deriva-
tives dQy/dX and dQx/dY . This has to be done with extra
care as the integrals for dQy/dX and dQx/dY are infrared
singular and have to be properly regularized (see below).
We use a different computational procedure and evaluate the
integrals in (118) directly assuming that our system has a
finite size 2D in both x and y directions. We show that Qx

and Qy remain finite if we set D to infinity at the end of the
calculation. We verified that the result does not depend on the
We checked that the result does not depend on the geometry of
the integration range, as long as the symmetry between x and
y is preserved, i.e., Qx and Qy remains the same if we assume
that the boundary of our system is, e.g., a circle instead of a
square.

Let us evaluate Qx first. Shifting the variables of integration
from x and y to x̃ = x − X (τ ) and ỹ = y − Y (τ ), we obtain
from (118)

Qx =
∫ D−X (τ )

−D−X (τ )
dx̃
∫ D−Y (τ )

−D−Y (τ )
dỹ

[
ỹ

x̃2 + ỹ2

]
�(r̃) , (119)

where r̃ = (x̃2 + ỹ2)1/2. Using that the integrand is odd in ỹ,
we rewrite (119) as

Qx = −
∫ D−X (τ )

−D−X (τ )
dx̃
∫ D+Y (τ )

D−Y (τ )
dỹ

[
ỹ

x̃2 + ỹ2

]
�(r̃) . (120)

This shows that the result comes from a tiny range of ỹ around
ỹ = D. A simple experimentation then shows that typical x̃
are also of order D. Assuming that �(r̃) tends to the value at
r̃ ∼ D, independent on the ratio x̃/ỹ, we pull �(D) from the
RHS of (120). The integration over x̃ is then elementary, and
the result is

Qx = −πY (τ )�(D) . (121)

Evaluating Qy the same way, we find Qy = −πX (τ )�(D).
Substituting Qx and Qy into (117), we obtain∑

ν

∫
dr〈χ−

ν (τ, r)|∂τχ
−
ν (τ, r)〉

= iπ�(D)[X (τ )Ẏ (τ ) − Y (τ )Ẋ (τ )]. (122)

We emphasize that Qx and Qy are determined by distances
of order D, i.e., the contribution comes from fermions far
away from the vortex core. There is no contribution from
r = 0, contrary to what has been reported in some earlier
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papers (see, e.g., Ref. [27]). In these earlier works the au-
thors computed dQy/dX and dQx/dY by differentiating only
in the term in the brackets (118) [i.e., not differentiation
�(r − R(τ ))], and set X = Y = 0 in the integrand before
evaluating the integral over dr. Then the result comes from
the smallest r = 0, as we will see below. However, the full
dQx/dY contains also the derivative of �(r − R(τ )), i.e., if
we differentiate under the integral in (118) and set X = Y =
0, we obtain

dQx

dY
=
∫ D

−D
dxdy

{[
− 1

x2 + y2
+ 2

y2

(x2 + y2)2

]
�(x, y)

− y

x2 + y2

∂�(x, y)

∂y

}
. (123)

The first term is formally zero (it contains y2 − x2 as the over-
all factor), but it also diverges at x = y = 0. To regularize this
term, we introduce an infinitesimally small “mass” term in the
denominator, i.e., replace x2 + y2 by x2 + y2 + ε2, evaluate
the integral with a finite ε, and then set it to zero. Transform-
ing to polar coordinates x = r cos θ , y = r sin θ and using
∂�(x, y)/∂y = (y/r)d�/dr = sin θd�/dr, we then obtain
from (123)

dQx

dY
= −2πε2

∫
rdr

(r2 + ε2)2
�(r) − π

∫ D

0
dr

d�(r)

dr
.

(124)

The evaluation of the integral is now elementary. In the first
term, the integral comes from r ∼ ε and cancels ε2 in the
numerator (rε2/(r2 + ε2)2 acts as δ(r)). The term then yields
−π�(0). This is what has been obtained in Ref. [27]) and
earlier papers cited in that work. The full result, however, also
contains the contribution from the second term. It obviously
gives −π (�(D) − �(0)). The sum of the two terms is
−π�(D), with no contribution from r = 0. This agrees
with (121).

Substituting Eq. (122) into Eq. (38), we find

S1 = iπA1

∫
dτ (X (τ )Ẏ (τ ) − Y (τ )Ẋ (τ )) , (125)

where A1 = ��(D) − ��→0(D). We emphasize that
X (τ )Ẏ (τ ) − Y (τ )Ẋ (τ ) is not a full derivative, hence S1

term does contribute to the equation of motion for a vortex.
To obtain ��(D) ≡ �(r = D) we need to know the forms

of ũν and ṽν at large r. The eigenfunctions for localized
eigenstates decay exponentially when r ∼ D and hence are
irrelevant for our purpose. The eigenfunctions for continuous
states with a negative energy at distances larger than the
penetration depth are given by Eq. (48).

Using these forms, we obtain

�(x) =
∑
ν,k

[
u2

k (ν − 1/2)J2
|ν|(x) + v2

k (ν + 1/2)J2
|ν|(x)

]

=
∑

k

{[(
u2

k + v2
k

)∑
ν

(ν − 1/2)J2
ν (x)

]

+ v2
k

∑
ν

J2
|ν|(x)

}
. (126)

To evaluate the
∑

ν J2
|ν|(x), we note that at large x and ν < x,

the Bessel function can be approximated as

Jν (x) ≈
√

2

π

1

(x2 − ν2)1/4
sin

(
x + ν2

2x
− π

4
(2ν + 1)

)
.

