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Observation of orbital angular momentum in the chiral magnet CrNb3S6

by soft x-ray magnetic circular dichroism
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The chiral magnet CrNb3S6 with its solitonic objects has novel magnetic and transport properties, in which
the spin-orbit coupling (SOC) plays a central role. Aiming to address the possible existence of orbital moments
driven by SOC, we perform soft x-ray magnetic circular dichroism spectroscopy at the Cr L2,3 edges with in-plane
magnetization. The dichroic signals provide direct experimental evidence that the Cr orbital magnetic moment is
not quenched and is coupled antiparallel to the spin counterpart. Application of the orbital sum rule reveals that
the magnitude of the Cr orbital moment is about 1% of the total magnetization. These findings are consistent
with the first-principles electronic structure calculations that utilize the Cr 2p core radial function to define the
Cr local 3d quantities. The distinct roles of the atomic SOC among the Cr 3d and Nb 4d states are discussed.
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I. INTRODUCTION

The monoaxial chiral helimagnet CrNb3S6 has attracted
intensive interest with regard to its solitonic spin texture.
The Dzyaloshinskii-Moriya (DM) interaction [1,2], driven by
the spin-orbit coupling (SOC) and crystalline chirality, leads
to intriguing phenomena. The magnetic ground state is a
long-wavelength spiral order of Cr spins: magnetic moments,
aligned ferromagnetically in the hexagonal ab plane, form a
magnetic helix along the c axis with the handedness imprinted
by the crystal chirality. Applying a relatively small magnetic
field H perpendicular to the c axis drastically changes the
magnetic configuration from a homogeneous spiral to the
soliton kink structure—termed the chiral soliton lattice (CSL)
[3–5]—and eventually to the forced ferromagnetic (FM) state
at a critical magnetic field Hc of a few kOe [6]. Negative
magnetoresistance has been observed in the CSL phase [7,8].

In CrNb3S6, Cr atoms intercalate in the layered parent
2Ha-NbS2 compound forming a planar

√
3 × √

3 superstruc-
ture [see Fig. 1(a)]. The stacking sequence along the c
axis—whether the Cr atoms occupy 2d or 2c Wyckoff sites
in the Sohncke [9,10] space group P6322—determines the
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crystalline chirality. Nb atoms split into two groups, those
preserving their ideal positions (2a site) and those with their
z coordinates slightly deviating from 0 or 1/2 (4 f site), as
shown in Table I. Each Cr has six nearest-neighbor sulfurs
and two Nb (4 f ) atoms at distances of 2.35 and 3.06 Å,
respectively [see Figs. 1(a) and 1(b)] [11]. In this cluster unit
CrS6-Nb2 the local symmetry around Cr is approximately D3d

and the Cr 3d orbitals show an energy splitting t2g → e′
g + a1g

as in Fig. 1(c). (Although the actual site symmetry is D3, we
will use this notation to be consistent with previous work.)
Here a1g is a 3z2 − r2 orbital aligned along the c axis toward
Nb (4 f ) atoms. A localized picture with electron configuration
(t2g)3 [or (e′

g)2(a1g)1] with a nominal valency Cr3+ is often
considered since it provides a local moment S = 3/2 consis-
tent with the observed magnetic moment ∼3μB (2.9μB [6],
3.2μB [12]).

Provided that the SOC is weak compared to other in-
teractions (e.g., crystalline field, orbital hybridization, and
exchange interaction), the DM interaction arises from a com-
bined second-order perturbation of the SOC and (twisted)
exchange interaction, and thus the DM is linear in SOC.
On the other hand, magnetocrystalline anisotropy (MCA)
and unquenched orbital magnetic moments arise from SOC
alone. In CrNb3S6, although the MCA has been known to be
easy-plane type [6], the orbital magnetic moment has never
been measured experimentally. Indeed, the magnetic ordering
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FIG. 1. (a) Crystal structure of CrNb3S6. The host NbS2 forms a
two-dimensional triangular layer with S-Nb-S stacking sequence of
(B-A-B) (C-A-C) (B-A-B) . . . . There are two Cr atoms per unit cell
(shown by red spheres), which occupy the 2d site. Nb atoms at a
4 f site are drawn in dark green. (b) Top view of CrS6 cluster with
definition of planar axes. (c) Crystalline field splitting of Cr 3d level.

temperature Tc of CrNb3S6 was evaluated to be approxi-
mately 130 K [6,11,13]. Recently, the interplane exchange
interaction along the chiral c axis (J‖/kB = 16.2 K), the DM
interaction (D/kB = 1.29 K), and the easy-plane anisotropy
(Kperp/kB = 1.02 K) have been evaluated from the ESR exper-
iment [14], showing fair agreement with the estimated values
from the magnetization curve [15]. It is expected that analyz-
ing these quantities will reveal how the SOC manifests itself
in CrNb3S6 and further would provide a clue to understand the
microscopic origin of the DM interaction.

Here we report x-ray magnetic circular dichroism (XMCD)
measurements at the Cr L2,3 edges (2p → 3d photoabsorp-
tion) in the forced FM state with the external field perpen-
dicular to the c axis. Utilizing the Cr 2p core state, which
is highly localized around the nucleus, as a local probe, the
XMCD measurement provides direct information about the Cr
local spin and orbital magnetic moments induced in the Cr 3d
shell. It is found that the 3d orbital moment is small but finite
and is coupled antiparallel to the spin counterpart, consistent
with the density functional theory (DFT) calculations that we
report here.

Both in the experimental and theoretical studies we carry
out, quantitative determination of the Cr 3d spin and or-
bital moments is, however, not straightforward. The so-called
XMCD spin sum rule [16] is not directly applicable to the
present case: Cr is a light transition-metal atom and its 2p

TABLE I. Structural parameters of CrNb3S6 taken from Ref. [11].

