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Temperature-dependent spectral function of a Kondo impurity in an s-wave superconductor
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Using the numerical renormalization group method, the effect due to a Kondo impurity in an s-wave
superconductor is examined at finite temperature T . The T behaviors of the spectral function and the magnetic
moment at the impurity site are calculated. At T = 0, the spin due to the impurity is in a singlet state when the
ratio between the Kondo temperature Tk and the superconducting gap �(0) is larger than 0.26. Otherwise, the
spin of the impurity is in a doublet state. We show that the separation of the double Yu-Shiba-Rusinov peaks
in the spectral function shrinks as T increases if Tk/�(0) < 0.26, while it expands if Tk/�(0) > 0.26 and �(0)
remains constant. These features could be measured by experiments and thus provide a unique way to determine
whether the spin of the single Kondo impurity is in the singlet or doublet state at zero temperature.
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I. INTRODUCTION

The quasiparticle states induced by a magnetic impurity
with spin S = 1/2 in an s-wave superconductor (SC) inside
the BCS gap are known as the Yu-Shiba-Rusinov (YSR) states
[1–5]. At zero temperature T , the spectral function exhibits
two δ-function-like peaks symmetrically located at ±ε with
respect to the center of the superconducting gap. The physics
of the YSR states was also extensively studied [6–9] based on
theories beyond the mean-field approximation or the pertur-
bation theory. A detailed investigation of the spectral function
of the Kondo impurity at T = 0 with the Kondo coupling
J using the numerical renormalization group (NRG) theory
was previously carried out [10]. Recently, the YSR states of
a Kondo impurity [11] in an Fe-based SC with spin-orbit
coupling were investigated using the Bogoliubov–de Gennes
equations in the mean-field level [12]. Moreover, the physics
of an Anderson impurity [13] on the interface between a
topological insulator and an s-wave SC [14] was also analyzed
using the NRG method. On the other hand, few experimental
and theoretical works exist for the finite-temperature spectral
properties inside the SC gap. For an Anderson impurity with
an SC lead, Žitko [15] calculated the spectral properties of
these subgap states at finite T using the NRG method, and
the result shows that the strengths of the YSR peaks become
weakened as T rises. For finite-temperature Kondo resonance,
Zhang et al. [16] detected it on an organic radical weakly
coupled to an Au (111) surface by measuring the differential
conductance at low temperatures, which can be described
by the perturbation theory of the Kondo impurity model.
Moreover, Ruby et al. [17] probed the single-electron current
which passed through the bound states on the superconducting
surface and analyzed the relaxation processes of this current
to obtain information about the quasiparticle transitions and
lifetimes.
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Due to the exchange scattering of the thermally excited
quasiparticles with the magnetic impurity, there should be
nontrivial behaviors in the impurity-site spectral functions
at finite T . This problem has never been seriously investi-
gated for a Kondo impurity. It is also essential to understand
whether quasiparticles could completely or partially screen
the spin of the magnetic impurity in the SC at finite T . In
addition, the relationship between the spectral function and
the renormalized magnetic moment of the impurity needs to
be discussed. In this paper, we investigate the temperature-
dependent spectral function and the renormalized magnetic
moment at the impurity site using the NRG method. These
problems so far have not been studied for the Kondo Hamil-
tonian. In Appendix A, the energy-evolution calculation of
the Kondo impurity system at zero temperature [10] as a
function of J (see Fig. 5) is reproduced. If Tk is the Kondo
temperature and �(0) is the SC gap at T = 0, the spin at
the impurity site should be completely screened and is in the
singlet state for Tk/�(0) > 0.26, while it is in the doublet
state for Tk/�(0) < 0.26. Our calculation of the magnetic
moment due to the impurity at moderate values of Tk indi-
cates that the spin of the single Kondo impurity could be
only partially screened by quasiparticles for T/�(0) > 10−2.
The experimental consequence of our T -dependent spectral
function will be addressed.

