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A useful experimental signature of the ordinary spin Hall effect is the spin accumulation it produces at the
sample edges. The superspin Hall current [Phys. Rev. B 96, 094512 (2017)] is a transverse equilibrium spin
current which is induced by a charge supercurrent. We study the superspin Hall current numerically, and find that
it does not give rise to a similar edge magnetization. We also predict and numerically confirm the existence of the
inverse superspin Hall effect, which produces a transverse charge supercurrent in response to an equilibrium spin
current. We verify the existence of the inverse superspin Hall effect both for a spin-polarized charge supercurrent
and an exchange spin current, and propose that a φ0 junction produced by the inverse superspin Hall effect can be
used to directly and electrically measure the spin polarization of a charge supercurrent. This provides a possible
way to solve the long-standing problem of how to directly detect the spin polarization of supercurrents carried
by triplet Cooper pairs.
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I. INTRODUCTION

Spin-polarized supercurrents are a central theme in su-
perconducting spintronics [1]. Cooper pairs in conventional
Bardeen–Cooper–Schrieffer superconductors are in the spin-
singlet state [2–4]. Consequently, supercurrents in conven-
tional superconductors are not spin polarized. To spin polarize
such a supercurrent, the spin-singlet pairs must be converted
to equal-spin triplet pairs. This can be accomplished by com-
bining the processes known as spin mixing and spin rotation
[1,5–7]. Because of the exchange splitting, proximity-induced
Cooper pairs in a ferromagnet will oscillate between the spin-
singlet and the spin-0 triplet state [8,9]. This is known as spin
mixing. A magnetic inhomogeneity or spin-orbit coupling
can rotate the resulting spin-0 triplets into equal-spin triplets
[10–14]. This is known as spin rotation. So far, such a spin
polarization of the supercurrent carried by triplet Cooper pairs
has not been detected directly, but is only inferred from oth-
erwise inexplicably long-ranged supercurrents in proximity
structures [7].

Long-ranged spin-polarized supercurrents in phase-biased
Josephson junctions are equilibrium currents. Various authors
have suggested that spin supercurrents have observable conse-
quences that can be detected via electrical [15–17] or mechan-
ical [18] means, or through the magnetization dynamics they
induce [19,20]. Nonetheless, experimental detection schemes
based on these signatures have yet to be implemented. One
particular difficulty with these suggestions is that an equilib-
rium spin current by definition cannot perform work without
dissipating. Consequently, any attempt to extract useful work
from, say, a voltage induced by an equilibrium spin current in
order to detect that current will dissipate the spin current itself.
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The spin Hall effect [21] and its Onsager reciprocal
[22–24] have found many applications in nonsuperconducting
spintronics. Among others, these include electrical detection
of spin currents induced by spin pumping [25] or the spin
Seebeck effect [26], spin Hall magnetoresistance [27,28], and
spin Hall spin-transfer torques [29]. It is only natural to in-
quire whether a superconducting analog of the spin Hall effect
can be used to detect the spin-polarization of a supercurrent.

Spin Hall effects in superconducting structures have been
considered previously in several theoretical and experimen-
tal works. References [30–35] considered out-of-equilibrium
situations, in which quasiparticle effects give rise to spin
(charge) currents as a result of charge (spin) injection. In
particular, Ref. [35] measured an enhancement of the inverse
spin Hall signal by three orders of magnitude when the NbN
is cooled below the superconducting transition temperature.
References [36–40] considered equilibrium situations and it
was shown that the combination of spin-orbit coupling and an
exchange field could induce a phase difference between two
superconductors to obtain a φ0 junction [37,38].

In Ref. [41], we considered an equilibrium transverse spin
current generated by a longitudinal charge supercurrent in a
Josephson junction, which we will refer to here as the super-
spin Hall current. Whereas most studies of spin Hall effects
in superconductors consider purely s-wave or quasiparticle
effects [30–39], the superspin Hall current is the result of an
interplay between the s-wave condensate of a conventional su-
perconductor and a proximity-induced p-wave condensate. As
opposed to the interfacial spin current considered in Ref. [40],
the superspin Hall current considered in Ref. [41] arises in a
magnetic Josephson junction. In Ref. [41], we also consider
the ballistic limit, rather than the diffusive limit considered in
Refs. [31,37–39].

An open question regarding the superspin Hall current is
whether or not it induces an edge spin magnetization which
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could serve as an experimental signature of its existence. This
question was not addressed in Ref. [41], which considered
periodic boundary conditions and thus in practice a cylindrical
geometry.

In this paper, we present two main results. The first result
is a full two-dimensional analysis of the superspin Hall effect
where we are able to address the issue of what happens to the
spin supercurrent at the edges of the system. This issue is of
interest with respect to possible experimental probes of the
effect.

The second result is the prediction of a corresponding
inverse effect, namely the inverse superspin Hall effect. In
this case, an equilibrium spin current produces a transverse
charge supercurrent, which gives rise to a φ0 shift in the
Josephson junction. The φ0 shift is—as opposed to previous
predictions of φ0 junctions incorporating spin-orbit coupling
and ferromagnets [19,37,38,42]—induced by a pure equilib-
rium spin current. We propose that the φ0 shift can be used
to detect the spin polarization of a supercurrent carried by
Cooper pairs. Being an equilibrium property of the junction
we consider, this detection scheme will not dissipate the
equilibrium spin current. This offers a way to electrically and
directly verify the spin polarization of previously detected
long-ranged supercurrents [43–48].

The superspin Hall effect can not only be used to detect
spin-polarized supercurrents, but also other equilibrium spin
currents. To illustrate this we also calculate the φ0 shift
induced by the exchange spin current between two misaligned
ferromagnets [49,50].