(127)

This formula is valid up to ν = x − O(x1/3). The sum over ν is
determined by large ν = O(x), for which the summation over
ν can be replaced by integration. We assume and then verify
that the integral is determined by ν = O(x), but x − ν � x1/3.
The contribution from this range is

2
∫ x−O(x1/3 )

0
J2
ν (x) = 2

π

∫ x−O(x1/3 )

0

dx√
x2 − ν2

= 1 − O(x−1/6) . (128)

One can easily verify that the contribution from |ν − x| �
x1/3 scales as x−1/6, and the contribution from larger ν >

x + O(x1/3) is even smaller because at such ν, J|ν|(x) decays
exponentially. Then

∑
ν J2

|ν|(x) = 1 up to corrections, which
vanish at x → ∞

Further,
∑

ν (νJ2
|ν|(x)) vanishes because of cancellation be-

tween terms with terms with positive and negative ν. As the
consequence,[(

u2
k + v2

k

)∑
ν

(ν − 1/2)J2
ν (x)

]
+ v2

k

∑
ν

J2
|ν|(x) = −1

2
+ v2

k

(129)

and, hence,

��(D) = −1

2

∑
k

(1) +
∑

k

(
v2

k

)�
. (130)

This formula could also be obtained if we assumed from the
beginning that at large r, the eigenfunctions for the continuous
spectrum approach those for a superconductor with a constant
gap �, i.e., radial quantum number ν becomes momentum k,
and χ̃−

ν (τ, r)〉 becomes

|χ̃ (−)
k (r)〉 =

[
vk

−uk

]
eikr

√
S

. (131)

The second term in (130) can be easily evaluated

∑
k

(
v2

k

)� = N0

2

∫ ∞

−μ

dξ

⎛
⎝1 − ξ√

ξ 2 + �2
0

⎞
⎠

= N0

2

(√
μ2 + �2

0 + μ
) = n

2
, (132)

where, we remind, n = 2N0EF is the actual density of
fermions. However, the first term in (130) is the sum over
all momenta, and is formally infinite. We now recall that the
prefactor in the S1 term in the action, Eq. (125), contains the
difference ��(D) − ��→0(D). We assume that the distances
r ∼ D are outside the vortex core even when � → 0. Then
��→0(D) is determined by the same Eq. (130) as ��(D), the
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only difference is that now

uk =
(

1

2
+ ξk

2|ξk|
)1/2

, vk =
(

1

2
− ξk

2|ξk|
)1/2

, (133)

and ∑
k

(
v2

k

)�→0 = N0

2

∫ ∞

−μ

dξ

(
1 − ξ

|ξ |
)

= N0

2
(|μ| + μ) = n0

2
, (134)

where n0 is the density of free fermions at the same chemical
potential μ. Accordingly,

��→0(D) = −1

2

∑
k

(1) +
∑

k

(
v2

k

)�=0
. (135)

Combining (130) and (135), we obtain

A1 = ��(D) − ��→0(D) =
∑

k

(
v2

k

)� −
∑

k

(
v2

k

)�=0

= n − n0

2
. (136)

We emphasize that this result is free from ultraviolet
divergencies—the term

∑
k (1) cancels out between (130)

and (135). To obtain this cancellation one has to keep the
contributions to A1 from the action at � → 0.

B. The Snorm term for the vortex motion

Now we need to add to this result the contribution from
Snorm (the term in the action at � → 0, proportional to φ̇).
This contribution is computed in the same way as the one
from S1. Namely, the contribution to ∂τφ[r − R] comes from
fermions far away from the vortex core, hence we can just use
Snorm from Eq. (88): Snorm = (in0/2)

∫
dτ
∫

drφ̇(r, τ ) and
substitute

∫
drφ̇(r, τ ) = π ((X (τ )Ẏ (τ ) − Y (τ )Ẋ (τ )). This

gives

Snorm = iπAnorm

∫
dτ (X (τ )Ẏ (τ ) − Y (τ )Ẋ (τ )) , (137)

where Anorm = n0/2. Adding Anorm to A1 from (136), we
obtain at this stage the Berry phase term in the action in the
form

SBerry,1 = iπAvort,1

∫
dτ (X (τ )Ẏ (τ ) − Y (τ )Ẋ (τ )) , (138)

where

Avort,1 = n

2
. (139)

We see that the prefactor is the same as in the action in
Eq. (106). This is not surprising because the contribution
comes solely from the states well outside the vortex core,
where the eigenfunctions can be approximated by the ones
in the absence of a vortex.

C. Contribution from the vortex core

We now show that there is another contribution to the Berry
phase term in the action for a moving vortex, which comes
from the vortex core. This extra contribution is “hidden” in

the zero-order term in Snorm = Tr ln(G−1
0 )—the one which

does not contain φ̇. We label this term as S0
norm. This term

does, however, depend on ∇φ, because we remind that to
eliminate � from the Green’s function we had to apply the
unitary transformation Û under Tr ln, with Û given by (40).
Under this unitary transformation the kinetic energy opera-
tor ξ̂ (∇ ) = −∇2/(2m) changes to ξ̂ (∇ + (i/2)σz∇φ), where
φ = φ(r − R(τ )). As the result, S0

norm does actually depend
on R(τ ) via ∇φ.

Let us assume that R(τ ) is small and expand S0
norm(R) =

−Tr ln G−1
0 to second order in R(τ ). A generic expansion

yields

S0
norm(R) = S0

norm(R = 0) −
∫

dτηα (τ ) Rα (τ )

−
∫

dτdτ ′ηαβ (τ − τ ′) Rα (τ )Rβ (τ ′) + . . . ,

(140)

where the summation over repeated indices is assumed.
The first order response function ηα is zero because of

translational invariance. To see this, we note that the matrix G0

is diagonal, and so Tr ln G−1
0 = Tr ln(G+

0 )−1 + Tr ln(G−
0 )−1,

where

(G±
0 )−1 = −∂τ ± ξ̂ (∇ ± (i/2)∇φ) . (141)