Space group no. 182, P6322, a = 5.7134 Å, c = 12.0563 Å

Element Wyckoff internal position
Cr 2d (2/3, 1/3, 1/4)
Nb 2a (0,0,1/2)
Nb 4 f (1/3, 2/3, 0.4962)
S 12i (0.318 36, −0.012 52, 0.632 63)

core spin-orbit splitting (∼8 eV) is not large enough to
prevent quantum-mechanical mixing between the 2p3/2 and
2p1/2 excitations ( j- j mixing) caused by the 2p-3d Coulomb
interaction in the photoabsorption final states [17]. Thus the
fundamental assumption behind the spin sum rule—that the
L3 and L2 edges are well separated in energy and iden-
tified as pure 2p3/2 and 2p1/2 excitations respectively—is
violated to a considerable extent. We examine a correction
method [18] proposed by Goering for the spin sum rule that
uses the branching ratio of the L2 to L3 edges in the x-ray
absorption spectrum (XAS) for unpolarized light (i.e., 2/4
in the no mixing case), but find it is unsuccessful in the
present case. Furthermore, the effective magnetic moment per
Cr calculated from the Curie constant is approximately 4μB

(3.92μB [6], 4.4μB [12], 4.1–4.3μB [19]). As for the number
of holes in the 3d shell (nh), the nominal value of nh = 7
is unreasonable, and we therefore use DFT calculations to
derive optimal nh values.

On the other hand, the orbital sum rule [20], which does not
rely on a distinction between the L3 and L2 edges, should be
applicable to the present case. Our main focus in the XMCD
measurement is, therefore, the evaluation of the Cr 3d orbital
moment. Nevertheless, care is needed in applying either of
these sum rules since both are vulnerable to errors in the
normalization and background correction to the absorption
intensity.

In the DFT calculations, the information regarding the spin
and orbital moments is provided as a density distribution
calculated from a corresponding operator A and band spinors
ψi(r), A(r) = ∑

i ψ
†
i Aψi which is a continuous function of

r. The idea of atomiclike Cr local moments is ill-defined
since their values depend on the region used to integrate A(r).
Furthermore, there is strong hybridization of Cr 3d states with
S 3p and Nb 4d states that makes the separation of a Cr 3d
shell ill-defined. To cope with these difficulties, we resort to
the fact that the Cr L2,3 XAS/XMCD measurements employ
the Cr 2p core state as a local probe to detect the Cr 3d
states, and develop a method to define and calculate the Cr 3d
components in the DFT orbitals ψi(r) through a projection on
to the Cr 2p core wave functions, mimicking the experimental
situation.

The rest of this paper is organized as follows. In
Sec. II, the XAS/XMCD sum rules are reviewed, and
from there, the definition of Cr local 3d quantities used
in the DFT calculations is provided. Section III is de-
voted to describing experimental procedures. In Sec. IV,
XMCD results at the Cr L2,3 edges are provided, and in
Sec. V, the DFT results are shown. Section VI provides
concluding remarks.

II. 3d MOMENTS PROBED BY 2p CORE STATES

Consider the electric-dipole (E1) transition from the Cr 2p
core to the Cr 3d valence shell. Assume that these states are
expressed by single normalized radial functions, Ri (i = 2p,
3d), 〈Ri|Ri〉 = 1, ignoring their energy dependency. Starting
from the Fermi “golden rule” for the E1 transition and apply-
ing the Wigner-Eckart theorem, it can be shown [16,20] that
the integrated photoexcitation spectra are related to the orbital
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and spin magnetic moments of the Cr 3d shell (morb and mspin

in unit of μB):

∫
(μ+ − μ−)dω = 1

2
κ morb, (1)

∫
j+

(μ+ − μ−)dω − 2
∫

j−
(μ+ − μ−)dω = 1

3
κ mspin, (2)

∫
(μ+ + μ− + μ0)dω = κ nh, (3)

where μ+ and μ− denote absorption coefficients of circu-
larly polarized x rays that propagate along the magnetization
direction with positive and negative helicities (σ+ and σ−),
respectively, μ0 for x rays linearly polarized along the mag-
netization direction, and κ is a normalization constant. The
E1 transition operator involved in each μq(q = +1,−1, 0)
is expressed as

√
4π/3 rY1q(r), with the z axis taken along

the magnetization direction. Equations (1) and (2) are sum
rules regarding the XMCD spectra, while (3) is for XAS with
unpolarized light. In the spin sum rule, Eq. (2), we omit for
simplicity the contribution from the spin magnetic dipole [16].
It is important to note that a further assumption—final states
are classified into pure j+(2p3/2) and j−(2p1/2) excitations
and the L3 and L2 edges are well separated in energy—is
involved in Eq. (2); the XMCD spectrum has to be integrated
separately at each edge. The common proportionality constant
κ , which is experimentally unknown, is given by a dipole
radial matrix element squared,

κ = 〈R2p|r|R3d〉2. (4)

By dividing (1) and (2) by (3), the constant κ is eliminated
from the expressions:

∫
(μ+ − μ−)dω∫

(μ+ + μ− + μ0)dω
= 1

2

morb

nh
, (5)

∫
j+

(μ+ − μ−)dω − 2
∫

j−
(μ+ − μ−)dω∫

(μ+ + μ− + μ0)dω
= 1

3

mspin

nh
, (6)

which can be used to evaluate the individual morb and mspin

(per hole). On the other hand, the ratio of morb to mspin is found
from the XMCD spectrum alone. Equation (1) divided by (2)
yields ∫

(μ+ − μ−)dω∫
j+

(μ+ − μ−)dω − 2
∫

j−
(μ+ − μ−)dω

= 3

2

morb

mspin
(7)

and contains neither κ nor nh.
The derivations of the sum rules explicitly assume that

the Cr 3d orbitals will contribute a total of ten electrons to
the (occupied and unoccupied) bands, and that κ provides
the normalization needed to relate experiments and theory.
Equation (4) dictates that the XAS/XMCD measurement
employs a localized atomic function rR2p in probing the Cr
3d states. The difficulty is in defining the normalized 3d
functions R3d . To avoid this issue, we propose to calculate the
matrix elements coupling the 2p core levels and the valance
states ψi, similar to those that actually occur in the Fermi
golden rule

〈rR2pY2,mχσ |ψi〉 ≡ 〈rR2p; m, σ |ψi〉, (8)

where the projection onto the spherical harmonics Y�m and
spinor χσ takes into account the dipole selection rules, i.e.,
including the product of the core function and the E1 oper-
ator. In the case that ψi depends only on atomiclike Cr 3d
orbitals, then (the square of) these matrix elements are simply
κ as defined in Eq. (4). These matrix elements, which are
effectively projections of the Cr 3d states onto the 2p cores,
are well defined since the region of integration is naturally
limited by the spatial extent of the localized 2p core state,
and are determined by the (� = 2) partial wave expansion of
the valence wave functions, which are also well defined. (The
radial function R2p corresponds to the p1/2 or p3/2 states as
appropriate.)