II. MODEL AND METHOD

We consider the single kondo impurity [11] in an s-wave
superconductor,

H = HBCS + Himp,

HBCS =
∑
kσ

εkc†
kσ

ckσ − �(T )
∑

k

(c†
k↑c†

−k↓ + H.c.), (1)

Himp = JS ·
(

1

2Ns

∑
kk′σσ ′

c†
kσ

τσσ ′ck′σ ′

)
.
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Here ckσ is the electron annihilation operator at momentum
k and spin σ , εk is the single-particle energy band disper-
sion, �(T ) is the T -dependent BCS gap parameter, J is the
antiferromagnetic exchange interaction between the Kondo
impurity and the conduction electrons, S is the impurity spin
with S = 1/2, Ns is the number of lattice sites, and τ is the
Pauli matrix.

Suppose that the bandwidth of the conduction electrons is
from −D to D, and the density of states ρ of the conduction
electrons is taken to be ρ = 1/2D. For the �(T ) = 0 case, the
Kondo temperature in the weak-coupling limit is [10,18–20]

Tk = D(Jρ)
1
2 exp

(
− 1

Jρ

)
. (2)

This result is based on the Kondo model [11]. The ground state
of the spin at the impurity site is completely screened by a
conduction electron and becomes a singlet at T = 0 regardless
of the magnitude of J . The Kondo impurity behaves like a
nonmagnetic impurity [21]. It needs to be pointed out that
there is another Kondo temperature of T ∗

k [22] defined as the
half width at half maximum (HWHM) of the Kondo resonance
at T = 0. To compare our results with those of others, we use
both T ∗

k and Tk . In Fig. 7 in Appendix B, we compare Tk and
T ∗

k as functions of J .
In order to carry out the NRG method, one needs to apply

the spherical wave representation and to discretize the states
of conduction electrons in a logarithmic way. Equation (1)
is then transformed into a one-dimensional Wilson chain
[10,20]. Its brief description is given at the beginning of
Appendix B. One efficient way to optimize the calculation is
to set � = 2 and Nz = 8 (the interleaved discretization grids,
z averaging) [15,18,23–25]. Furthermore, we fixed �(0)/D =
0.01 and varied J at T = 0. We also employed a finite-
temperature SC gap �(T ) to perform the calculation of the
T -dependent spectral function (see the details in Appendix B).
We kept at least 5000 states for the spectrum function
calculations.

III. NUMERICAL RESULTS

In Appendix A, we discuss how the energies of the ground
and the first excited states of the Hamiltonian (1) are calcu-
lated using NRG. The energy evolutions of the doublet and
singlet states of the spin at the impurity site are obtained
as functions of Kondo coupling J at T = 0. This result is
shown in Fig. 5. There we rescale the energy value by sub-
tracting the ground state E0 at J = 0. In a weak-coupling
region such as J/D < Jc/D ≈ 0.39, which corresponds to
Tk/�(0) = 0.26, the impurity spin (S = 1/2) could not pair
with any conduction electron, and thus, the ground state has
doublet degeneracy. For J > Jc, it appears that the impurity
spin can capture an electron from a Cooper pair and can form a
singlet ground state. This result is consistent with the previous
calculation of [10]. However, whether this “captured electron”
is at the impurity site or not so far has not been investigated.
We argue from the feature of the spectral function at the
impurity site, and this issue can be answered.

One of the primary efforts here is to obtain the temperature
dependence of the spectral function that corresponds to the
imaginary part of the T matrix. This type of calculation

was performed using the NRG method [10,18,20,26,27]. The
method and the definition of the T matrix are described in
Appendix B. In Appendix B, we also report the spectral func-
tion (see Fig. 6) of a Kondo impurity at T = 0 in the presence
of a magnetic field h without SC in Fig. 6(a). The spectral
function exhibits the Kondo resonance at zero energy for weak
h, and the resonant peak will split into two as gμBh/T ∗

k >

0.51, with g = 2 and μB being the Bohr magneton. From
Fig. 6(b), the transition from a single Kondo resonance to
double resonances as h varies appears to be of the first order.
These results are consistent with those of Costi [22].