Then

ηα = Tr

[
G+

0

∂ξ̂+

∂Rα

]
+ Tr

[
G−

0

∂ξ̂−

∂Rα

]
, (142)

where G0 = G0(r, τ ; r, τ ). In Fourier representation,

ηα =
∑

n

∫
dω

2π

[ 〈χ+
n |∂ξ̂+/∂Rα|χ+

n 〉 eiωδ

iω − ξ+
n

+ 〈χ−
n |∂ξ̂−/∂Rα|χ−

n 〉 e−iωδ

iω + ξ−
n

]
, (143)

where |χ±
n 〉 (ξ±

n ) are the eigenfunctions (eigenvalues) of ξ̂± =
ξ̂ (∇ ± (i/2)∇φ) (we present explicit expressions below).
The eigenvalues of ξ±

n do not dependent on Rα in a trans-
lationally invariant system, hence ∂ξ±

n /∂Rα = 0. Accord-
ingly, 〈χ±

n |∂ξ̂±/∂Rα|χ±
n 〉 = ∂〈χ±

n |ξ̂±|χ±
n 〉/∂Rα = ∂ξ±

n /∂Rα

also vanish. Hence, ηα = 0.
The second-order term in Eq. (140) is nonzero, as we will

see. In the Fourier representation,∫
dτdτ ′ηαβ (τ − τ ′) Rα (τ )Rβ (τ ′)

=
∫

dω

2π
Rα (−ω)Rβ (ω)ηαβ (ω) (144)

The form of the Berry phase term is reproduced if we set
ηαβ (ω) = ωεαβη̄, where εαβ is antisymmetric tensor (εxy =
−εyx = 1). Then

S0
norm(R) = S0

norm(R = 0) − i
η̄

2
(X (τ )Ẏ (τ ) − Y (τ )Ẋ (τ )).

(145)

174510-14



DYNAMIC PROPERTIES OF SUPERCONDUCTORS: … PHYSICAL REVIEW B 99, 174510 (2019)

Our goal therefore is to extract linear in ω and antisymmetric
in α, β contribution to ηαβ . In τ space, ηαβ = ωεαβη̄ corre-
sponds to ηαβ (t ) = iεαβη̄dδ(t )/dt (t = τ − τ ′).

There are two contributions to ηαβ (τ − τ ′). One comes
from the second order term in Taylor expansion of ξ̂ (R) and
has the form

η
(1)
αβ (τ − τ ′) = Tr

[
G0

∂2ξ̂

∂Rα∂Rβ

]
δ(τ − τ ′) , (146)

where again G0 = G0(r, τ, r, τ ). In Fourier representation, η
(1)
αβ (ω) does not depend on ω (η(1)

αβ (ω) = η
(1)
αβ ) and is given by

η
(1)
αβ = Tr

[
G0

∂2ξ̂

∂Rα∂Rβ

]
=
∑

n

∫
dω1

2π

[
〈χ+

n |∂2ξ̂+/∂Rα∂Rβ |χ+
n 〉

iω1 − ξ+
n

+
∑

n

∫
dω1

2π

〈χ−
n |∂2ξ̂−/∂Rα∂Rβ |χ−

n 〉
iω1 + ξ−

n

]
. (147)

Evaluating the integral over ω1, we obtain

η
(1)
αβ =

∑
n

θ (−ξ+
n )〈χ+

n |∂2ξ̂+/∂Rα∂Rβ |χ+
n 〉

−
∑

n

θ (−ξ−
n )〈χ−

n |∂2ξ̂−/∂Rα∂Rβ |χ−
n 〉 . (148)

The second contribution to ηαβ (τ − τ ′) is (we keep only τ

dependence in G0 to shorten the notations):∫
dτdτ ′η(2)

αβ (τ − τ ′)

= Tr

[
Gs

0(τ, τ ′)
∂ξ̂ s

∂Rα (τ )
Gs

0(τ ′, τ )
∂ξ̂

∂Rβ (τ ′)

]
, (149)

where s = ±. In the Fourier representation,

η
(2)
αβ (ω) =

∑
n,m,s

∫
dω1

2π

〈
χ s

n

∣∣∂ξ̂ s/∂Rβ

∣∣χ s
m

〉〈
χ s

m

∣∣∂ξ̂ s/∂Rα

∣∣χ s
n

〉
(i(ω1 + ω) − sξ s

n )
(
iω1 − sξ s

m

) .

(150)

Performing the integration over ω1, we obtain

η
(2)
αβ (ω) =

∑
n �=m,s

〈
χ s

n

∣∣∂ξ̂ s/∂Rβ

∣∣χ s
m

〉〈
χ s

m

∣∣∂ξ̂ s/∂Rα

∣∣χ s
n

〉
iω − sξ s

n + sξ s
m

× [
θ
(− sξ s

m

)− θ
(− sξ s

n

)]
. (151)

Let us now expand Eq. (151) in powers of ω,

η
(2)
αβ (ω) = η

(20)
αβ + iωη

(21)
αβ + . . . , (152)

where

η
(20)
αβ =

∑
n �=m,s

〈
χ s

n

∣∣∂ξ̂ s/∂Rβ

∣∣χ s
m

〉〈
χ s

m

∣∣∂ξ̂ s/∂Rα

∣∣χ s
n

〉
sξ s

m − sξ s
n

× [
θ
(− sξ s

m

)− θ
(− sξ s

n

)]
,

η
(21)
αβ = −

∑
n �=m,s

〈
χ s

n

∣∣∂ξ̂ s/∂Rβ

∣∣χ s
m

〉〈
χ s

m

∣∣∂ξ̂ s/∂Rα

∣∣χ s
n

〉
(
ξ s

m − ξ s
n

)2

× [
θ
(− sξ s

m

)− θ
(− sξ s

n

)]
. (153)

We will need the antisymmetric part of η
(21)
αβ term. Before

evaluating it, we pause for a moment and show that the
frequency independent term η

(20)
αβ cancels η

(1)
αβ from Eq. (148).