To proceed, we first define a density matrix constructed
from bands ψi below an energy E ,

ρ(E ) =
∑

i

θ (E − Ei )|ψi〉〈ψi|, (9)

and a weighted density matrix

ñmσ,m′σ ′ (E ) = 〈rR2p; m, σ |ρ(E )|rR2p; m′, σ ′〉, (10)

which includes the matrix elements, Eq. (8). The trace of
this density matrix gives the effective number, ñ(E ), of 3d
electrons below an energy E , and is simply related to the
nominal number of 3d electrons, n(3d )(E ), by

ñ(E ) = κ̃ n(3d )(E ). (11)

Again, if the simplified assumptions regarding R3d are satis-
fied, then κ and κ̃ would be equivalent.

The final step is to provide a normalization of κ̃ . There
exists an energy Ec (>EF ) that separates the 3d and 4d
manifolds; this energy can be determined by inspecting the
local density of states and the nodal structure of the radial
wave functions (i.e., the 4d radial functions have an additional
radial node). By imposing the condition that the 3d states con-
tribute ten electrons, n(3d )(Ec) = 10, we arrive at the following
formula for the 3d density matrix expressed solely in terms of
ñ and thus is readily calculated from the DFT orbitals:

n(3d )(EF ) = 10

ñ(Ec)
ñ(EF ). (12)

The present DFT method to calculate 3d moments from
Eq. (12) is more in line with the XAS/XMCD experiment
than other computational schemes (e.g., the use of certain
integration range for A(r) or use of maximally localized
Wannier functions [21]); both the experiment and the present
theory rely on the localized radial function rR2p to extract
the 3d contributions. Therefore, the ground state mspin and
morb calculated using the present theory should represent
the experiments well as long as the sum-rule application on
the experimental side is not deteriorated due to background
removal errors and/or final-state j- j mixing.

III. EXPERIMENTAL PROCEDURES

Micron-size crystals typically 10 × 10 × 1 μm3 were cut
from a bulk single crystal CrNb3S6 by using an focused ion
beam technique, and the thickness of the center was reduced
down to approximately 100 nm [22]. These were mounted
on a Ta substrate with a 5-μm-diameter pinhole using W, as
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FIG. 2. (a),(b) Ta substrate (rear and front panel) and (c)
microprocessed CrNb3S6 thin specimen mounted in the rear panel
of Ta substrate. In (c), the pin hole size with the 5-μm diameter is
displayed.

shown in Fig. 2. Since the Ta does not allow the x rays to pass,
we obtain magnetic information only for the thin part of the
sample. The XAS/XMCD spectroscopy was carried out using
beam line BL25SU of SPring-8 [23]. The photoabsorption
spectra were obtained by directly measuring the intensity of
the transmitted light. The Ta substrate with microprocessed
specimen was placed on the sample holder specificated to
the XMCD platform in contact with indium foil to maintain
sufficient thermal conductivity. The measurements were per-
formed at 10 K, which is sufficiently lower than Tc ∼ 130 K.
The magnetic field H of ±4 kOe, which by far exceeds Hc ∼
2 kOe, was applied perpendicularly to the chiral axis (c axis)
to realize a forced FM state with in-plane magnetization. The
x-ray beam was almost parallel to H . In order to minimize
possible artifacts caused by the asymmetry of experimental
setups, we took an average of the spectra measured at H =
±4 kOe; μ(+) = {μ(σ+,+H ) + μ(σ−,−H )}/2 and μ(−) =
{μ(σ−,+H ) + μ(σ+,−H )}/2 were employed in the present
study. Note that μ(+) and μ(−) are the spectra with photon
spin parallel and antiparallel to the magnetic field, respec-
tively. In applying the sum rules, we define the following four
integrals:

∫
[μ(+) − μ(−)]dω = A, (13)

∫
[μ(+) + μ(−)]dω = B, (14)

∫
j+

[μ(+) − μ(−)]dω = C, (15)
∫

j−
[μ(+) − μ(−)]dω = D, (16)

where A = C + D. Approximating the integral of unpolarized
XAS,

∫
(μ+ + μ− + μ0)dω 
 3

2

∫
(μ+ + μ−)dω = 3

2 B, we
rewrite Eqs. (5)–(7) as

A/

(
3

2
B

)
= 1

2

morb

nh
, (17)

(C − 2D)/

(
3

2
B

)
= 1

3

mspin

nh
, (18)

TABLE II. Sum-rule based estimations of A, B, C, and D.

A B C D

−0.031 102 10.514 0.241 67 −0.272 77

A/(C − 2D) = 3

2

morb

mspin
. (19)

In the next section, the values of A to D are estimated and
given in Table II.

The DFT calculations were performed assuming ferromag-
netic spin configuration with the crystal structure [11] de-
termined experimentally at ambient pressure (summarized in
Table I). The all-electron full-potential linearized augmented
plane-wave (FLAPW) method [24] as implemented in the
HiLAPW code was used. The muffin-tin sphere radius was
set to 1.1 Å for all atoms. The plane-wave cutoffs were 16
and 200 Ry for the wave function and potential, respectively.
The Perdew, Burke, and Ernzerhof form of the generalized
gradient approximation (GGA) [25] was used for exchange
correlation. The Brillouin zone was sampled with a 20 ×
20 × 20 k-point mesh. The SOC was handled in two different
ways: included in each self-consistent cycle or only in the last
cycle. Both results were practically identical with regard to the
magnetic moments and the MCA energy. The radial function
R2p needed to calculate the Cr 3d quantities was obtained
from a scalar-relativistic calculation of Cr 2p core state (i.e.,
no difference between 2p3/2 and 2p1/2) under a spherical and
spin-averaged part of the self-consistent potential.