In the presence of SC and a Kondo impurity, it is well
known that the double peaks of YSR states in the spectral
function at the impurity site are δ-function-like and are lo-
cated symmetrically with respect to the center of the SC
gap. We plot the positions of the YSR peaks as functions
of Tk/�(0) at zero T in Fig. 8 (see Appendix B). In the
region of 0.9 > Tk/�(0) > 0.26, the spin due to the impurity
is in the singlet state or carries no net magnetic moment. We
wish to understand why the in-gap YSR states, which are an
essential feature of a magnetic impurity, still exist while the
impurity paired with another electron to form the singlet-spin
or nonmagnetic state. We argue that when Tk is not too much
larger than �(0), the impurity spin may loosely pair with an
electron from a Cooper pair to form a singlet. The “paired
electron” is not at the impurity site, and locally, the impurity
spin still retains its spin-doublet behavior and generates YSR
states. However, for Tk/�(0) > 1, as shown in the inset of
Fig. 8, the two YSR states separately move away from the
middle part of the gap and toward the coherent peaks or edges
of the gap as Tk/�(0) increases. When Tk/�(0) = 5.2 (or
J/D = 0.8), the YSR peaks at T = 0 approach the coherent
peaks of the SC gap. For J/D = 1, we show that no YSR states
exist inside the gap. In this limit, the pairing electron should
be tightly bounded to the impurity site, and the spin state at the
impurity site becomes a Kondo singlet, which behaves like a
nonmagnetic impurity [21].
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FIG. 1. The square of the impurity magnetization 〈(Sz
imp)2〉 vs T

for different values of Tk/�(0). The inset is the impurity magnetic
moment square 〈(Sz

imp)2〉 at zero temperature. The crossing point is
Tk/�(0) ≈ 0.26 (or J/D = 0.39).
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FIG. 2. Spectral functions of the subgap states at finite temperatures. We varied T/�(0) in (a)–(c) while keeping (a) J/D = 0.35,

Tk/�(0) = 0.14, (b) J/D = 0.39, Tk/�(0) = 0.26, and (c) J/D = 0.45, Tk/�(0) = 0.56. (d) The YSR peak positions obtained from (a)–(c) vs
T/�(0). The green circles correspond to the peak positions in (a) if the T dependence is carried out, blue circles represent the peak positions
in (b), and the red circles label the peak positions in (c). The key on the bottom indicates the values of T/�(0).

The square of the impurity magnetic moment 〈M2〉 as a
function of T/�(0) is calculated for several different values
of Tk/�(0) in Fig. 1, where M is the magnetic moment M =
Sz

imp due to the impurity defined in Appendix C. The curves
here show that for Tk/�(0) < 0.26 and > 0.26, 〈M2〉 equals,
respectively, 0.25 (or Sz

imp = 1/2, a doublet state) and 0 (or
Sz

imp = 0, a singlet state) at T/�(0) < 10−2. For T/�(0) >

10−2, the impurity spin could be only partially screened by
the thermally excited electrons so that 〈M2〉 is always less
than 0.25. But at T 	 Tk , we expect 〈M2〉 should approach
0.25, and the spin of the impurity becomes a doublet. The
inset showing the variation of 〈M2〉 as a function of Tk/�(0)
at T = 0 is consistent with Figs. 5 and 8 at T = 0.

It appears that a doublet to singlet transition exists at
Tk/�(0) ≈ 0.26 for the spin state due to the Kondo impurity
at T = 0. Let us now examine the spectral functions against
ω/�(0) at the impurity site for three different values of
Tk/�(0) and several different temperatures. Here ω measures
the bias energy. The results are presented in Figs. 2(a)–2(c).