This follows from the identity〈
χ s

n

∣∣∂ξ̂ s/∂Rβ

∣∣χ s
m

〉 = (
ξ s

n − ξ s
m

)〈
χ s

n

∣∣∂/∂Rβ

∣∣χ s
m

〉
, (154)

which is obtained from the condition ∂/∂Rβ〈χ s
n|ξ̂ s|χ s

m〉 =
∂/∂Rβ (ξ s

m〈χ s
n|χ s

m〉) = 0, when n �= m, by differentiating each
term in ∂/∂Rβ〈χ s

n|ξ̂ s|χ s
m〉 over Rβ . Substituting this identity

into (153) and using the completeness relation
∑

n |χ s
n〉〈χ s

n| =
1, we obtain for η

(20)
αβ the same expression as in (148), but with

the opposite sign.
We now return to η

(21)
αβ . Using the same identity and the

completeness relation, we re-write η
(21)
αβ in Eq. (153) as

η
(21)
αβ =

∑
n

θ (−ξ+
n ) 〈χ+

n | ∂

∂Rα

∂

∂Rβ

− ∂

∂Rβ

∂

∂Rα

|χ+
n 〉

−
∑

n

θ (−ξ−
n ) 〈χ−

n | ∂

∂Rα

∂

∂Rβ

− ∂

∂Rβ

∂

∂Rα

|χ−
n 〉.

(155)

To evaluate the RHS of Eq. (155), we use the explicit
form of |χ s

n〉. These are the eigenstates of ξ̂ s = −(∇ +
(is/2)∇φ)2/(2m) − μ. In polar coordinates r and φ, ξ̂ s can
be written as

ξ̂ s = − 1

2m

[
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

(
∂

∂φ
+ is

2

)2]
− μ. (156)

The complete set of the eigenstates of (156) is

χ±
n ≡ χ±

ν,k (r, φ) =
√

k

2D
eiνφJ|ν±1/2|(kr), (157)

where ν = ±1/2,±3/2, . . . , and k is a quasicontinuous radial
wave number quantized as �k = π/D, where, we remind, 2D
is the system size (the quantization of k originates from the
boundary condition J|ν±1/2|(kD) = 0 at kD � 1).

Substituting these eigenstates and eigenvalues into
Eq. (155) and using the fact that for φ(r − R) given by (109),(

∂

∂Rx

∂

∂Ry
− ∂

∂Ry

∂

∂Rx

)
φ = 2πδ(r − R), (158)

we obtain after straightforward algebra η
(21)
αβ = εαβη̄, where

η̄ = −2π
∑

k,ν=n+1/2

θ

(
μ − k2

2m

)(
k

2D

)

× ν
(
J2
|ν+1/2|(0) − J2

|ν−1/2|(0)
)
. (159)
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Because Jn(0) = 0 for integer n > 0 and J0(0) = 1, the sum
over ν gives −1. The summation over k gives, at D → ∞,

π

D

∑
k

kθ

(
μ − k2

2m

)
=
∫ ∞

0
dkkθ

(
μ − k2

2m

)
= mμ = πn0

(160)

such that

η̄ = πn0 . (161)

Substituting into (145), we obtain the additional contribution
to the Berry phase action of a moving vortex

SBerry,2 = S0
norm(R) − S0

norm(R = 0) = iπAvort,2(X (τ )Ẏ (τ )

−Y (τ )Ẋ (τ )) , (162)

where

Avort,2 = −n0

2
. (163)

We emphasize that this term comes from the states right at the
vortex core [see (158)] and, in this respect, is very different
from Avort,1, which comes from the states far away from the
vortex core.

Effects of impurities

We expect the result Avort = −(n0)/2 to hold when the
impurity potential is included. Indeed, Eq. (155) is valid when
the impurity potential (Uimp) is present and the eigenfunctions
χ±

n 〉 can still be expressed as

χ±
n (r) = e±iφ(r−R)/2an(r) , (164)

where a(r) satisfies the Schrodinger equation

[−∇2/(2m) + Uimp((r))]an(r) = ξnan(r). (165)

Substituting this χ±
n (r) into Eq. (155), we obtain

η
(21)
αβ = π

∑
n

θ (−ξn) |an(R)|2 + π
∑

n

θ (−ξn) |an(R)|2

= πn0(R), (166)

where n0(R) is the fermion density at the vortex core, i.e., the
same result as in the absence of impurity potential.

We caution, however, that the full analysis of a vortex
flow in the presence of impurities is rather nontrivial (see,
e.g., Ref. [51]) and may not be fully captured by treating the
impurities with the τ approximation.

D. The total Berry phase term for a moving vortex

Combining the two contributions to SBerry, we obtain the
total Berry phase term for a moving vortex

Svort
Berry = SBerry,1 + SBerry,2 = iπAvort (X (τ )Ẏ (τ ) − Y (τ )Ẋ (τ )),

(167)

where

Avort = n − n0

2
. (168)

We remind that n − n0 = 2N0E0 when E0 < EF , and n − n0 =
2N0EF when E0 > EF , where 2E0 is the bound state energy of
two fermions in a vacuum. The first limit corresponds to BCS,
the second one to the BEC. More specifically, n0 = 0 when
E0 > EF , hence in this situation the prefactor in the Berry
phase term in the action becomes just iπn/2. The vanishing
of n0 once μ becomes negative is consistent with the generic
reasoning in Ref. [37] that free-fermion contribution to Avort

vanishes once the system undergoes a (fictitious) Lifshitz tran-
sition, in which the (fictitious) Fermi surface of free fermions
with renormalized μ disappears. In our case, this happens
once E0 becomes larger than EF .

We also note that the two contributions to SBerry from
� → 0—one given by Eq. (162) and the other by Eq. (137),
are equal in magnitude, but differ in sign. As a result, the com-
bined total contribution from the action at � → 0 vanishes.
As the consequence, and the total Berry phase term in the
action of a moving vortex is the same as in Eq. (136), obtained
by expanding in �.

We argued above that Avort,2 = −n0/2 is not affected by
impurities, i.e., the reaction force remains the same in the
presence of imputity potential. By the same reason, Eq. (38)
and the subsequent consideration in Sec. IV for the Magnus
force also remains valid when the impurity potential is
present. This is consistent with argument made by Ao and
Thouless [25] that impurity scattering should not modify
the value of the Magnus force. As the consequence, we
expect Avort = (n − n0)/2 to hold when impurity scattering is
present.