II. INTRODUCTION TO THE SUPERSPIN HALL EFFECT

The intrinsic superspin Hall effect, which we considered in
Ref. [41], arises in a magnetic Josephson junction with Rashba
spin-orbit interlayers, see Fig. 1. When a phase difference
φ is applied over the junction, so that a longitudinal charge
current flows between the two superconductors, a transverse
spin current is induced near the superconductor–Rashba-metal
interface. Being transverse, it flows parallel to the interface
(y direction). Its spin polarization is perpendicular to the
exchange field h in the ferromagnet—along the y direction
for h = hex, and along the x direction for h = hey.

As we explain in Ref. [41], this spin supercurrent is the
result of a delicate interplay between the different condensates
in the junction. Consider for instance h = hey and, for the
sake of the argument, even-frequency superconducting cor-
relations. In addition to the s-wave spin-singlet condensate
emanating from the proximitized superconductors, there are

FIG. 1. Suggested experimental setup for the superspin Hall
effect. A magnetic Josephson junction in the clean limit with Rashba
spin-orbit interlayers. The in-plane exchange field h in the ferromag-
net makes an angle χ with the x axis.

also p-wave correlations in the junction due to the broken
translation symmetry at the material interfaces [51,52] and
due to the presence of spin-orbit coupling [53]. Due to the
overall antisymmetry of the Cooper-pair wave function, the
spin state of these even-frequency p-wave correlations must
be one (or several) of the triplet states. The generation of
both short- and long-range triplets is possible because of the
simultaneous presence of both ferromagnetism and spin-orbit
coupling [13,14]. As explained in Ref. [41], the interaction
of the s- and p-wave condensates can be described via two
different superconducting order parameters in the junction,
which quantify the superconducting correlations present in the
system. These are, respectively, the sum �+ and the difference
�− of the original s-wave and p-wave order parameters, �s

and �k , where k refers to the momentum in the y direction.
The momentum index k is a good quantum number for a
system with periodic boundary conditions in the y direction,
as the one considered in Ref. [41]. The relative magnitude of
these order parameters is determined by the relative phase of
the original s-wave and p-wave order parameters,

|�±|2 = |�s|2 + |�k|2 ± 2 Re(�s�
∗
k ). (1)

When no phase difference is applied over the junction, the
s-wave order parameter is purely real, whereas the p-wave
order parameter is purely imaginary. Consequently, their sum
and difference have equal magnitude, |�+| = |�−|, and as
many Cooper pairs condense in the |k ↑,−k ↓〉 state as in
the |k ↓,−k ↑〉 state. However, when a phase difference is
applied, the s-wave order parameter acquires an imaginary
component and the p-wave order parameter acquires a real
component. In turn, their sum and difference are no longer
equal, |�+| �= |�−|, and Cooper pairs condense preferentially
at either |k ↑,−k ↓〉 or |k ↓,−k ↑〉 because of the difference
in condensation energies. Such a selective condensation gives
rise to a nonzero k-resolved spin magnetization Sk that is anti-
symmetric in k. Subsequently, this antisymmetric momentum-
resolved spin magnetization produces a spin current polarized
along the spin magnetization direction. For an exchange field
h = hey, the momentum-resolved spin magnetization points
in the x direction; thus the application of a longitudinal phase
difference (charge current) has given rise to a transverse spin
current polarized along ex.

III. THEORY

We consider a superconducting heterostructure in two di-
mensions in the clean limit, incorporating strong spin-orbit
coupling. For this, we use the tight-binding Bogoliubov–de
Gennes framework [3]. Our heterostructure consists of super-
conductors, normal metals with Rashba spin-orbit coupling,
and ferromagnets. Our Hamiltonian is

H = − t
∑

〈i, j〉,σ
c†

i,σ c j,σ −
∑
i,σ

μic
†
i,σ ci,σ −

∑
i

Uini,↑ni,↓

− (i/2)
∑

〈i, j〉,α,β

λi[n · (σ × d i j )]αβc†
i,αc j,β

+
∑
i,α,β

(hi · σ )αβc†
i,αci,β , (2)
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where i and j are position indices (i, j = 1, . . . , NxNy, where
Nx and Ny are the dimensions of the lattice); 〈i, j〉 indicates
that i and j are nearest neighbors; t is the hopping integral; c†

i,σ

and ci,σ are electron creation and annihilation operators at site
i for spin σ ; μi is the local chemical potential; Ui is the local
on-site attraction that gives rise to superconductivity (Ui =
0 outside the superconductors and Ui = U > 0 inside the
superconductors); ni,σ = c†

i,σ ci,σ is the number operator at site
i for spin σ ; λi is the local Rashba parameter (λi = 0 outside
the normal metals and λi = ±λ inside the normal metals);
n is the unit vector normal to the Rashba-metal/ferromagnet
interface; σ is the vector of Pauli matrices; d i j = −d ji is the
vector pointing from site i to site j; and hi is the local magnetic
exchange field (hi = 0 outside the ferromagnet and hi = h
inside the ferromagnet).

The two-particle Hubbard-U term can be recast as

−
∑

i

Uini,↑ni,↓ =
∑

i

(�i c†
i,↓c†

i,↓ + �
†
i ci,↓ci,↑

+|�i|2/Ui ) (3)

using the standard mean-field ansatz �i = −Ui〈ci,↓ci,↑〉. We
symmetrize the Hamiltonian using the fundamental fermionic
anticommutator to write

∑
λ,κ

Aλ,κc†
λcκ = 1

2

∑
λ

Aλ,λ + 1

2

∑
λ,κ

Aλ,κ (c†
λcκ − cκc†

λ). (4)

Introducing the basis

B†
i = (c†

i,↑ c†
i,↓ ci,↑ ci,↓), (5)

we may then write the Hamiltonian on the form

H = H0 + 1

2

∑
i, j

B†
i Hi jB j . (6)

Here, we have identified the constant term H0,

H0 =
∑

i

|�i|2/Ui −
∑

i

μi, (7)

where the first sum runs only over the superconductors, and
the 4 × 4 matrix Hi j ,

Hi j = 1
2 tτzσ0δ j,i+δ − μiτzσ0δi, j + i

2�i τ+σyδi, j

− i
2�

†
i τ−σyδi, j − i

4λiτ0σz(δ j,i+δy − δ j,i−δy )

+ hx
i τzσxδi, j + hy

i τ0σyδi, j + hz
i τzσzδi, j , (8)

where δi, j is the Kronecker delta, we used n = ex, we intro-
duced the set of nearest-neighbor vectors δ = (δx, δy), and
τn and σn are the Pauli matrices for n = x, y, z and n = 0
refers to the identity. Moreover, τ± = τx ± iτy, and products
of Pauli matrices are interpreted as Kronecker products. As
is the usual definition, τzσ0, for instance, evaluates to τzσ0 =
diag(+1,+1,−1,−1) [54].