As one can see, as T increases from zero, all the widths of the
YSR peaks become broadened. In Fig. 2(a) with Tk/�(0) =
0.14 (or J/D = 0.35), the impurity spin state is in a doublet
at T = 0, and the distance between the double YSR peaks
shrinks as T increases. In Fig. 2(c) with Tk/�(0) = 0.56 (or
J/D = 0.45), the impurity spin state is a singlet at T = 0,
and the separation between the double YSR peaks is slightly
expanding. One can also look into the spectral function shown
in Fig. 2(b) at the critical transition point with Tk/�(0) ≈ 0.26
(or J/D = 0.39). In this case, the double YSR peaks collapse
into a single peak at T = 0 which could split into two again
as T/�(0) > 0.35. All these features imply that the critical
transition point Tk/�(0) = 0.26 at T = 0 should move to
lower values at finite T . In Fig. 2(d), we plot the positions
of YSR peaks shown in Figs. 2(a)–2(c) against T/�(0). The
YSR states in the spectral function vs the bias energy ω at the
impurity site can easily be measured by scanning tunneling
microscopy (STM) experiments. It would be interesting to
determine the spin state of the impurity at a very low tempera-
ture. This can be accomplished for a Kondo impurity in metal
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FIG. 3. The subgap YSR peak positions vs Tk/�(0) at T/�(0)=0
(blue dots) and T/�(0) = 0.358 (red dots).

by measuring its magnetic susceptibility. However, in an SC,
the magnetic susceptibility of the impurity cannot be detected;
then the finite-T behaviors exhibited in Fig. 2 can provide
an unambiguous way to determine the spin state due to the
magnetic impurity. For instance, if the distance between the
YSR peaks is shrinking as T increases, the spin state at T = 0
is a doublet, and if it is slightly increasing, then the impurity
spin state should be a singlet. The above conclusion is valid
only when the SC gap �(T ) decreases slightly as T is raised
from very low T to a higher temperature T < 2/3Tc, which
should be true for the SC gap in BCS theory; here Tc is the
SC transition temperature. As T approaches Tc, the separation
between the YSR peaks will always be decreasing with �(T )
regardless of the value of Tk/�(0).

The T -dependent behavior of the YSR peak positions is
shown to originate from the T -dependent SC gap �(T ).
The broadening of the YSR peaks is due to the thermally
excited quasiparticles. But if one fixes �(T ) = �(0) as a
T -independent quantity, then the peak positions will not be
changed with T , as previous work has demonstrated for an
Anderson impurity [15]. We are also able to obtain the same
behavior for a Kondo impurity by setting �(T ) = �(0). In
the present work, however, we set �(T ) as the BCS SC gap
at finite T , which has the expression shown in Eq. (B13) in
Appendix B.

To better understand what has been done in Fig. 2, we
plot the positions of YSR peaks from the spectrum function
vs Tk/�(0) in Fig. 3. The curve with blue dots obtained at
T = 0 is identical to that in Fig. 8, and the curve with red
dots is calculated for T/�(0) = 0.358. This result clearly
indicates that the critical point Tk/�(0) ≈ 0.26 at zero tem-
perature is moving to the weaker Kondo coupling region at
finite T .

So far we have studied the spectrum function only for
moderate strength of Tk/�(0) (< 0.9). For an impurity with
strong Kondo coupling such as that shown in the inset of
Fig. 8 with Tk/�(0) > 5.0, the YSR peaks move toward the
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FIG. 4. Spectral functions at �(T ), Tk/�(0) = 5.2 (J/D = 0.8)
and several different T . The inset is the curve rescaled by ω/T ∗

k .