The interpretation of Eq. (167)

As we said, there are two contributions to the prefactor
Avort for the Berry phase term in the effective action for a
moving vortex: one, Avorx,1, comes from states far away from a
vortex core, and the other, Avort,2, comes from the states at the
vortex core. Looking back at our derivation of Avort,1, we see
that this term has two contributions: one comes from the first
term in the action in Eq. (15), another comes from φ̇ piece
in last term, Snorm, which is the normal state contribution to
the action (more accurately, the contribution from � → 0).
On more careful look, we note that there are in fact two
contributions from � → 0 in Avort,1: the one from Snorm and
the one from the lower limit in the integral

∫ 1
0 dλ in the first

term in (15) (the lower limit λ = 0 corresponds to � → 0).
We separated the two contributions for convenience of the
derivation and to show explicitly how parasitic ultraviolet
divergent term

∑
k (1) cancels out between the contributions

from λ = 1 and 0 [see Eqs. (130) and (135)]. If we were to
combine from the start the φ̇ piece in Snorm and the contribu-
tion from λ = 0 in the first term in (15), we would obtain that
the n0 terms cancel each other (one is −n0/2, another is n0/2).
The cancellation implies that there is no contribution from
� → 0 to the Berry phase term besides the counter-term to
cancel the ultraviolet divergence. The full Avort,1 = n/2 comes
exclusively from the limit λ = 1 in the first term in (15), which
describes the action at �(r, τ, 1) = �(r, τ ), where �(r, τ )
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is the actual gap function at distance r from a vortex. We
recall that this contribution comes from fermionic states far
away from a vortex core, where the gap amplitude approaches
equilibrium value �0. Obviously then, Avort,1 = n/2 is the
same as the prefactor for φ̇ term in the effective action for
the case when φ(r, τ ) is a regular function of its arguments.

The second contribution Avort,2 is additional contribution
from the vortex core, i.e., from r = 0. In general, low-
energy fermionic states near the core, the ones with energies
below �0, are discrete levels with separation ω0 ∼ �2

0/EF

(Refs. [34,41,42]). We found no contribution from discrete
levels in the vortex core from the part of the action with the
actual �(r, τ ) [this would be a contribution from the upper
limit λ = 1 in the first term in (15)]. Our Avort,2 comes from
the ∇φ piece in Snorm = Tr ln(G−1

0 ), which is the contribution
to the action from � → 0. In this limit, the spacing between
discrete levels ω0 ∼ �2

0/EF vanishes, and electronic states
in the vortex core are not quantized and are described by a
continuous variable k.

The Berry phase term in the effective action has been
analyzed earlier. Several authors [26,34,37,39,40] argued on
general grounds that quantization of fermionic states inside
the vortex core can be neglected in the hydrodynamic limit
ω0τ � 1, where τ is fermionic lifetime. In this limit, earlier
works [26,34,37,39,40] found the same Avort = (n − n0)/2
as in Eq. (168). In our consideration, ω0 = 0 and τ = ∞,
so ω0τ is not well determined. Still, our Avort,2 comes from
continuous (i.e., nonquantized) states, and it remains the same
in the presence of impurities, i.e., at a finite τ . In this respect,
we believe that the agreement between our Avort and the one
obtained in earlier works at ω0τ � 1 is meaningful.

There is, however, one aspect in which our result seems
to differ from earlier works. Namely, these works speculated
[26,34,37,39,40] that at finite ω0τ there should be a contri-
bution to Avort from discrete levels in the vortex core. These
and several other authors have argued [29,31,34,37,39,40] that
in the limit ωτ � 1, the total contribution from the vortex
core Avort,2 should vanish, i.e., the total Avort should reduce
to Avort,1 = n/2. We did not find in our microscopic approach
the contribution to Avort from discrete levels in the vortex core
in the term in the action with a finite �(r, τ ). It remains to
be seen whether such contribution can be obtained by going
beyond the approximations we made in our derivation of the
effective action.

E. External superflow and the equation for the balance of forces

In the presence of an external supercurrent, the phase
of the order parameter in Eq. (108) acquires an additional
term, 2mvsr. The effect of this term on the action can be
analyzed perturbatively if vs is small. Performing the same
gauge transformation as we used to move from Eq. (43) to
Eq. (44), but for nonzero vs, we obtain the additional -ivs · ∇
term in the lhs of Eq. (44) (Ref. [52]). Evaluating now the
correction to the ground state energy within the first order
perturbation theory, we obtain

δE (vs) = −i
∑

n

vs

∫
d2r〈χn(τ, r)|∇χn(τ, r)〉θ (−En),

(169)

where |χn(τ, r)〉 are the solutions to the BdG equations in
the presence of a vortex, but without vs, see Eq. (110). From
(169), we then obtain the extra term in the action of the vortex:

Svs = −i
∫ ∞

−∞
dτ
∑

n

∫
d2r vs

[〈χn(τ, r)|∇χn(τ, r)〉

− 〈
χ |�|→0

n (τ, r)
∣∣∇χ |�|→0

n (τ, r)
〉]
θ (−En). (170)

The sum and the matrix elements in the RHS of Eq. (170) are
identical to those in Eq. (38), hence

Svs = −iπBvort

∫
dτ (X (τ )vsy − Y (τ )vsx ), (171)

where Bvort = A, with A given in Eq. (136), e.g., A = (n −
n0)/2 in the BCS regime, and A = n/2 in the BEC regime.

As we have seen in the previous subsection, there exist
another contribution to the force acting on a vortex associated
with the vortex core. Similarly, one might expect that there
is another contribution to the action in Eq. (171), i.e., to the
constant Bvort that comes from the core. As we show below,
this is not the case, we find that the normal part of the action,
Snorm does not contribute to Bvort.