IV. XMCD RESULTS

Figure 3 shows the XAS spectra μ(+) and μ(−) measured
at 10 K, which are characterized by two-peak structure em-
bedded in a broad almost linear background with a negative

FIG. 3. Polarized XAS spectra of CrNb3S6 at 10 K for H = ±
4 kOe. μ(+) and μ(−) represent the XAS with the photon spin
parallel and antiparallel to the external magnetic field, respectively.
The MCD spectrum is defined as μ(+) − μ(−). The Cr L3 and L2

edges produce XAS peaks around 577 and 585 eV, respectively.
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slope. The peaks located around 577 and 585 eV are assigned
to the Cr L3 and L2 edges, respectively. For photon energies
from 572 to 596 eV, the XMCD spectrum defined as μ(+) −
μ(−) shows characteristic signals. The spectrum exhibits a
dispersive line shape at each of the L3 and L2 edges: it starts
with a sharp positive peak followed by a negative hump. In the
L3 region, the positive signals prevail over the negative ones.
By contrast, for the L2 edge, the negative signals in the hump
dominate over the positive signals of the precursor peak. The
alternating sign of the dominant XMCD signals from positive
(at the L3 edge) to negative (L2) is consistent (based on the
transition probability from the 2p core state to the empty states
in the 3d shell) with the fact that the positive mspin (negative
spin angular momentum) is induced in the 3d shell in the
ground state. (See Ref. [26] and Appendix A.) Note that the
positive peak in the L2 region is much weakened compared to
that in the L3 edge and overlaps with the L3 negative hump.

Figure 4(a) shows the photon energy dependence of μ(+)
+ μ(−). It has a background, which is constructed with
the combination of two linearlike terms and two arctangent
functions. As explained below, reasonable consideration of
background contributions enables us to estimate B, so that we
can estimate the denominator in the sum rules Eqs. (17) and
(18), i.e., 3

2 B. At first, we assume an almost linear background
contribution [black line in Fig. 4(a)], termed bkg. (1), so that
the residual spectra for < 568 eV and > 592 eV have constant
values as shown with the green data in Figs. 4(a) and 4(b).
Next, we consider a background component, termed bkg. (2),
consisting of two arctangent functions centered at the edge
jumps, as shown with purple data in Fig. 4(b). The ratio of
arctangent background for L3 and that for L2 is assumed to
be 5:3, so that it becomes consistent with the intensity ratio
of intrinsic L3 and L2 photoabsorption (1.6 : 1.0). Removing
all the background, the residual spectra termed Y is shown
in Fig. 4(b) by the dark-green color. Its integral with respect
to the energy, shown with light red in Fig. 4(b), yields B ∼
10.514.

For the next step, we consider the calculation of the nu-
merator of Eq. (17). Figure 5 shows the XMCD spectrum and
its integral with respect to the photon energy. In the case of
estimating a small integration value, the scatter in the data
may result in an indispensable estimation error. Thus, after
smoothing the XMCD data for < 572 eV and > 596 eV, we
integrated them against the energy to estimate A in Eq. (13).
We evaluated A to be −0.031 102 (Table II), and obtained
morb/nh = 2A/( 3

2 B) = −3.944 × 10−3. The errors in estimat-
ing A and B are estimated to be ±10% (by varying the
smoothing range) and ±7% (by varying the background con-
tribution), respectively, so that morb/nh has the error of ±12%.

Third, we attempt to estimate two integral values of the
XMCD, C and D appearing in Eq. (18). As we have seen
in Fig. 3, the XMCD spectrum consists of two dispersive
structures, one in the lower energy side (L3) and the other
higher energy side (L2). Although the two structures are
overlapping, we propose a tentative border between the L3

area and the L2 one at 581.3 eV in Fig. 4(b), and do the
integration of XMCD for both lower and higher energy sides.
Consequently we obtain C = 0.241 67 [Eq. (15)] and D =
−0.272 77 [Eq. (16)], resulting in mspin/nh = 1.498 × 10−1

according to Eq. (18). If we adopt nh = 7, based on the

FIG. 4. (a) The spectra of μ(+) + μ(−). Also shown, the spectra
of μ(+) + μ(−) after subtracting linearlike background components
bkg. (1). (b) Consideration of arctangent background components,
bkg. (2), for the spectrum of μ(+) + μ(−) and the integration of the
residual spectrum Y [= μ(+) + μ(−) − bkg. (1) − bkg. (2)] with
respect to the energy. The ratio of arctangent background for L3 and
L2 became approximately 5 : 3, consistent with the ratio (1.6 : 1.0)
of the Y intensity for L3 and that for L2. The full width at half
maximum for Y of L3 is almost the same as that for Y of L2; there is
a minimum of their overlap at 581.3 eV. The integration value of Y
corresponds to B in Eq. (14).

nominal valency of Cr3+ and the magnetization measurements
[6] and considered to be an upper bound of nh, we obtain
morb = −2.761 × 10−2μB, and mspin = 1.048μB, as shown in
Table III. Note that the estimated mspin is far smaller than
the expected value of 3μB. Even if the L3-L2 boundary is
shifted toward the lower energy side, for instance 580.3 eV,
there is only a small increase in mspin/nh to 1.676 × 10−1

(C = 0.272 92 and D = −0.304 02), and mspin for nh = 7
increases just to 1.173. According to Goering’s sum-rule
correction, the mixing factor X is estimated from the intensity
ratio r23 of L2 to L3 as X = (2r23 − 1)/(r23 + 1) [18] and the
spin correction factor (SC) is obtained as SC = 1/(1 − 2X ).
For instance, SC = 3 requires X = 1/3 and r23 = 0.8. In the
present XMCD experiments, we derive r23 = 0.62, X = 0.15,
and SC = 1.4. From these, we obtain 1.467 for the calibrated
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FIG. 5. XMCD spectrum μ(+) − μ(−) and its integral with
respect to the energy. The border between the L3 and L2 regions,
581.3 eV, determined from the XAS minimum in Fig. 4(b), is shown.

mspin value (m′
spin) as shown in Table III, a value approxi-

mately half of the 3μB observed in the bulk magnetization
measurements [6,12]. The X depends on how an arctan step
background is estimated, whereas it is now impossible to
derive r23 = 0.8. Thus, in the present case, we conclude that
the spin sum rule is useless.