edges or merge with coherent peaks of the SC gap. In Fig. 4,
we present the spectral function at the impurity site with
Tk/�(0) = 5.2 or J/D = 0.8 for several different values of
T . It can be seen that the YSR peaks are very close to the
coherent peaks at T/�(0) = 0. At finite T , the two YSR peaks
become broadened and merge completely with the coherent
peaks at not too low temperatures. It appears that there are no
longer YSR states inside the SC gap. For T/�(0) = 0.582 >

Tc/�(0) = 0.57, the SC no longer exists in the system, and a
broad peak (the orange curve) centered at ω = 0 shows up. We
replot the orange curve using a different energy scale, ω/ T ∗

k ,
in the inset, which exhibits the Kondo resonance at finite
temperature without the SC. We also numerically calculated
the integrated weight of the YSR peaks as a function of J/D
at T = 0; the result is shown in Fig. 9 in Appendix B. It
is demonstrated there that as J/D approaches 0 and 1, the
integrated weight of the YSR peaks goes to 0. The maximum
integrated weight comes around J/D = 0.5. For J = 0, there
is no Kondo impurity, and there are no YSR peaks. For
J/D = 1, the YSR peaks are at the coherent peaks but with
zero integrated weight, and those are the typical character-
istics of a nonmagnetic impurity in which the impurity spin
paired strongly with the spin of a conduction electron at the
impurity site to form a rigid singlet state. The behavior for J/D
close to 1 is also consistent with the result for an Anderson
impurity [28].

IV. CONCLUSION

We have studied the evolutions of the ground state and
first excited energies of the Kondo Hamiltonian with a SC at
T = 0 as functions of Tk/�(0). There the ground state is a
doublet for Tk/�(0) < 0.26 and a singlet for Tk/�(0) > 0.26.
On the other hand, the spin at the impurity site is always
in the doublet state unless it can pair with an electron at
the impurity site to form a singlet state in the region of
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Tk/�(0) > 5.0. Determining whether the sample under exper-
imental measurements is in the doublet or singlet spin state at
T = 0 is an important issue to address. We also showed that
the separation between the double YSR peaks in the spectral
function decreases as T is raised for Tk/�(0) < 0.26, while it
increases slightly as T is raised to T < 2/3Tc for Tk/�(0) >

0.26. This feature should be measurable by STM experiments,
and the result could be used to unambiguously determine the
spin state of the system at T = 0. The T -dependent spectral
function for a strong Kondo impurity with Tk/�(0) = 5.2 or
J/D = 0.8 was also calculated, and we found that the YSR
peaks are very close to the edges of the SC gap at T = 0.
For J/D = 1, we demonstrated that the YSR peaks are at
the coherent peaks of the SC but with zero weight, which is
characteristic of a nonmagnetic impurity with a singlet spin
state [21].
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APPENDIX A: ENERGY EVOLUTION WITH KONDO
COUPLING AT ZERO TEMPERATURE

Using the NRG iteration diagonalization, it is easy to
obtain the ground-state energy and the first excitation energy.
Here the number of sites on the Wilson chain is about 68, and
that is enough for high precision of diagonalization. After the
last NRG iteration step, we can pick up the energy values. This
is the energy level of the system. Thus, we can get the lowest
energies. We notice here that the lowest energies may locate in
a different Hilbert space which is labeled by a good quantum
number.

We first calculate the lowest two energy-level evolutions
of the system by varying the Kondo coupling J at T = 0.
Near J = 0, the state of the impurity is a spin doublet in
the ground state; the first excited state corresponds to the
excitation from a Cooper pair at the impurity site, and one
of the quasiparticles is then captured by the impurity spin to
form a singlet state as long as J is finite. This result is shown
in Fig. 5. Here we rescale the energy value by subtracting
the ground state E0 at J = 0. In the weak-coupling case as
J/D < Jc/D ≈ 0.39, corresponding to Tk/�(0) = 0.26, the
impurity spin (S = 1/2) could not pair with any conduction
electron, and thus, the ground state has doublet degeneracy.
For J > Jc, it appears that the impurity spin can capture an
electron from a Cooper pair and can form a singlet ground
state. This result was also obtained by previous calculations
in [10] and indicates that the impurity spin cannot be partially
screened.
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FIG. 5. The evolutions of the impurity spin-doublet-state energy
(blue curve) and the impurity spin-singlet-state energy (red curve) as
a function of J with �(0)/D = 0.01 and T = 0.