To see this, let us look at Snorm in Eqs. (41), (42) in the
presence of extra phase superfluid velocity. We need to replace
in this equation ∇φ by ∇φ + 2mvs. This gives an extra term
under the Tr ln . . . (Ref. [53]),

V̂s = −ivs

(
∇ + i

2
σz∇φ

)
. (172)

Treating this extra term perturbatively, we expand the
Tr ln (. . . ) to the first order in vs. The term Tr(G0V̂s) does
not contribute because the expectation values of ∇ and of
iσz∇φ/2 in Eq. (172) cancel each other. The next-order term
Tr[G0V̂sG0(∂ξ̂/∂Rβ )Rβ] is apparently relevant as it contains
the same combination vsαRβ as in (171). Using the same
manipulations as in the previous section, we can write

Tr[G0V̂sG0(∂ξ̂/∂Rα )Rα] = −i
∫

dτ Bα,β
core vsαRβ (τ ), (173)

where

Bα,β
core =

∑
n �=m,s

〈
χ s

n

∣∣[∇α + (is/2)(∇αφ)]
∣∣χ s

m

〉〈
χ s

m

∣∣∂ξ̂ s/∂Rβ

∣∣χ s
n

〉
ξ s

n − ξ s
n

× [
θ
(− ξ s

m

)− θ
(− ξ s

n

)]
=
∑
n,s

〈
χ s

n

∣∣[∇α + is

2
(∇αφ),

∂

∂Rβ

]∣∣χ s
n

〉
θ
(− ξ s

n

)
. (174)

The term (is/2)(∇αφ) in Eq. (174) doe not con-
tribute: Since [(∇αφ), ∂/∂Rβ] = −∂2φ/∂α∂β , it cancels
a correction to Tr[G0iσzvs∇φ/2] that arises when we
expand ∇φ as ∇αφ(0) + ∇α∇βφ(0)Rβ + . . . , i.e., the
Tr[G0iσzvsα∇α∇βφ(0)Rβ/2] term. This is similar to cancel-
lation between Eqs. (148) and (153) in the previous section.
For the remaining ∇α piece in Eq. (174), we obtain

Bα,β
core =

∑
n

θ (−ξ+
n ) 〈χ+

n | ∂

∂Rα

∂

∂Rβ

− ∂

∂Rβ

∂

∂Rα

|χ+
n 〉

+
∑

n

θ (−ξ−
n ) 〈χ−

n | ∂

∂Rα

∂

∂Rβ

− ∂

∂Rβ

∂

∂Rα

|χ−
n 〉 .

(175)
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The expression for Bcore in Eq. (175) is similar to the formula
for η

(21)
αβ in Eq. (155), but with one important distinction: the

relative sign between the two terms in (175) is plus, while in
(155) it is minus. As a result, performing the same calculations
as in Eqs. (156)–(159), we obtain

Bα,β
core = 2π

∑
k,ν=n+1/2

θ

(
μ − k2

2m

)(
k

2D

)

× ν
(
J2
|ν+1/2|(0) + J2

|ν−1/2|(0)
)

= 4π
∑
k,n

θ

(
μ − k2

2m

)(
k

2D

)
n J2

|n|(0). (176)

Because the product nJ2
|n|(0) is zero for any integer n, Bα,β

core =
0. Hence, Snorm does not contribute to Bvort in Eq. (171).

Equation (171), together with Eq. (125), determines the
balance of forces acting on a vortex. Converting from Mat-
subata to real time, we obtain

AvortṘ × z − Bvortvs × z = 0 , (177)

where z is a unit vector perpendicular to the 2d plane. We see
from Eq. (177) that

vvort = Ṙ = Bvort

Avort
vs. (178)

Because Avort = Bvort = (n − n0)/2, we have

vvort = vs. (179)

This agrees with the reasoning based on translational invari-
ance [29,31,37].

V. SUMMARY

In this paper, we analyzed the evolution of the T = 0
low-frequency dynamics of collective excitations of an s-wave
neutral superconductor between the BCS and BEC regimes.
The two regimes correspond to small and large ratio of E0/EF ,
respectively, where EF is the Fermi energy, and E0 is the
bound state energy for two particles. In d = 2, bound state
develops already at weak coupling, what allows one to analyze
the crossover within a controllable weak coupling expansion.
We obtained the terms in the long-wavelength action, propor-
tional to (∇φ)2 and φ̇2, where φ(r, t ) is the phase of the su-
perconducting order parameter �(r, t ) = �eiφ(r,t ). We found
that the phase velocity of the collective excitations remains
vF /

√
2 through the BCS-BEC crossover. We also obtained the

topological Berry phase term in the long-wavelength action
i
∫

dτAφ̇. We found that the prefactor A = n/2, where n is
the actual fermion density, and does not change through the
BCS-BEC crossover.

The Berry phase term in the action is meaningful when the
phase of the superconducting order parameter is not defined
globally, which is the case when the pairing gap vanishes at
some point is space, like in the vortex core. We computed the
effective action for a moving vortex in a neutral s-wave super-
conductor in 2d. The Berry phase term for a moving vortex
has the form SBerry = iπAvort

∫
dτ (X (τ )Ẏ (τ ) − Y (τ )Ẋ (τ )),

where X (τ ) and Y (τ ) are coordinates of the center of a mov-
ing vortex. We found that two contributions to the prefactor

Avort = Avort,1 + Avort,2. One comes from fermionic states far
away from the vortex core and is the same as in the long-
wavelength action: Avort,1 = n/2. Another comes from delo-
calized (continuous) fermionic states inside the vortex core.
For this second contribution, we obtained Avort,2 = −n0/2,
where n0 is the fermionic density at the vortex core (it is
equal to the fermionic density in the normal state, but for
the same chemical potential μ as in the superconducting
state). In physical terms, the long-wavelength contribution
n/2 represents a Magnus force acting on a moving vortex,
while the offset term −n0/2 represents a reaction force from
normal fermions at the vortex core. The total Avort = (n −
n0)/2. In the BCS limit, n − n0 � n, i.e., the total transverse
Lorentz-like force acting on the vortex is much smaller than
the Magnus force. In the BEC limit, n0 = 0 because the
effective μ < 0, and there are no normal state fermions at
the vortex core. Then one recovers the result that the total
transverse force equals to the Magnus force. We argued that
the result for Avort remains valid in the presence of impurity
scattering. Finally, we found that in the presence of an external
superflow the vortex dynamics obeys Galilean (translational)
invariance principle: the vortices move together with the
superflow.