V. DFT RESULTS

In this section, ground-state DFT calculations are pre-
sented to support the previous discussion of the Cr local
moments based on the XMCD measurement and, furthermore,
to understand the role of the individual atomic SOC in the
forced FM state.

In Sec. V A, in order to capture the fundamental aspects of
the electronic structure of CrNb3S6, we first perform a spin-
polarized scalar-relativistic calculation (without SOC) where
the results do not depend on the magnetization direction. In
particular, we focus on the hybridization of Cr 3d orbitals. In
Sec. V B, with SOC included, the easy-plane type MCA and
Cr 3d magnetic moments are discussed in detail. In Sec. V C,
the individual roles of Cr and Nb SOC are analyzed.

A. Electronic structure

Figure 6 shows the total density of states (DOS) calcu-
lated without SOC, which agrees well with those reported
previously [12,27,28]. [We use the convention that spin up

TABLE III. Sum-rule based estimations of morb and mspin in
units of μB based on nominal nh = 7 and theoretically predicted
nh = 5.84.

nh = 7 nh = 5.84

morb −2.761 × 10−2 −2.303 × 10−2

mspin 1.048 8.745 × 10−1

m′
spin (SC = 1.4) 1.467 1.224

morb/3 −9.203 × 10−3 −7.677 × 10−3

FIG. 6. Spin-up (upper panel) and -down (lower) density of
states. Contributions from Cr valence l = 2 states (within the muffin-
tin sphere) are highlighted by red. Energy 0 refers to the Fermi level.

(down) denotes the majority (minority) spin.] S 3p and Nb 4d
states are located mainly in the energy intervals [−8 : −2] and
[−2 : 5] eV, respectively. Cr l = 2 states (highlighted by red)
show large exchange splitting: most of the spin-down states
are pushed above EF . Both spin channels are metallic with a
finite DOS at EF . Farther above EF , a broad continuum feature
starts from 5 eV in the DOS of both spins, indicating that the
3d region ends at 5 eV. Indeed, above this energy, Cr l = 2
partial waves become 4d-like, picking up an additional radial
node. We set Ec = 5 eV in the analysis of the Cr 3d shell using
Eq. (12) discussed later.

Figure 7 shows partial d-wave DOS projected onto Nb
hexagonal harmonics and Cr e′

g, a1g, and eg harmonics (see
Appendix B for the complete definition of these orbitals). The
top two panels are for the Nb(2a) and (4 f ) sites while the
bottom two are for Cr. We begin with the spin-up states shown
in the left panels, Fig. 7(a). The e′

g states (the left lowest panel)
form a sharp peak well below EF in a narrow energy window
(from −2 to −1 eV) that appears to be consistent with the
localized t2g↑ scheme. On the other hand, the rest of the t2g

manifold—the a1g state (red highlighted in the second lowest
panel)—is delocalized to a remarkable extent, spread over a
wide energy range, even extending across EF to the unoccu-
pied levels, and with a similar bandwidth to the delocalized eg

state that hybridizes well with S 3p orbitals. This unexpected
a1g delocalization is a consequence of strong hybridization
with Nb 4d orbitals. A clear indication of strong mixing is
seen in the second panel: Nb(4 f ) z2 (red highlighted) has peak
structures resonating with a1g.

Regarding the spin-down bands, Fig. 7(b), the occupied
states from −2 eV and above are mainly Nb z2 and x2 − y2/xy
orbitals. Although the exchange splitting pushes most of the
spin-down Cr 3d states above EF , some of them come into
the occupied levels and show a broader energy spectrum.
They form chemical bonds with Nb and S orbitals and are
(together with the spin-up 3d states of the same character)
magnetically dead. The states just at EF are exclusively of
Nb z2 character. The unoccupied body of spin-down states,
starting from 0.2 eV, is composed of all d orbitals from Nb
and Cr.

The method described in Eq. (12)—defining the Cr 3d
quantities as probed by the Cr 2p core—is applied to the
present non-SOC electronic structure. Table IV summarizes
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FIG. 7. Partial d-wave density of states (in unit of eV−1) pro-
jected onto Nb hexagonal harmonics and Cr e′

g, a1g, and eg harmonics
within the muffin-tin spheres for (a) spin up and (b) spin down.
Multiplicity of atoms and orbitals is excluded. Note that the vertical
scale is different in each panel.

the Cr 3d occupation numbers obtained. The spin-up and
-down 3d states are about 3.6 and 0.6 electrons, respectively,
yielding a total 3d electron number of 4.16 (nh = 5.84) and a
3d spin magnetic moment mspin = 3.01μB. Roughly speaking,
there are 0.6 magnetically dead electrons in each spin; the
magnetically active part exhibits an electron configuration
(e′

g)1.8(a1g)0.8(eg)0.5 for spin up, in sharp contrast to the lo-
calized picture with (t2g↑)3. The occupation number for a1g↑
deviates from unity with some of eg↑ states being occupied.
Both a1g↑ and eg↑ states show up at EF and contribute to the
conductivity in the spin-up channel. Their metallic conduction
may account for the relatively high Tc despite the rather long
Cr-Cr interatomic distance.

B. MCA and magnetic moment

Turning SOC on, we examine the MCA to see whether
DFT reproduces the easy-plane-type anisotropy. The total-

TABLE IV. Cr 3d occupation numbers calculated from the 3d
density matrix defined in Eq. (12).

Spin e′
g a1g eg Sum

up 1.88 0.89 0.82 3.59
down 0.08 0.13 0.36 0.58
up-down 1.80 0.76 0.45 3.01

FIG. 8. Total-energy variation as a function of magnetization
direction. θ = 0 (90) degree corresponds to magnetization direction
parallel (perpendicular) to the c axis. Dots represent the DFT ener-
gies while solid line shows a sin2θ fit.

energy variation as a function of magnetization direction
E (θ, φ) is calculated using the force theorem [29]. Figure 8
shows �E (θ ) = E (θ ) − E (0) as a function of the polar angle
θ (the azimuth φ dependency is negligibly small). The easy-
plane-type anisotropy is correctly reproduced with an energy
minimum located at θ = 90◦. The energy variation follows
a sin2 θ behavior (solid line), indicating that the MCA is
dominated by the second-order effect of the SOC. The MCA
energy, the energy difference between the hard-axis and easy-
plane magnetizations, is found to be 0.14 meV per CrNb3S6

unit, in a good agreement with the ESR experiment [14] and
previous DFT calculations [28].