APPENDIX B: THE WILSON CHAIN
AND THE SPECTRUM FUNCTION

According to Refs. [10,20], after applying the spherical
wave representation, Eq. (1) transforms into the Wilson chain,

H = Hk + H� + Himp,

Hk = 1 + �−1

2

∑
σ

∞∑
n=0

�−n/2εn( f †
nσ fn+1σ + H.c.),

H� = −�

∞∑
n=0

( f †
n↑ f †

n↓ + H.c.),

Himp = J

2
S ·

∑
σσ ′

f †
0στσσ ′ f0σ ′ , (B1)

and

εn = (1 − �−(n+1))(1 − �−(2n+1))−1/2

× (1 − �−(2n+3))−1/2, (B2)

where � (� > 1) is a logarithmic discretization parameter
and we normalized the density of states of conduction elec-
trons by D = 1. From Eq. (B1), the first site is the impurity
site, while the other sites are electron sites. The Wilson chain
is a half-infinity chain, which means it starts from the impurity
and ends at the infinity site. However, it is impossible to add
infinity number sites. Because the coefficient of the hopping
term in Eq. (B1) shows power-law decay with the number of
sites, it can be cut off at site Ns. Ns is 68 in our calculations,
and it depends on the convergence accuracy. We also kept
5000 states at each iteration of the diagonalization. After that,
the Hamiltonian can be solved numerically.

The T matrix is defined as [29]

Tσ = −iθ (t )〈[Oσ (t ), Oσ (0)†]+〉,
Oσ = [Himp, f0,σ ]+, (B3)

which describes the scattering of conduction electrons off the
impurity. Since we know Himp, the operator Oσ can be written
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as

Oσ = JS ·
∑
σ ′

1

2
τσσ ′ f0,σ ′ . (B4)

The spin spectral function is

Aσ (ω) = − 1

π
ImT̃σ (ω + iδ). (B5)

We obtain the impurity spectral function by summing the up-
and down-spin spectral function [22],

A(ω) =
∑

σ

Aσ (ω), (B6)

where T̃ is the Fourier transformation of T in ω space. Then,
we apply the full-density-matrix (FDM) NRG method [30]
in the actual finite-temperature spectral function calculations.
After that, we accumulate the raw spectral data and use 1000
bins as well as two different broadening kernels, one inside
the gap and another one outside [31]. To calculate the finite-
temperature spectral function, we use the FDM method for
high accuracy [30,32]. It takes advantage of a complete set
of the discarded numerical renormalization group eigenstates.
Assuming |s〉X

n is the eigenstate of the Wilson chain Hamil-
tonian at the iteration diagonalization step n, X indicates K
(kept states) or D (discarded states), and the length of the total
chain is N . Then, we can build the approximate eigenstates of
the total Hamiltonian [30],

HN |se〉X
n ≈ En

s |se〉X
n , (B7)

where |se〉X
n = |s〉X

n ⊗ |en〉, |en〉 = |σN 〉 ⊗ · · · ⊗ |σn+1〉 are the
so-called environmental states, and |σn〉 are the single-site
states |0〉, |↑〉, |↓〉, and |↑ ↓〉. The En

s state has dN−n-fold
degeneracy. These discarded states from all the iteration diag-
onalization steps can be combined into a complete eigenstate
|se〉D

n of HN ,

N∑
n>n0

∑
se

|se〉D
n

D
n 〈se| = 1, (B8)

where n0 is the last step that can be calculated without trun-
cation in the iteration diagonalization. These states are called
the Anders-Schiller basis [33,34]. The full density matrix is