The index structure in Eq. (6) is that of a matrix product,
in which the matrix M is multiplied from the left with the row
vector B†, and the resulting row vector is multiplied with the
column vector B. Each element in M is a 4 × 4 matrix Hi j ,
and each element in B (or B†) is a 4 × 1 (or 1 × 4) column (or
row).

FIG. 2. Enumeration scheme for the Nx × Ny square lattice. The
site index i is incremented site by site along the rows, starting in the
upper left corner.

The structure of the matrix M is determined by how we
combine the elements of B and B† into vectors. We consider a
square lattice. The position indices i and j run over the entire
system (Nx × Ny sites). Since each pair (i, j) corresponds to a
4 × 4 block Hi j , we expect M to be a 4NxNy × 4NxNy matrix.

By choosing some enumeration scheme for the sites i (such
as the one in Fig. 2), we can thus write

H = H0 + 1
2 B†MB, (9)

and diagonalize M by the techniques that are familiar from
linear algebra. Since H is Hermitian, so is M, and M can thus
be diagonalized as M = PEP−1, where E is diagonal and real,
and P is unitary, P−1 = P† [55]. Substituting M = PEP−1

into Eq. (9) we obtain

H = H0 + 1

2

∑
n

Enγ
†
n γn , (10)

where we defined the new quasiparticle operators γ † = B†P
and γ = P−1B, γn is the nth element of γ , En is the nth
eigenenergy, and n = 1, . . . , 4NxNy. The original electron op-
erators can be related to the quasiparticle operators by

ci,↑ =
∑

n

ui,nγn , ci,↓ =
∑

n

vi,nγn , (11a)

c†
i,↑ =

∑
n

wi,nγn , c†
i,↓ =

∑
n

xi,nγn , (11b)

where ui,n with i = 1, . . . , NxNy is, respectively, Pln with l =
1, 5, 9, . . . Likewise, vi,n with i = 1, . . . , NxNy is Pln with
l = 2, 6, 10, . . . ; wi,n with i = 1, . . . , NxNy is Pln with l =
3, 7, 11, . . . ; and xi,n with i = 1, . . . , NxNy is Pln with l =
4, 8, 12, . . . .

We can now derive expressions for any of the observ-
ables in the system in terms of the eigenenergies En and
the eigenvectors ui,n, vi,n, wi,n, and xi,n. For instance, the
superconducting gap takes the form

�i = Ui

∑
n

vi,nw
∗
i,n f (En/2), (12)

and the spin magnetization takes the form

〈
Sx

i

〉 = 2
∑

n

Re(u∗
i,nvi,n) f (En/2), (13a)

〈
Sy

i

〉 = 2
∑

n

Im(i∗i,nvi,n) f (En/2), (13b)

〈
Sz

i

〉 =
∑

n

(|ui,n|2 − |vi,n|2) f (En/2). (13c)
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The free energy reads

F = H0 − 1

β

∑
n

ln[1 + exp(−βEn/2)], (14)

where 1/β = T and T is temperature.
Expressions for the charge and spin currents can be ob-

tained from their respective continuity equations,

∂tρi = −∇ · ji (15)

and

∂t si = −∇ · Ji , (16)

where ρi is the charge density at i, ji is the current density
at i, si is the spin density at i, Ji is the spin-current-density
tensor at i, and the gradient of the spin-current-density tensor
is taken with respect to the position variables. Note that the
spin current defined by the spin continuity equation is only
conserved in regions without ferromagnetism or spin-orbit
coupling because these terms are spin nonconserving [56]. For
each of the two continuity equations, we find expressions for
the currents by integrating the equations over space to obtain
(for the case of the charge current)

∂t Qi = −
∫

�

dr (∇ · ji ),

where Qi = ∑
σ c†

i,σ ci,σ is the charge at i and � is the unit-cell
volume. The integral on the right-hand side can be evaluated
using Green’s theorem,∫

�

dr (∇ · ji ) =
∫

∂�

dS ( ji · en) =
∑

l

ji,l a =
∑

l

Ii,l ,

where ∂� is the unit-cell boundary, en is the outward-pointing
boundary normal, and a is the unit-cell side length. Since we
consider a square lattice, Ii,l is the current through the lth face
of the square unit cell. The left-hand side of the continuity
equation can be evaluated using Heisenberg’s equation of
motion. Thus the sum of currents out of the unit cell is∑

l

Ii,l = −i[H, Qi]. (17)

Evaluating the commutator and taking a combined thermal
and quantum-mechanical average gives the charge current in
the x direction〈

Ix
i

〉 = t
∑

n

Im(u∗
i+1,nui,n − u∗

i−1,nui,n

+ v∗
i+1,nvi,n − v∗

i−1,nvi,n) f (En/2) (18)

and in the y direction,
〈
Iy
i

〉 =
∑

n

Im
(
u∗

i−Nx,nui,n − u∗
i+Nx,nui,n

+ v∗
i−Nx,nvi,n − v∗

i+Nx,nvi,n
)

f (En/2)