The spin magnetic moment with SOC turned on remains
the same as that in the non-SOC case, and thus shows no
dependence on the choice of magnetization direction. The
total spin magnetic moment (obtained by integrating the spin
density over the whole space) is 3.004μB per CrNb3S6, again
consistent with the previous DFT result [28]. The contribu-
tions in each muffin-tin sphere are 2.500, 0.055, 0.003, and
0.005μB, from Cr, Nb(2a), Nb(4 f ), and S, respectively; a
small positive spin moment is induced at the Nb(2a) site while
the moments at the Nb(4 f ) and S sites are negligible. Figure 9
shows a two-dimensional spin-density map on a hexagonal
(112̄0) plane where Cr and Nb atoms are found. The spin
density is peaked around Cr and extends with positive sign to
a radius ∼1.8 Å. The Nb(4 f ) site (sitting above and below Cr
along c) has sizable spin-density distribution with alternating
signs even though it is integrated out to be nearly zero; in
particular, a negative distribution along the c axis is clearly
seen, which is a signature of the Cr a1g-Nb z2 interaction.

Now we shift our focus to the Cr l = 2 partial wave. Spin
and orbital magnetization densities are shown in Fig. 10. The
spin density is positive and has a large tail, well beyond the
muffin-tin radius of 1.1 Å; the orbital density (displayed with
multiplying a factor of 100) is predominately negative until
turning positive at r ∼ 1 Å. It is apparent that the spin and
orbital moments are coupled antiparallel, as expected from an
atomic picture for the less-than-half filled case. However, the
quantitative values of the 3d magnetic moments depend on the
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FIG. 9. Spin magnetization density mapped on a hexagonal
(112̄0) plane. The high density around the Cr is cut off, and the

low-density region (<0.1μB Å
−3

) is highlighted by contour lines;
red (blue) lines are for small positive (negative) densities. Inset:
one-dimensional plots of the spin magnetization density parallel and
perpendicular to the c axis, on the (112̄0) plane through Cr nucleus.

choice of integration region because of the tails in their density
distributions. Furthermore, the l = 2 partial wave (which is
used in calculating the density distribution in Fig. 10) is not
a pure Cr 3d wave; at large r it includes orbital tails from the
surrounding atoms. The Cr 2p core function R2p (shown by
pale green in Fig. 10), however, is localized in a region close
to the nucleus where the l = 2 wave predominately originates
from the Cr 3d state. Using rR2p as a probe for Cr 3d state,
we calculate local quantities in the 3d shell as summarized

FIG. 10. Spin and orbital magnetization densities originating
from the Cr l = 2 partial wave. The spherical part of the density is
multiplied by the weighting factor r2. The orbital contributions are
magnified by 100 relative to the spin, and are shown for magneti-
zation along the a and c axes. The dash-dotted line (“orbital∗”) is
obtained for the Cr-only SOC calculation (see Sec. V C for details).
The radial density of the Cr 2p core radial function R2p is also shown.

TABLE V. Cr 3d electron number, spin, and orbital magnetic
moments (μB), and spin magnetic dipole calculated for two mag-
netization directions: a (easy axis) and c (hard axis). For the top two
entries (“R2p”) the Cr 2p core is used as a local probe, Eq. (12). The
errors are estimated to be ±0.4% for each quantity listed, determined
by shifting the boundary energy Ec by ±0.5 eV. The bottom two lines
(“MT”) are calculated simply by integrating the l = 2 partial wave
within the Cr muffin-tin sphere.

Direction α N mspin morb × 103 7〈Tα〉
R2p: a 4.16 3.01 −16.3 −0.156

c 4.16 3.01 −20.1 0.308
MT: a 3.74 2.47 −9.4 −0.144

c 3.74 2.47 −13.3 0.286

in Table V. The Cr 3d spin magnetic moment mspin obtained
is nearly 3.0μB, consistent with a proper picture that the Cr
3d state is responsible for the magnetism in CrNb3S6, and is
greatly enhanced from the l = 2 muffin-tin value of 2.5μB

(Table V). The Cr 3d orbital moment morb is found to have
a negative sign (antiparallel to the spin) with small values of
−0.016μB and −0.020μB for the in-plane and out-of-plane
magnetization, respectively. These values are enhanced from
the l = 2 muffin-tin values in Table V, indicating that the sign
change of the orbital distribution at r ∼ 1 Å (seen in Fig. 10) is
not from the pure 3d orbital but from hybridization effects that
develop positive orbital distribution in the 3d tail region. The
ratio between orbital and spin is morb/mspin × 100 = −0.54
(in-plane magnetization) and −0.69 (out-of-plane). Naively it
is counterintuitive that morb in the easy-plane magnetization
has smaller magnitude than that in the hard-axis magnetiza-
tion. We will come back to this point in the next subsection.
The spin magnetic dipole shown in Table V obeys the relation∑

α=x,y,z〈Tα〉 ∼ 0, which is known to hold in the weak SOC
case [30]. Ignoring its contribution in the application of the
spin sum rule would degrade the estimated mspin by only 5%
for the in-plane magnetization. The Nb and S atoms have
very small orbital moments (less than 10−3μB for the in-plane
magnetization), which we will not discuss further here.

The Cr 3d electron number is calculated to be 4.16
(unchanged from the non-SOC calculation), which gives the
number of holes in the 3d shell, nh = 5.84. Using this nh in
the XMCD orbital sum rule, the experimentally deduced morb

is compared with the DFT value in Table VI. A fairly good
agreement is achieved between the experiment and theory,
especially taking into account the fact that the DFT tends to
underestimate morb. We conclude that the order of morb/mspin

is ∼−1%.

TABLE VI. Comparison between experimental and theoretical
morb values for the in-plane magnetization. The DFT-estimated hole
number, nh = 5.84, is used in the XMCD orbital sum rule. The ratio
morb/mspin assumes mspin = 3.

mspin morb × 103 morb/mspin(=3) (%)

theory 3.01 −16.3 −0.54
MCD −23.0 −0.77
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FIG. 11. (a) DFT-calculated MCA energies obtained by selec-
tively turning on SOC for different elements, given as the ratio to
the full MCA value (0.14 meV per CrNb3S6). (b) Same as (a) but
decomposed into the spin-diagonal and spin-off-diagonal SOC pro-
cesses. Note that the vertical scale is different from (a).