ρ ≈
∑
n>n0

∑
se

|se〉D
n

e−βEn
s

Z
D
n 〈se| =

∑
n>n0

ωnρ
n
DD, (B9)

where ρn
DD = |se〉D

n
D
n 〈se| is the density matrix for the dis-

carded states at the nth (n > n0) step of the Wilson chain
iteration diagonalization and ωn = dN−nZD

n /Z , where ZD
n =∑D

s e−βEn
s , Z = ∑

se e−βEn
s . Therefore, we always have the

following relations:

Tr
[
ρn

DD

] = 1, (B10)∑
n>n0

ωn = 1. (B11)

The thermal averaged spectral function becomes

A(ω) =
∑
n>n0

ωnAn(ω). (B12)

An(ω) is the spectral function calculated in the Anders-
Schiller basis at the nth step of the iteration diagonalization
process.

To calculate the finite-T spectral function, we use two
different broadening kernels, as we mentioned in the main
text. A modified log-Gaussian broadening kernel was used in
the gap region, and the broadening parameter α is 0.0004. A
Gaussian broadening kernel was used outside the region, and
the broadening parameter ω0 = T . We do this broadening and
the spectral function calculations by writing a PERL script to
call the NRG LJUBLJANA library.

Because the BCS gap parameter � is temperature depen-
dent, we also use �(T ) instead of the constant number � in
the calculations of the temperature-dependent spectrum func-
tions. In fact, it is hard to consider a self-consistent process
in the NRG to determine the BCS parameter �(T ) in the
Hamiltonian. Therefore, we keep �(0)/D = 0.01 at T = 0
and use a phenomenological expression BCS gap formula to
simulate the real situation [15],

�(T ) ≈ δSCTctanh

[
π

δSC

√
a
δC

CN

(
Tc

T
− 1

)]
, (B13)

where δSC = 1.76, a = 2/3, δC/CN = 1.43. This is a good
approximation for the true case with T → 0 and T → Tc.

To test our numerical method, let us study the Kondo prob-
lem at T = 0 without the SC [or �(0) = 0] in the presence
of an applied magnetic field h. The spectral function exhibits
the well-known Kondo resonant behavior at zero energy for a
weak magnetic field [see Fig. 6(a)], and the resonance peak
will split into two as h becomes more significant than a
critical value hc, which can be obtained from gμBhc/T ∗

k ≈
0.51, where g = 2 is the g factor and μB is the Bohr
magneton.

These results are consistent with those of Costi’s calcula-
tion [22]. In addition, we also calculate the peak positions as a
function of the magnetic field h, and the transition appears
to be first order, as shown in Fig. 6(b). Here the Kondo
temperature T ∗

k [22] is defined as the HWHM of the Kondo
resonance at T = 0. A comparison of T ∗

k and the traditional
Kondo temperature Tk as functions of J is shown in Fig. 7. It
is easy to see that their difference grows larger as J increases.

Furthermore, we plot the positions of the YSR peaks
as functions of Tk/�(0) in Fig. 8. The double YSR peaks
emerge from the SC coherent peaks in the gap region as
Tk or J changes from zero to a finite value (not shown
here). As Tk/�(0) increases, the separation between the YSR
peaks shrinks, and it vanishes at Tk/�(0) ≈ 0.26. Figure 5 in
Appendix A indicates that for Tk/�(0) < 0.26 or J/D < 0.39,
the spin state at the impurity site is a doublet, which implies
that the impurity spin is not even partially screened. When
Tk/�(0) > 0.26, the double YSR peaks show up again in
the gap, the spin state becomes a singlet, and the magnetic
impurity changes to nonmagnetic. A similar result was also
obtained by another group [10].