− 1

2

∑
n

λi Re
(
u∗

i−Nx,nui,n + u∗
i+Nx,nui,n

− v∗
i−Nx,nvi,n − v∗

i+Nx
vi,n

)
f (En/2). (19)

A similar procedure for the spin currents gives the three spin
components of the spin current in the x direction

〈
Ixx
i

〉 = t
∑

n

Im(u∗
i+1,nvi,n + v∗

i+1,nui,n

− u∗
i−1,nvi,n − v∗

i−1,nui,n) f (En/2), (20)

〈
Ixy
i

〉 = t
∑

n

Re(u∗
i+1,nvi,n − v∗

i+1,nui,n

− u∗
i−1,nvi,n + v∗

i−1,nui,n) f (En/2), (21)

〈
Ixz
i

〉 = t
∑

n

Im(u∗
i+1,nui,n − v∗

i+1,nvi,n

− u∗
i−1,nui,n + v∗

i−1,nvi,n) f (En/2), (22)

and likewise the three spin components of the spin current in
the y direction

〈
Iyx
i

〉 = t
∑

n

Im
(
u∗

i−Nx,nvi,n + v∗
i−Nx,nui,n

− u∗
i+Nx,nvi,n − v∗

i+Nx,nui,n
)

f (En/2), (23)

〈
Iyy
i

〉 = t
∑

n

Re
(
u∗

i−Nx,nvi,n − v∗
i−Nx,nui,n

− u∗
i+Nx,nvi,n + v∗

i+Nx,nui,n
)

f (En/2), (24)

〈
Iyz
i

〉 = t
∑

n

Im
(
u∗

i−Nx,nui,n − v∗
i−Nx,nvi,n

− u∗
i+Nx,nui,n + v∗

i+Nx,nvi,n
)

f (En/2). (25)

A general superconducting order parameter F can be de-
composed into a spin-singlet and a spin-triplet contribution
[57],

F = (ψ + d · σ)iσy , (26)

where ψ is the singlet amplitude and the d vector is the vector
of triplet amplitudes along the x, y, and z axes,

d = 1
2 [�↓↓ − �↑↑, −i(�↓↓ + �↑↑), 2�↑↓]. (27)

The spin structure of the singlet amplitude is already familiar
from Eq. (8), where the same factor iσy appears. In a unitary
superconducting state, the identity F † = F−1 holds, and FF †

is proportional to the identity. A general superconducting sys-
tem is, however, not unitary, and straightforward calculation
shows that

FF † = |ψ |2 + |d|2 + σ · [(ψd∗ + ψ∗d ) + i(d × d∗)]. (28)

The term i(d × d∗) is proportional to the spin expectation
value of the pure triplet Cooper pairs [57], whereas the term
(ψd∗ + ψ∗d ) is proportional to the spin magnetization arising
due to coexistence of singlet and triplet pairing [41],

SCooper ∝ (ψd∗ + ψ∗d ) + i(d × d∗). (29)

In order to calculate the Cooper-pair spin magnetization, we
need expressions for the superconducting amplitudes. The
s-wave singlet amplitude Si,0 at i is identical to the gap we
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calculated in Eq. (12), except for the factor Ui,

S0 = 1

2
[〈ci,↑ci,↓〉 − 〈ci,↓ci,↑〉] =

∑
n

vi,nw
∗
i,n f (En/2). (30)

The direct and inverse superspin Hall effects depend on the
existence of even-frequency, py-wave, spin-triplet amplitudes,

Py
i,↑↓ = 1

2

∑
±

±[〈
ci,↑ci±δy,↓

〉 + 〈
ci,↓ci±δy,↑

〉]

= 1

2

∑
n,±

±(
w∗

i,nvi∓Nx,n − vi,nw
∗
i∓Nx,n

)
f (En/2), (31a)

Py
i,↑↑ =

∑
±

±〈
ci,↑ci±δy,↑

〉 =
∑
n,±

±w∗
i,nui∓Nx,n f (En/2), (31b)

Py
i,↓↓ =

∑
±

±〈
ci,↓ci±δy,↓

〉 =
∑
n,±

±x∗
i,nvi∓Nx,n f (En/2). (31c)

In Sec. V, we will need the odd-frequency, s-wave, spin-
triplet amplitudes,

Si,↑↓(t ) = 1

2
[〈ci,↑(t )ci,↓(0)〉 + 〈ci,↓(t )ci,↑(0)〉]

= 1

2

∑
n

(w∗
i,nvi,n − x∗

i,nui,n) f (En/2)eiEnt/2, (32a)

Si,↑↑(t ) = 〈ci,↑(t )ci,↑(0)〉=
∑

n

w∗
i,nui,n f (En/2)eiEnt/2, (32b)

Si,↓↓(t ) = 〈ci,↓(t )ci,↓(0)〉=
∑

n

x∗
i,nvi,n f (En/2)eiEnt/2. (32c)

IV. NUMERICAL CALCULATIONS

In this paper, we consider the three setups in Figs. 1, 7,
and 9. In each case, we construct the matrix M from Eq. (9)
and diagonalize it to find the eigenvalues and eigenvectors.
Using these, we may calculate physical quantities such as
the superconducting gap �i or the spin magnetization 〈Si〉.
Because the matrix M depends on the superconducting gap,
the equations must be solved self-consistently by substi-
tuting the gap calculated using Eq. (12) back into M and
iterating.

For each of the systems we consider, we make sure
that the superconducting state minimizes the free energy in
Eq. (14). In all the systems, we take the exchange field hi

of the ferromagnets to be an external parameter, that is, we
do not calculate the exchange field self-consistently. This is
consistent with an s−d-type model in which the localized d
electrons are responsible for the magnetic behavior [58,59].
The spin magnetization 〈Si〉 that we calculate is thus the spin
polarization of the itinerant s electrons.