C. Cr and Nb SOC

We have seen that the MCA is of easy-plane type and that
the unquenched Cr 3d orbital moment is aligned antiparallel
to the spin moment. There is no doubt that the SOC in the Cr
3d shell plays a major role. However, the spin-orbit coupling
constant λ for the Nb 4d orbital (0.1 eV) is three times as large
as that for Cr 3d orbital (0.034 eV) and thus Nb SOC may also
play an important role.

In this section, we examine the individual atomic SOC
and analyze in detail the origin of the easy-plane MCA. We
turn on the SOC only at selected element(s) and calculate
the MCA energy as summarized in Fig. 11(a). Turning on
the Cr SOC alone provides 50% of the full MCA energy,
indicating that the Cr SOC is indispensable (as expected) but
the other elements provide some contributions. However, pure
elemental SOCs of Nb and S give very small MCA energies,
13% and 10%, respectively; the full MCA is not reproduced
from the simple sum of these individual effects. When the Cr
and Nb SOCs are turned on together, 96% of the full MCA is
reproduced. This clearly shows that the Nb SOC enhances the
MCA, i.e., the Nb and Cr SOC interact constructively.

To further understand this enhancement of the MCA
through the Nb SOC, we adopt a second-order perturbation
theory. We write the unperturbed eigenstates (in the FM state
without the SOC) as {εi, ϕi}, where i is a combined index
of wave vector k, spin σ (= ± 1/2), and band index n. The
SOC perturbation depends on the magnetization direction
m̂ (|m̂| = 1) and may be written as

H ′
m̂ = HSO(m̂) = U †

m̂HSOUm̂ (20)

with the spin rotation matrix Um̂ (see Appendix C) and with
HSO being a sum of atomic SOC Hamiltonian λL · s of Cr 3d ,
Nb 4d , and S 3p orbitals,

HSO = H (Cr)
SO + H (Nb)

SO + H (S)
SO . (21)

According to the force theorem [29], the MCA energy is given
in terms of the band energy summation over occupied states,

E (m̂) =
∑

i

f (m̂)
i ε

(m̂)
i , EMCA = E (m̂‖c) − E (m̂⊥c),

where f (m̂)
i and ε

(m̂)
i are the band occupation number and

band energy with the perturbation incorporated. Using a

second-order perturbation theory and disregarding the change
in the band occupation number (that is small in the present
case), the band energy sum can be found as

E (m̂) = E0 +
∑
i, j

fi(1 − f j )
|〈i|H ′

m̂| j〉|2
εi − ε j

δkik j , (22)

where only a pair of occupied and unoccupied bands (at the
same k) interacting via SOC contributes to the MCA through
its m̂ dependence. The relevant matrix element squared is
decomposed as

|〈i|H ′| j〉|2 = ∣∣〈i|H (Cr)
SO | j〉∣∣2 + ∣∣〈i|H (Nb)

SO | j〉∣∣2

+〈i|H (Cr)
SO | j〉〈 j|H (Nb)

SO |i〉 + c.c., (23)

where the m̂ dependence and the sulfur related terms are
suppressed for simplicity. In addition to the pure individual
contributions [the first and second terms of Eq. (23)], a Cr-Nb
interference term (the third term) exists as well, which may
enhance the MCA effectively only if (i) strong hybridization
between Cr 3d and Nb 4d orbitals is seen in both states i and
j and (ii) the phases of two SO matrix elements constructively
interfere. The DFT result given in Fig. 11(a) indicates that this
Cr-Nb interference term doubles the MCA energy compared
to that with the Cr SOC alone.

In Fig. 11(b), we further decompose the MCA into two
spin processes: spin-diagonal (bands i and j have the same
spin, σi = σ j) and spin-off-diagonal SOC process (σi �= σ j).
In the full SOC calculation [a set of two boxes located in the
most left of Fig. 11(b)], two spin processes have fairly large
energy (nearly one order of magnitude greater than the net
MCA energy) while they compete with each other: the spin-
off-diagonal process favors in-plane magnetization; the spin-
diagonal process favors out-of-plane magnetization. In the
case of the Cr-SOC only calculation, the spin-diagonal pro-
cess (the interaction in the spin-up channel) dominates and
provides the easy-plane anisotropy, where a pair of a1g↑ and
eg↑ states should be most relevant. In the Nb-SOC only case,
both spin processes have large values (similar to the full
SOC calculation) but they almost cancel with different signs,
resulting in the only 13% of the full MCA energy. That two
processes have nearly identical magnitude is due to the fact
that both spins are found in the occupied Nb 4d bands. The in-
terference term, however, picks up bands that have substantial
Cr 3d–Nb 4d mixing in their wave functions. Therefore, the
occupied counterpart in the interference process is dominated
by spin-up (due to the Cr 3d spin polarization). From the
MCA decomposition analysis (Fig. 11) and the partial DOS
analysis (Fig. 7), together with the matrix representation of
L (Appendix B), the occupied-unoccupied pairs of bands that
are highly relevant to the MCA are identified as a1g↑-eg↑ (for
the pure Cr SOC) and eg↑-e′

g↓ (for the interference SOC).
The Cr 3d orbital moment behaves differently in the site-

selective SOC calculations. First-order perturbation theory
illustrates that the Cr orbital moment is given by

〈
L(Cr)

α

〉 =
∑
i, j

fi(1 − f j )

εi − ε j

× [〈i|L(Cr)
α | j〉〈 j|H ′

α|i〉 δσiσ j δkik j + c.c.
]
, (24)
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TABLE VII. Cr 3d orbital magnetic moment, morb, calculated by
turning the SOC on only at selected element. In unit of 10−3μB. Two
magnetization directions, along a and c axes, are examined. The Cr
2p local-probe technique is used.