The result Avort = (n − n0)/2 agrees with earlier works
[34,37,39,40], which obtained this Avort neglecting the quanti-
zation of fermionic states in the vortex core. In agreement with
these results, we found that in our approach the contribution
from the states near the vortex core comes only from the part
of the action at � → 0, when the spacing between the states
in the vortex core vanishes, and the low-energy states become
continuous. Earlier works [26,29,31,34,37,39] speculated that
there should be another contribution to Avort from discrete
states in the vortex core. We did not find such contribution
in our analysis of the effective action. This term may emerge
once one moves beyond our approach, based on the evaluation
of the effective action for the vortex motion.

Our results for the expansion of the effective action in
terms of time derivatives of slowly varying order parameter
[Eqs. (32), (38), and (39)] can be straightforwardly extended
to other symmetries of the order parameter and to non-
Galilean-invariant dispersion, as long as adiabatic approxima-
tion is applicable. We note in this regard that the topological
term in the action plays a special role in superconductors
with the nodes in the order parameter, e.g., it determines
the magnitude of the orbital momentum in the A phase of a
p-wave superconductor, like 3He-A (Ref. [54]). The terms of
higher orders in powers of ∂τ� or in higher derivatives of �

can be obtained from Eqs. (17) and (18), though in practice
such calculation is likely to be rather cumbersome.
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APPENDIX: DERIVATION OF THE ACTION TO SECOND ORDER IN TIME DERIVATIVE

Substituting Eq. (28) into Eq. (20), we get two contributions,

L(2) = L(2)
1 + L(2)

2 ≡
∫ 1

0
dλ
[
l (2)
1 (λ, τ ) + l (2)

2 (λ, τ )
]
, (A1)

each generated by first and second terms in the RHS of Eq. (28), respectively:

l (2)
1 (λ, τ ) =

∫
dω

2π
eiωε+ ∑

n,l

〈χl,λ|∂λ�̂|χn,λ〉〈χn,λ|∂2
τ �̂(τ )|χl,λ〉

(iω − En,λ)3(iω − El,λ)
, (A2)

l (2)
2 (λ, τ ) =

∫
dω

2π
eiωε+ ∑

n,m,l

〈χl,λ|∂λ�̂|χm,λ〉〈χm,λ|∂τ �̂(τ )|χn,λ〉〈χn,λ|∂τ �̂(τ )|χl,λ〉
(iω − En,λ)(iω − El,λ)2(iω − Em,λ)2

. (A3)

The ω integration of Eq. (A2) gives

l (2)
1 (λ, τ ) =

∑
n,l

〈χl,λ|∂λ�̂|χn,λ〉〈χn,λ|∂2
τ �̂(τ )|χl,λ〉(θn − θl )

(En,λ − El,λ)3
=
∑
n,l

〈∂λχl,λ|χn,λ〉〈χn,λ|∂2
τ Ĥ |χl,λ〉(θn − θl )

(En,λ − El,λ)2
, (A4)

where in the second equality we have used Eq. (34).
The second integral, e.g., Eq. (A2) is less straightforward. Let us exclude terms with repeated indices from the triple sum in

Eq. (A3). Then the integrand has three poles and, after some algebra, we find (the situation when two indices coincide will be
considered separately below),

l (2)
2 (λ, τ ) =

∑
n,m,l

〈∂λχl,λ|χm,λ〉〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χl,λ〉(El,λ − Em,λ)θn

(En,λ − El,λ)(Em,λ − En,λ)

+
∑
n,m,l

〈∂λχl,λ|χm,λ〉〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χl,λ〉(En,λ − El,λ)(2En,λ − 3Em,λ + El,λ)θm

(En,λ − Em,λ)(Em,λ − El,λ)2

+
∑
n,m,l

〈∂λχl,λ|χm,λ〉〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χl,λ〉(Em,λ − En,λ)(2En,λ − 3El,λ + Em,λ)θl

(En,λ − El,λ)(Em,λ − El,λ)2
, (A5)

where we again used Eqs. (34) and (35).
Next we transform Eq. (A4) by using

〈χl,λ|∂2
τ �̂(τ )|χn,λ〉 = ∂τ 〈χl,λ|∂τ �̂(τ )|χn,λ〉 − 〈∂τχl,λ|∂τ �̂(τ )|χn,λ〉 − 〈χl,λ|∂τ �̂(τ )|∂τχn,λ〉 ,

and integrating by parts the term containing ∂τ 〈χl,λ|∂τ �̂(τ )|χn,λ〉 [we recall that l (2)
1 is under τ integration when substituted in

Eqs. (15) and (19)]:

l (2)
1 (λ, τ ) =

∑
n,l

{
2
〈∂λχl,λ|χn,λ〉〈∂τχn,λ|χl,λ〉∂τ (En,λ − El,λ)

(En,λ − El,λ)2
− 〈∂λ∂τχl,λ|χn,λ〉〈∂τχn,λ|χl,λ〉

En,λ − El,λ
− 〈∂λχl,λ|∂τχn,λ〉〈∂τχn,λ|χl,λ〉

En,λ − El,λ

− 〈∂λχl,λ|χn,λ〉〈∂τχn,λ|∂τ Ĥ |χl,λ〉
(En,λ − El,λ)2

− 〈∂λχl,λ|χn,λ〉〈χn,λ|∂τ Ĥ |∂τχl,λ〉
(En,λ − El,λ)2

}
(θn − θl ) . (A6)