In the setup in Fig. 1, we consider the injection of a charge
current into the junction by an applied phase difference. This
is accomplished by fixing the phase of the superconducting
gap �i at the leftmost lattice points in the left superconductor
and at the rightmost lattice points in the right superconductor.
The applied phase difference between these points can be
used as a proxy for the applied phase difference over the
junction (N/F/N spacer) because the phase drop inside the

superconductors is typically small. (Fixing the phase differ-
ence at �φ = 0.5π gives an effective phase difference over
the N/F/N spacer of �φ ≈ 0.47–0.48π .)

In the setup in Fig. 7, we consider the injection of a
charge current across the injection junction by an applied
phase difference. We fix the phase of the left superconduc-
tor in the detector at φ = 0 (this choice is arbitrary—only
phase differences matter). By varying the phase of the right
superconductor from 0 to 2π we calculate the current-phase
and free-energy–phase relations of the detector junction. We
take the induced anomalous phase φ0 to be the phase over
the detector that minimizes the free energy and gives 〈Ix〉 =
I (−φ0) = 0.

In the setup in Fig. 9, we consider the injection of an ex-
change spin current from two misaligned ferromagnets. We fix
the phase of both superconductors at φ = 0 and calculate the
anomalous charge current I (0) = 〈Ix〉. In its simplest form,
a φ0 junction [60–63] has the current-phase relation I (φ) =
Ic sin(φ + φ0). For small φ0 shifts, the anomalous phase φ0

and the anomalous current I (0) = Ic sin φ0 are proportional,
I (0) ≈ Icφ0. Therefore, we can use the anomalous current as
a proxy for the anomalous phase.

The advantage of tight-binding Bogoliubov–de Gennes
framework [3] that we use is that it is not subject to the
limitations on length and energy scales that are inherent to for
instance quasiclassical theory [64]. However, using this tight-
binding framework, only comparatively small lattice sizes are
computationally manageable, especially in two-dimensional
finite-size calculations. For superconducting structures, the
relevant length scale is the superconducting coherence length
ξ = h̄vF/π� [2,3]. If the coherence length is to be smaller
than the thickness of the superconducting layers, this re-
quires relatively large values of the superconducting gap
and large critical temperatures. Nonetheless, the tight-binding
framework can still be used to make qualitative and quan-
titative predictions for experimentally relevant systems. To
do this requires that the spatial dimensions are scaled by
the superconductive coherence length. One example of a
successful application of this method is Ref. [65], whose
predictions correspond very well to the experimental results
of Ref. [66].

We take a similar approach. With the parameters chosen
in Secs. V–VIII the thickness of the superconducting layers
is about one coherence length, and the normal-metal and
ferromagnetic layers vary from about ξ/4 to 2ξ . As long as
the weak links are not orders of magnitude larger than the
coherence length, the qualitative features of our results are
robust towards variations of the system size. In particular, the
φ0 shift that we calculate in Sec. VII is nearly independent of
the length of the detector junction.

V. SUPERSPIN HALL EFFECT IN TWO DIMENSIONS:
SPIN CURRENT AND EDGE MAGNETIZATION

Our analysis of the superspin Hall effect in Ref. [41]
was an effective one-dimensional analysis in the sense that
we assumed periodic boundary conditions in the y direc-
tion and thus could get rid of the y coordinate by Fourier
transformation. Whereas we were still able to calculate the
transverse spin current, this left open the question of the
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exact spin current circulation pattern and whether any spin
magnetization arises at the edges of the sample. The latter
would be a useful experimental signature of the superspin Hall
effect, as it has been previously for the (nonequilibrium) spin
Hall effect [67,68].

In the usual nonsuperconducting, nonequilibrium spin Hall
effect, spin accumulates at the edges of the sample because
the transverse spin current has nowhere to go upon reach-
ing the sample boundary [21]. A steady state is achieved
because the spin Hall effect is found in materials with strong
spin-orbit coupling where spin is not conserved. The accu-
mulated spin at the edge at any time is thus the result of a
balance between influx of spin from the bulk and spin loss
due to spin-orbit coupling.

We find that the superspin Hall current does not give rise
to a spin magnetization at the sample edges by this familiar
mechanism. The simple reason is that the superspin Hall
current in our system does have somewhere to go—it can be
drained from the superconductor, where in our model spin is
conserved, into the Rashba-metal/ferromagnet spacer, where
spin is not conserved. This circulation of the superspin Hall
current from the spacer, into the superconductor, and back into
the spacer, is shown in Fig. 3(a).

Note that, although the net flow of spin is from the bottom
of the sample to the top, the direction of the spin current
(up/down) oscillates as a function of the distance into the
superconductor [Fig. 3(b)]. As explained in Ref. [41], the
oscillation period is a function of the system parameters, such
as the strength of the spin-orbit coupling in the normal layer
and the strength of the exchange field in the ferromagnet.
The period varies from atomic-scale oscillations to roughly
a fourth of the coherence length. Such rapid oscillations are
characteristic for physical quantities in ballistic quantum-
mechanical systems. For instance, they can also be found
in the proximity-induced magnetization in conventional su-
perconductors [69] and helical edge-mode currents in triplet
superconductors [70].

Although the superspin Hall current does not give rise to
a spin magnetization at the edges of the sample, there is an
x-polarized spin magnetization at the edges of the system
[Fig. 4(a)]. However, contrary to what we would expect from
a spin magnetization arising due to accumulation of spins
deposited by the superspin Hall current, the spin magneti-
zation sign pattern that we observe is ±∓, not ±±, where
the signs refer to the left upper/lower and right upper/lower
edges, respectively. Furthermore, its amplitude varies as
cos φ, where φ is the phase difference applied between the
two superconductors [Fig. 5(a)]. We would expect a spin
magnetization induced by the superspin Hall current—which
is again induced by the longitudinal charge current—to have
an amplitude that varied as sin φ [compare with Figs. 5(c)
and 5(d)].