Direction α Cr Nb S

a −38.9 12.7 9.9
c −32.0 7.8 3.5

where α = x, y, z. Note that the right-hand size is linear in
H ′ (sum of atomic SOC) and thus morb in the full SOC
calculation is determined by a simple summation of elemental
SOC effects. Table VII lists the values of 3d orbital moment
in the element-selective SOC calculations. The summation of
these values indeed reproduce morb in the full SOC calculation
(Table V). It is interesting to see that in the Cr-only SOC
calculation morb is much larger than its full SOC value and
now the in-plane |morb| is greater than that for the out-of-
plane (hard-axis) magnetization. The Nb- and S-only SOC
calculations yield opposite-sign orbital moments in the Cr 3d
shell. From these results we conclude that SOC on the Nb
and S atoms interfere destructively to decrease the Cr orbital
moment.

VI. CONCLUSION

We have performed the XAS/XMCD measurements for
CrNb3S6 with in-plane magnetization at the Cr L2,3 edges.
The XMCD spectrum, exhibiting dispersive line shapes for
each of the L3 and L2 edges, unambiguously reveals that the
Cr orbital magnetic moment is not quenched and is coupled
antiparallel to the spin counterpart. The magnitude of orbital
magnetic moment is estimated to be approximately 0.02μB.
The quantitative evaluation of spin magnetic moment via the
sum rules is unsuccessful due to the small spin-orbit splitting
in the Cr 2p core. These experimental findings on the Cr local
magnetism are supported by the DFT calculations, where,
analogous to the experiment, the radial part of the Cr 2p core
state is employed to define the 3d shell. Theoretical analyses
show that the SOC in the Nb 4d orbital, as a consequence of its
strong hybridization with the Cr 3d orbital, plays an important
role in determining the MCA and the Cr 3d orbital moment.
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FIG. 12. Distribution of weights of the transition probability to
the d states in the p → d photoabsorption process with the photon
spin q = ±1 when the core hole j is a good quantum number.
(a) d states labeled by the orbital magnetic quantum number m
(after Ref. [26]). (b) d states under the D3d crystalline field. The
magnetization and the photopropagation directions are perpendicular
to the threefold (z) axis.

APPENDIX A: TRANSITION PROBABILITY

Imada etal . have tabulated the transition probability in
the p → d photoabsorption when the core hole j is a good
quantum number and the d states are labeled by the spin
and the orbital magnetic quantum number [26]. Figure 12(a)
reproduces their result; Fig. 12(b) is for the case that the d
states are labeled by a1g, e′

g, and eg manifolds (under the
D3d crystalline field) with both the magnetic field and the
photopropagation being perpendicular to the threefold axis.

APPENDIX B: d ORBITAL

The hexagonal harmonics (z2, zx, zy, x2 − y2, xy) defined
in the coordinate system (x, y, z) in Fig. 1(b) are considered
the natural basis functions for Nb 4d states. In this basis set,
the orbital angular momentum operator is given in the matrix
representation

Lx =

⎛
⎜⎜⎜⎜⎝

0 0
√

3i 0 0
0 0 0 0 i

−√
3i 0 0 −i 0

0 0 i 0 0
0 −i 0 0 0

⎞
⎟⎟⎟⎟⎠,
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Ly =

⎛
⎜⎜⎜⎜⎝

0 −√
3i 0 0 0√

3i 0 0 −i 0
0 0 0 0 −i
0 i 0 0 0
0 0 i 0 0

⎞
⎟⎟⎟⎟⎠,

Lz =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 −2i
0 0 0 2i 0

⎞
⎟⎟⎟⎠.

In the main text, Cr 3d states are discussed in terms of a1g,
e′

g, and eg manifold (which is valid under D3d symmetry). The
trigonal basis functions, x0 (for a1g), x± (for e′

g), u± (for eg),
are given as follows:

x0 = Y20,

x+ = −
√

2

3
Y2−2 −

√
1

3
Y21,

x− =
√

2

3
Y22 −

√
1

3
Y2−1,

u+ = −
√

1

3
Y2−2 +

√
2

3
Y21,

u− =
√

1

3
Y22 +

√
2

3
Y2−1,

where the spherical harmonics are defined in the coordinate
system (x, y, z) in Fig. 1(b). The orbital angular momen-
tum operator is written in the matrix form with the basis
(x0, x+, x−, u+, u−),

Lx =

⎛
⎜⎜⎜⎜⎝

0 −1/
√

2 −1/
√

2 1 1
−1/

√
2 0 0 0 −1

−1/
√

2 0 0 1 0
1 0 1 0 0
1 −1 0 0 0

⎞
⎟⎟⎟⎟⎠,

Ly =

⎛
⎜⎜⎜⎜⎝

0 −i/
√

2 i/
√

2 i −i
i/

√
2 0 0 0 −i

−i/
√

2 0 0 −i 0
−i 0 i 0 0
i i 0 0 0

⎞
⎟⎟⎟⎟⎠,

Lz =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 −1 0 −√
2 0

0 0 1 0
√

2

0 −√
2 0 0 0

0 0
√

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

APPENDIX C: SOC HAMILTONIAN

We write the atomic SOC Hamiltonian as

HSO = λL · s = λ

2

(
Lz Lx − iLy

Lx + iLy −Lz

)

for the spin basis functions (up and down) defined along
the crystalline z axis. The SOC Hamiltonian with the spin
quantization axis along an arbitrary direction m̂ (with polar
angle θ and azimuthal angle φ) is found in the following, by
using the spin rotation matrix Um̂ [31],

HSO(m̂) = U †
m̂HSOUm̂ = λ

2

(
L · m̂ L · ẽ

L · ẽ∗ −L · m̂

)
,

and

m̂ = (sin θ cos φ, sin θ sin φ, cos θ )T ,

ẽ = (cos θ cos φ + i sin φ, cos θ sin φ − i cos φ,− sin θ )T ,

where m̂ is the directional cosine of the spin quantiza-
tion axis, and ẽ is a complex vector (|ẽ|2 = 2) orthogo-
nal to m̂. For [001], [100], and [010] directions, the SOC
Hamiltonians are

HSO[001] = λ

2

(
Lz Lx − iLy

Lx + iLy −Lz

)
,

HSO[100] = λ

2

(
Lx −iLy − Lz

iLy − Lz −Lx

)
,

HSO[010] = λ

2

(
Ly iLx − Lz

−iLx − Lz −Ly

)
.
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