The last three terms in the of Eq. (A6) can be combined with Eq. (A5) when we insert
∑

m |χm,λ〉〈χm,λ| in the matrix elements
in the terms that contain double derivatives (with respect to τ in the fourth and fifth terms and with respect λ and τ in the third
term). In doing so we treat separately the terms with m �= n and m �= l and the terms with m = n and m = l . Using the relation

〈χm,λ|∂τ Ĥ |χm,λ〉 = ∂τ 〈χm,λ|Ĥ |χm,λ〉 = ∂τ Em,λ , (A7)
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for the diagonal matrix elements, as well as 〈∂τχm,λ|χm,λ〉 = −〈χm,λ|∂τχm,λ〉, we obtain after some algebra

[last three terms of Eq. (A6)] =
∑
n,m,l

〈∂λχl,λ|χm,λ〉〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χl,λ〉
[

θn − θl

(En,λ − El,λ)
− (2En,λ − El,λ − Em,λ)(θm − θl )

(Em,λ − El,λ)2

]

+
∑
n,l

〈∂λχl,λ|χn,λ〉〈∂τχn,λ|χl,λ〉∂τ (En,λ − El,λ)(θn − θl )

(En,λ − El,λ)2

−
∑
n,l

〈∂τχn,λ|χl,λ〉〈∂τχl,λ|χn,λ〉〈∂λχl,λ|χl,λ〉 + 〈∂τχn,λ|χl,λ〉〈∂λχl,λ|χn,λ〉〈∂τχl,λ|χl,λ〉
En,λ − El,λ

× (θn − θl ). (A8)

In the triple sum, i.e., in the first term in the RHS of Eq. (A8), m �= n �= l , while the last term in Eq. (A8) arises due to m = n
and m = l terms. Adding this triple sum with l (2)

2 (λ, τ ) from Eq. (A5), we obtain

∑
n,m,l

〈∂λχl,λ|χm,λ〉〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χl,λ〉
Em,λ − En,λ

(θm − θn) . (A9)

The triple sum in Eq. (A9) can be transformed into the double sum by using a completeness relation,
∑

l |χl,λ〉〈χl,λ| = 1,

−
∑
n,m

〈∂τχn,λ|∂λχm,λ〉〈∂τχm,λ|χn,λ〉
Em,λ − En,λ

(θm − θn) +
∑
n,m

〈χm,λ|∂λχm,λ〉〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χm,λ〉
Em,λ − En,λ

(θm − θn)

+
∑
n,m

〈χn,λ|∂λχm,λ〉〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χn,λ〉
Em,λ − En,λ

(θm − θn) , (A10)

where the last two terms in Eq. (A10) correspond to l = n and l = m terms, which are omitted in the triple sum in Eq. (A9). The
last two terms in Eq. (A10) cancel the last term in Eq. (A8). Using this, we finally obtain that

[last three terms of Eq. (A6)] + l (2)
2 = −

∑
n,m

〈∂τχn,λ|∂λχm,λ〉〈∂τχm,λ|χn,λ〉
Em,λ − En,λ

(θm − θn)

+
∑
n,l

〈∂λχl,λ|χn,λ〉〈∂τχn,λ|χl,λ〉∂τ (En,λ − El,λ)(θn − θl )

(En,λ − El,λ)2
. (A11)

The first term in the RHS of Eq. (A11) can be combined with the second term in Eq. (A6) as

−
∑
n,m

〈∂λ∂τχn,λ|χm,λ〉〈∂τχm,λ|χn,λ〉 + 〈∂τχn,λ|∂λχm,λ〉〈∂τχm,λ|χn,λ〉
Em,λ − En,λ

(θm − θn)

= −
∑
n,m

(∂λ〈∂τχn,λ|χm,λ〉)〈∂τχm,λ|χn,λ〉
Em,λ − En,λ

(θm − θn) = −1

2

∑
n,m

∂λ(〈∂τχn,λ|χm,λ〉〈∂τχm,λ|χn,λ〉)

Em,λ − En,λ

(θm − θn). (A12)

Using this, we find that

l (2)
1 + l (2)

2 (m �=n �=l ) =
∑
n,m

{
1

2

∂λ(〈∂τχn,λ|χm,λ〉〈∂τχm,λ|χn,λ〉)

Em,λ − En,λ

+ 3
〈∂λχm,λ|χn,λ〉〈∂τχn,λ|χm,λ〉∂τ (En,λ − Em,λ)

(En,λ − Em,λ)2

}
(θn − θm). (A13)

Equation (A13) only accounts for m �= n �= l terms in Eq. (A3) and should be added with l = m �= n, m = n �= l , and n =
l �= m terms. To consider these terms we need to return to the evaluation of the ω integral in Eq. (A3). For l = m �= n terms, we
obtain, using Eq. (31),

l (2)
2 (m=l ) =

∑
n,m

(∂λEm,λ)〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χm,λ〉(θm − θn)

(Em,λ − En,λ)2
= 1

2

∑
n,m

∂λ(Em,λ − En,λ)〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χm,λ〉(θm − θn)

(Em,λ − En,λ)2
.

(A14)

Now l (2)
2 (m=l ) in Eq. (A14) nicely combines with the first term in Eq. (A13) to give the full derivative,

1

2

∑
n �=m

∂

∂λ

[ 〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χm,λ〉
(Em,λ − En,λ)

]
(θm − θn) . (A15)
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The m = n �= l and n = l �= m cases are considered similarly, by reevaluating ω integrals in Eq. (A3). It is easy to see that
these two contributions cancel the last term in Eq. (A13) and we finally obtain

L(2) = 1

2

∑
n �=m

∫ 1

0
dλ

∂

∂λ

[ 〈∂τχm,λ|χn,λ〉〈∂τχn,λ|χm,λ〉
(Em,λ − En,λ)

]
(θm − θn) . (A16)

Because the integrand is a full derivative over λ, the value of the integral is the difference of this function at the end points, at
λ = 1 and at λ = 0. Using this, we arrive at Eq. (39).
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