The momentum-resolved spin magnetization that gives rise
to the superspin Hall current is the result of the interaction of
the s-wave spin-singlet and a p-wave spin-triplet condensate,
both even in frequency. The edge spin magnetization we
observe in Fig. 4, on the other hand, is the result of the inter-
action of the even-frequency, s-wave, spin singlet condensate
and an odd-frequency, s-wave, spin-triplet condensate. In
Fig. 4(a), we have plotted the x component of the total spin

FIG. 3. Superspin Hall current in two dimensions at phase dif-
ference φ = π/2. (a) Circulation pattern of the x component of the
spin current. The spin current is only plotted in the superconductors,
where spin is conserved. (b) Cut along the x direction at y = 15
inside the superconductors. The spin current oscillates as a function
of the distance from the N/F/N weak link into the superconductors.
We use the following parameter values: the system size is Nx = 40
times Ny = 30; the layer thicknesses are NS = 15, NN = 3, and NF =
4. the chemical potentials are μS = 0.9, μN = 0.85, and μF = 0.8;
the Rashba spin-orbit coupling in the normal metal is λ = 0.3, the
exchange field in the ferromagnet is hy = 0.15 (hx = hz = 0), the on-
site attraction in the superconductor is U = 1.1, and the temperature
is T = 0.01. All energies are normalized with respect to the hopping
parameter (t = 1).

FIG. 4. x component of the spin magnetization at phase differ-
ence φ = 0. (a) The total spin magnetization. (b) The spin magneti-
zation induced by interaction of s-wave singlets and odd-frequency,
s-wave triplets (arbitrary units). Except for the applied phase between
the superconductors, all parameters are identical to Fig. 3.
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FIG. 5. Phase dependence of the superspin Hall effect. (a) Total
spin magnetization 〈Sx〉 summed over the lower half of the right
superconductor. (b) Cooper-pair spin magnetization Sx

Cooper summed
over the lower half of the right superconductor (arbitrary units).
(c) Longitudinal charge current 〈Ix〉 summed over the y cross section.
(d) Transverse spin current 〈Iyx〉 summed over the x cross section. All
parameters are identical to Fig. 3.

magnetization calculated using Eq. (13a). In Fig. 4(b), we
have plotted the x component of the spin magnetization
calculated using Eq. (29), where we have used the super-
conducting amplitudes in Eqs. (30) and (32). Apart from
a constant prefactor, the plots are essentially identical. The
spin magnetization due to the odd-frequency, s-wave spin
triplets also reproduce the phase dependence of the total spin
magnetization [compare Figs. 5(a) and 5(b)].

The fact that the edge spin magnetization is due to the
odd-frequency triplets (s wave) whereas the superspin Hall
effect is due to the even-frequency triplets (p wave) makes
it clear that the spin magnetization is not a consequence of
the superspin Hall current. Further evidence to this effect
is that this particular spin magnetization is also predicted
in the diffusive limit [71], where the superspin Hall effect
is precluded because of the absence of p-wave correlations.
Consequently, one can exist independently of the other—they
are independent effects.

Nonetheless, the symmetries of the spin magnetization
with respect to sign change of the Rashba spin-orbit coupling
and the direction of the exchange field is the same as those of
the superspin Hall current. In particular, rotating the exchange
field by 90◦ from h = hey to h = hex also rotates the spin-
triplet spin magnetization by 90◦ from x to y.

The temperature T = 0.01 (in units of t), which we chose
for the simulations above, is well below the superconducting
transition temperature, T = 0.01 � Tc/2. However, at still
lower temperatures, Andreev bound states [72,73] with a
more dispersive energy-phase relation appear in the junc-
tion. The appearance of such states is common in ballistic
systems with high interface transparencies and low temper-
atures. Because these states bounce multiple times between
the two superconductors, they produce higher-harmonic con-
tributions to the current-phase relation. The higher harmonics
will distort the pure sinusoidal shape of the current-phase
relation and may even introduce discontinuities [74,75]. This,

FIG. 6. Phase dependence of the superspin Hall effect at low
temperatures. (a) Longitudinal charge current 〈Ix〉 at T = 0.005
summed over the y cross section. (b) Longitudinal charge current
〈Ix〉 at T = 0.003 summed over the y cross section. (c) Transverse
spin current 〈Iyx〉 at T = 0.005 summed over the x cross section.
(d) Transverse spin current 〈Iyx〉 at T = 0.003 summed over the x
cross section. All parameters except the temperature are identical to
Fig. 3.

of course, also affects the superspin Hall current, as shown
in Fig. 6.

The presence of Andreev bound states in the junction also
affects the spin magnetization, which deviates from a pure
cosine as a function of the applied phase difference φ. Inter-
estingly, there is also a discernible difference between the total
spin magnetization and the Cooper-pair spin magnetization
computed via Eq. (29) at low temperatures.

VI. INVERSE SUPERSPIN HALL EFFECT

The Onsager reciprocal of the usual nonsuperconduct-
ing, nonequilibrium spin Hall effect is the inverse spin Hall
effect—that is, injection of a transverse spin current generates
a longitudinal charge current. In a steady state, the charge
current must either be drained into external leads or a volt-
age accumulates which exactly cancels the inverse spin Hall
current. Analogously, one might expect that there should exist
an inverse of the superspin Hall effect discussed in Sec. V—
injecting an equilibrium transverse spin current should give
rise to a longitudinal charge supercurrent.1 However, in the
absence of external leads, the steady state will be one with
zero charge current. Instead, a phase difference φ0 accumu-
lates over the junction. This phase difference gives rise to
a supercurrent that exactly cancels the one induced by the
inverse superspin Hall effect. In this work, we confirm this
expectation and find that the experimental signature of the
inverse superspin Hall effect is a φ0 junction.