The spectral function in NRG is computed by broadening
the raw δ peak binned into narrow intervals and is hence a
continuous function that can easily be integrated numerically.
As we mentioned in the main text, we numerically calculated
the integrated weight of the YSR peaks as a function of J/D
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FIG. 6. Spectral functions with the magnetic field at �(T ) = 0,
T = 0. (a) Kondo resonance and its splitting in the presence of a
magnetic field h and (b) the positions of the splitting peaks as a
function of h.

at T = 0. The integrated weight of the YSR peak is defined
as WY SR = ∫ b

a A(ω)dω [15], where a and b are points to the
left and the right of the YSR peak. It is demonstrated in Fig. 9
that as J/D approaches 0 and 1, the integrated weight of the
YSR peaks goes to 0. The maximum integrated weight comes
around J/D = 0.5. For J = 0, there is no Kondo impurity, and
there are no YSR peaks. For J/D = 1, the YSR peaks are at
the coherent peaks but with zero integrated weight (Fig. 9),
and that is a typical characteristic of a nonmagnetic impurity
in which the impurity spin pairs strongly with the spin of a
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FIG. 7. Comparison between Tk and T ∗
k as functions of J/D. The

inset shows the ratio T ∗
k /Tk as a function of J/D.
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FIG. 8. Zero-temperature YSR peak positions. The positions of
the YSR peaks in the spectral function plotted against Tk/�(0) at
T = 0. The crossing point is Jc/D ≈ 0.39 [or Tk/�(0) = 0.26].

conduction electron at the impurity site to form a rigid singlet
state.

APPENDIX C: THE SQUARE OF THE IMPURITY
MAGNETIC MOMENT

Although the particle number is not conserved in the orig-
inal Hamiltonian, the system still has spin U (1) symmetry.
Thus, the Wilson chain can be diagonalized in the Sz subspace.
After completing the diagonalization process, it is easy to
obtain the two lowest energy levels by comparing all the
lowest-energy values in all of the subspace.

Since the total Sz is a good quantum number, the square of
the impurity magnetic moment is expressed as [18,35,36]〈(

Sz
imp

)2〉 = 〈(
sz

imp + Sz
)2〉 − 〈(Sz )2〉0, (C1)

where Sz = ∑Ns
i=1 sz

i and sz
i is the spin of the Wilson chain

at site i. Here sz
imp is the spin at the impurity site, and 〈· · · 〉

indicates the value is measured in the system with a Kondo
impurity, while 〈· · · 〉0 represents this measurement for the
clean system. Such a quantity reflects the changes in magnetic
moment due to the presence of the impurity. If there are no
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FIG. 9. Integrated weight of the YSR peak at T = 0. The weight
goes to zero when the YSR peak moves closer to the coherent peak.
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conduction electrons, 〈(Sz
imp)2〉 is just 0.25. Similarly, it is zero

if no impurity exists. Thus, Eq. (C1) describes the impurity
contribution to the square of the magnetic moment. Also, we
using the z averaging and finite-temperature NRG algorithm
to perform the T -dependent thermal property calculations.

Two competing interactions exist in the system; one is
the Kondo coupling, and the other is SC pairing. In the
weak Kondo coupling case, all the conduction electrons form
Cooper pairs, and the impurity is not able to capture an
electron from the Cooper pair. In this case, 〈(Sz

imp)2〉 is 0.25,

or its square root measuring 〈Sz
imp〉 is 0.5. On the other hand,

once the Kondo coupling J becomes stronger but not too
strong that Tk/�(0) > 0.26, the impurity can pair loosely
with an electron from a Cooper pair to form a singlet state.
However, this electron can go to sites away from the impurity
and still form a Cooper pair with another electron. Therefore,
the impurity may still maintain some of its magnetic behavior.
For J 	 Jc, the impurity can capture an electron, and it may
behave like a nonmagnetic impurity, as we mentioned in the
main text. Moreover, 〈(Sz

imp)2〉 is zero if Tk/�(0) > 0.26.
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