1Note that the term inverse effect cannot here be understood as
the Onsager reciprocal proper, as our calculations are carried out is
equilibrium.
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VII. ELECTRICAL DETECTION OF THE
SUPERCURRENT SPIN POLARIZATION

We propose to use the setup in Fig. 7 to detect the spin po-
larization of a supercurrent. This four-terminal setup consists
of two perpendicular Josephson junctions. We will refer to the
S/F(y/F(x/F(y)/S junction as the injection junction and the
S/N/F(x)/N/S junction as the detector or detection junction.

By applying a phase bias over the injection junction, a spin-
polarized supercurrent is produced by the combined processes
of spin mixing in the S/F(y) bilayer and spin rotation [rotation
of spin quantization axis between the F(y) and F(x) layers].
The current is spin-polarized in the x direction. The proximity
to the F(y) layers provides the necessary conditions for the
superspin Hall mechanism. Thus, the inverse superspin Hall
effect converts this transverse spin current into a longitudinal
charge supercurrent in the detector that flows from the left
to the right superconductor. Consequently, in the steady state,
the detection junction is a φ0 junction. If the two terminals
of the detection junction are connected to form a supercon-
ducting loop, the current-phase relation of the detector can be
measured by threading a magnetic flux through the loop [76].
The anomalous current I (0) = Ic sin φ0 can also be measured
directly using a SQUID in zero applied flux.

Figures 8(a) and 8(b) show the current-phase and the
free-energy–phase relations of the detector junction. At an
applied phase difference of φ = 0 over the injector junction
[Fig. 8(a)], no spin current is injected across the detector. Con-
sequently, the current-phase relation of the detector junction is
that of an ordinary 0 junction. At an applied phase difference
of φ = π/2 over the injector junction [Fig. 8(b)], a large
spin current is injected across the detector. Consequently, the
current-phase relation is shifted by an amount φ0 = −0.2π .

Figure 8(c) shows the complete φ0-phase relation. The
abscissa corresponds to the applied phase difference of the
injection junction. On the right ordinate we have plotted the
charge and spin currents injected across the detector, that is,
〈Iy〉 and 〈Iyx〉. The 〈Iy〉-phase and the 〈Iyx〉-phase relations are
both almost sinusoidal, and we interpret the spin current as
the spin polarization of the charge current. On the left ordinate
we have plotted the induced φ0 shift, i.e., the phase φ over the
detector that corresponds to 〈Ix〉 = 0 and F = Fmin. Clearly,
the φ0 shift is zero when the transverse spin current is zero.
Moreover, the sign of the φ0 shift is a good predictor for the
sign of the spin current. We have not been able to find a simple

FIG. 7. Proposed experimental setup for detecting a spin-
polarized supercurrent consisting of two crossed Josephson junc-
tions. The charge supercurrent in the y direction injected into the
S/F(y/F(x/F(y)/S junction is spin polarized in the x direction by the
magnetic inhomogeneity provided by the F(y) layers. The transverse
spin current thus injected into the S/N/F(x)/N/S junction induces a
phase difference φ0 between the left and right superconductors.

FIG. 8. φ0 effect for the setup in Fig. 7. [(a) and (b)] Current-
phase and free-energy–phase relations of the detector junction as a
function of the phase difference applied over the detector junction
at applied phase differences of (a) φ = 0 (no injected charge current)
and (b) φ = π/2 (maximal injected charge current) over the injection
junction. In (b), a φ0 shift of φ0 = −0.2π is clearly visible. (c) Right
ordinate: the injected charge current and the resulting spin current
through the injection junction as a function of the phase difference
applied over the injection junction. Left ordinate: the induced φ0 shift
in the detection junction as a function of the phase difference applied
over the injection junction. The system size is Nx = 35 times Ny =
21. The layer thicknesses of the detector are NS = 5, NN = 10, and
NF = 5, and the layer thicknesses of the injector are NS = 5, NF(x) =
3, and NF(y) = 5. All material parameters are identical to Fig. 3.

explanation for the deviation of the φ0 shift from a pure sine,
but the fact that both the sign and zeros of the anomalous
phase φ0 follow the spin supercurrent is consistent with the
latter being the origin of the anomalous phase shift.

In addition to serving as a measurement of the spin polar-
ization of the supercurrent, the setup we propose in Fig. 7 can
also serve as a current-controlled phase battery. Such func-
tionality has recently been proposed for a voltage-controlled
φ0 junction [77], and recent experiments have made progress
towards both magnetic and electric phase control [62,78].

VIII. ELECTRICAL DETECTION
OF AN EXCHANGE SPIN CURRENT

The inverse superspin Hall effect is not only induced by
a spin-polarized charge supercurrent, but also by other equi-
librium spin currents. To demonstrate this, we consider the
setup in Fig. 9. Here, the injection junction has been replaced
by an F/N/F spin valve (no spin-orbit coupling in N). By
misaligning the ferromagnets, we can inject an exchange spin
current [49,50]. The spin current is proportional to the sine of
the misalignment angle θ , Is ∼ sin θ .

In Fig. 10(a), we plot the resulting spin current 〈Iyx〉 in
the central normal metal (where spin is conserved) and the
anomalous current I (0) = 〈Ix〉 as a function of the misalign-
ment angle θ . The spin current is sinusoidal as a function
of θ , consistent with the prediction of Refs. [49,50]. The
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FIG. 9. Suggested experimental setup for the inverse superspin
Hall effect. The misalignment of the two ferromagnets (misalign-
ment angle θ ) produces a transverse exchange spin current that gives
rise to an anomalous current between the two superconductors.

sinusoidal response of the anomalous current is consistent
with our interpretation that it is induced by the exchange spin
current (and not directly induced by the transverse variation
in the exchange field as in Ref. [37]).

In Figs. 10(b) and 10(c), we plot the current-phase relation
at a misalignment angle θ = 0 and π/2. The anomalous cur-
rent I (0) shows up as a φ0 shift of the current-phase relation.

In Fig. 11, we have plotted the magnitude and phase of
the resulting superconducting gap. The oscillations in the
gap magnitude |�i| at the sample edges are due to Fridel
oscillations that create an oscillating change density [79]. A
φ0 shift of φ0 ≈ −0.04π is clearly visible.

Figure 12 shows the dependence of the anomalous current
I (0) on the spin-orbit coupling strength λ in the Rashba metals
and the exchange-field strength h in the ferromagnets. There
is a pronounced peak (or dip) at h ≈ 0.8 and λ ≈ 1.9. This pa-
rameter dependence can be understood as follows: We expect
the inverse superspin Hall effect to disappear when the ex-
change field vanishes because h = 0 means that no transverse

FIG. 10. (a) Injected spin current 〈Iyx〉 in the central normal
metal (no spin-orbit coupling) and anomalous current I (0) = 〈Ix〉
as a function of the misalignment angle θ . [(b) and (c)] Current-
phase and free-energy–phase relations at a misalignment angle of,
respectively, θ = 0 (no injected spin current) and θ = π/2 (maximal
injected spin current). A φ0 shift of φ0 ≈ −0.04π is clearly visible.
We use the following parameter values: the system size is Nx = 38
times Ny = 12; the layer thicknesses of the detector are NS = 15,
NN = 2, and NN′ = 4 and the layer thicknesses of the injector are
NF = 1 and NN′ = 10; the Rashba spin-orbit coupling is λ = 1.87;
and the exchange field is h = 0.8. The remaining parameter values
are identical to Fig. 3.

FIG. 11. φ0 signature of the inverse superspin Hall effect.
[(a) and (c)] Magnitude of the superconducting gap |�i|. The gap
vanishes in the N/F/N spacer and the inverse proximity effect is
clearly visible. The oscillations of the gap at the edges of the sample
are due to Fridel oscillations. [(b) and (d)] Phase of the s-wave singlet
amplitude Si,0. A φ0 shift of φ0 ≈ −0.04π is clearly visible. The
plots in (c) and (d) are for y = 5. We use parameter values that are
identical to Fig. 10.

spin current is injected. (Also, magnetism is a prerequisite for
the superspin Hall effect.) For small values of h, we expect
the anomalous current to increase with the exchange field
because an increase in h leads to an increase in the transverse
spin current. However, for large values of h, we expect the
superspin Hall effect to disappear because the exchange field
suppresses the superconducting proximity effect.

We also expect the anomalous current to vanish for van-
ishing spin-orbit coupling because spin-orbit coupling is a
prerequisite for the superspin Hall effect. For finite λ, there
is a finite anomalous current because of the superspin Hall
effect, but we expect the superspin Hall effect to disappear
for very large spin-orbit coupling because it suppresses the
necessary py-wave spin-0 triplets [41] (d not parallel to gk in
the notation of Ref. [80]).

IX. DISCUSSION

The superspin Hall effect and its inverse depend on the
existence of p-wave correlations in the junction. These cor-
relations are sensitive to disorder and will, in the face of too
large amounts of disorder, be entirely suppressed.

The suppression of superconductivity by disorder has been
studied in many systems, including heavy-fermion systems
[81,82], iron pnictides [83,84], and Sr2RuO4 [85]. Strontium

FIG. 12. Dependence of the anomalous current I (0) = 〈Ix〉 on
the ferromagnet exchange field h and the Rashba metal spin-orbit
coupling λ. Except for h and λ, the parameter values are identical to
Fig. 10.
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ruthenate is arguably the most relevant system for the p-wave
correlations that the superspin Hall effect depends on. In
strontium ruthenate, the disorder dependence of the critical
temperature can be described using Abrikosov–Gor’kov pair-
breaking theory [3,86]. Superconductivity vanishes in this
compound when the mean free path � is on the order of
or smaller than the superconducting coherence length ξ of
the p-wave order parameter. Experiments indicate that this
corresponds to a residual resistivity of about 1 μ�cm [85].
Results from the iron pnictides indicates that s±-wave pair-
ing is suppressed at a similar residual resistivity of about
10 μ�cm [84], corresponding to an impurity concentration
of only about 1% [83].

We expect that a similar strong suppression of the p-wave
correlations will take place in the junctions we consider. To re-
alize the effects we predict experimentally would thus require
samples with good crystallinity and impurity concentrations
below about 1%.

In the weakly disordered case—that is, for impurity con-
centrations below this level—we expect that the amount of
p-wave correlations will be reduced, but not have vanished
completely. This will lead to a reduction in the induced
transverse spin current (superspin Hall effect) or the induced
anomalous current (inverse superspin Hall effect) compared
to the clean limit. For comparison, it is instructive to compare
the behavior in this case to Fig. 12. Here, the py-wave spin-0
triplets are suppressed at large spin-orbit coupling, and the
anomalous current vanishes. Similar behavior can be expected
as a function of impurity concentration.

X. CONCLUSION

We have considered the superspin Hall and the
inverse superspin Hall effects in a two-dimensional

S/N/F/N/S Josephson junction. We present two main
results.

Firstly, the transverse spin supercurrent induced by the
superspin Hall effect circulates from the N/F/N spacer, into
the superconductors, and back into the N/F/N spacer. Con-
sequently, it does not give rise to a spin magnetization at
the sample edges, contrary to the usual spin Hall effect. The
spin magnetization that does arise at the sample edges can be
attributed to interaction between the proximity-induced even-
frequency s-wave spin-singlet condensate and odd-frequency
s-wave spin-triplet correlations.

Secondly, we predict and numerically confirm the exis-
tence of the inverse superspin Hall effect, which can be de-
tected experimentally as a φ0 shift in the Josephson junction.
We have shown that both exchange spin currents and spin-
polarized charge supercurrents produce a transverse charge
supercurrent by the inverse superspin Hall effect. In particular,
we propose that a φ0 junction produced by the inverse super-
spin Hall effect can be used to—for the first time—measure
directly the spin polarization of a charge supercurrent carried
by triplet Cooper pairs.
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