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We use the stochastic series expansion quantum Monte Carlo method to study the Heisenberg models on
the square lattice with strong and weak couplings in the form of three different plaquette arrangements known
as checkerboard models C2 × 2, C2 × 4, and C4 × 4. The a × b here stands for the shape of the plaquette
consisting of spins connected by strong couplings. Through detailed analysis of a finite-size scaling study, the
critical point of the C2 × 2 model is improved as gc = 0.548 524(3) compared with previous studies where g is
the ratio of weak and strong couplings in the models. For C2 × 4 and C4 × 4 we give gc = 0.456 978(2) and
0.314 451(3). We also study the critical exponents ν and η and the universal property of the Binder ratio to
give further evidence that all quantum phase transitions in these three models are in the three-dimensional O(3)
universality class. Furthermore, our fitting results show the importance of effective corrections in the scaling
study of these models.

DOI: 10.1103/PhysRevB.99.174434

I. INTRODUCTION

The S = 1/2 Heisenberg antiferromagnetic model with
different interactions [1,2] has always been a very interesting
topic in both theoretical and experimental fields because of
its rich ground states and close relations to cuprate super-
conductors [3–6], Bose-Einstein condensation of magnons
[7,8], etc. One of the best-studied two-dimensional (2D)
Heisenberg models is the dimerized model [9–12] with inter-
and intradimer antiferromagnetic couplings on the square
lattice, which bring in quantum fluctuations to destroy the
Néel ground state and make the model undergo a quantum
phase transition (QPT) [13] from antiferromagnetic (AFM)
to quantum paramagnetic (QPM) [12,14–19]. Based on field
analysis mapping to a nonlinear σ model, this QPT belongs to
the three-dimensional (3D) O(3) universality class [20], which
is also proved by several separate numerical results with high
accuracy [15,16,21,22].

Apart from those well-studied dimerized models, a QPT
from AFM to QPM can also be realized by introducing
strong and weak couplings which favor the formation of
singlets in quadrumerized or other patterns, which connect
more spins as long as there are an even number of strong
couplings in the unit [15,16,23–25]. These patterns are re-
ferred to as the checkerboard patterns, which were proposed
to explain the experiments of real-space structures observed
in Bi2Sr2CaCu2O8+δ and Ca2−xNaxCuO2Cl2 [26–28]. The
quadrumerized Heisenberg model on the square lattice with
2 × 2 spins connected by stronger couplings can also be very
helpful in the study of the Shastry-Sutherland model [29,30],
which explains the critical properties of SrCu2(BO3)2 [31].
Recently there has been a very popular discussion about
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the order of QPT in the Shastry-Sutherland model [32,33].
However, except for the quadrumerized Heisenberg model, no
numerical study has ever been done on plaquette models in
which larger numbers of spins have been connected by strong
couplings. Even for the quadrumerized model, the previous
best estimate for the critical point is gc = 1.8230(2), with g
being the ratio of strong and weak couplings in the system
[34], whose accuracy is at least one order of magnitude larger
than that of the dimerized model (e.g., gc = 1.90951(1) in
the columnar dimerized model (CDM)[21]) or the classical
3D Heisenberg model [35]. We note that the coupling ratio
g in this work is weak couplings divided by strong couplings
while in dimerized models it is reciprocal as mentioned above.
Besides, a recent work concerning QPT from AFM to QPM
shows that different local symmetries may bring in different
critical corrections at QPTs [21]. It has answered a long-
standing issue that the quantum Monte Carlo (QMC) simu-
lation results of critical exponents in a staggered dimerized
model (SDM) are not the standard O(3) values [14,15]. In
their work they compared the critical exponents and correction
forms of the SDM with those of the CDM to show that they
belong to the same universality class with different correc-
tions. However, the previous work that had claimed to find
different exponents in the SDM also compared it with the
quadrumerized Heisenberg model, whose correction form has
not been carefully studied yet.

In this paper we study a series of plaquette antiferro-
magnetic Heisenberg models on a square lattice with the
Hamiltonian

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈i, j〉′

Si · S j, (1)

where Si denotes an S = 1/2 spin operator at lattice sites i,
and 〈i, j〉 and 〈i, j〉′ are the nearest-neighbor sites connected
by corresponding coupling strengths, which are represented
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FIG. 1. The antiferromagnetic Heisenberg model defined in
Eq. (1) with J1 (red thick bonds) arranged in units (a) 2 × 2, (b) 2 ×
4, and (c) 4 × 4 on a square lattice. For each model, all units are
connected by weak couplings J2 (black thin bonds) to form the
checkerboard pattern.

by strong couplings J1 and weak couplings J2. According
to different checkerboard patterns of the arrangements of J1

and J2 shown in Fig. 1, we refer to these plaquette models
as the C2 × 2, C2 × 4, and C4 × 4 models. We set J1 = 1
and define the ratio of weak and strong couplings to be g =
J2/J1. When g = 1, the model becomes an isotropic Heisen-
berg plane which has an antiferromagnetic ground state with
long-range order. When g = 0, the ground state turns into a
disordered phase with no magnetism. It is a product state
of singlets that differs in different plaquette models [36]. In
this case, for 0 < g < 1 there is a critical point gc at zero
temperature where a QPT from AFM to QPM would happen.
This QPT is in the O(3) universality according to the nonlinear
σ mapping analysis class [20]. We use the stochastic series
expansion (SSE) QMC method [10] and a finite-size scaling
(FSS) study to estimate the critical points and exponents in the
thermodynamical limit for all three models.

There are mainly two purposes to studying these three pla-
quette models. The first one is that we want to obtain the crit-
ical point of the C2 × 2 (quadrumerized) model with higher
accuracy by large-scale QMC calculation and a detailed FSS
study on several different variables. The final result for the
C2 × 2 model is gc = 0.548 524(3), which is improved quite
obviously compared with gc = 0.548 54(1) as the previous
best estimate. Except for being helpful to the exploration
of finite-T quantum criticality by minimizing the quantum
regime in the C2 × 2 model itself, the increase of the sta-
tistical accuracy here would be useful to study the related
models (i.e., Shastry-Sutherland model) too [30]. We also
obtain gc = 0.456 978(2) and gc = 0.314 451(3) for the C2 ×
4 and C4 × 4 models, respectively, for the first time. This
could be very necessary in future study of a certain material

with this kind of real-space structure in the experiment. These
results of critical points offer a very good benchmark for
further tests or development of numerical techniques of FFS
methods as well. Second, from the FSS of criticality of the
C2 × 2 model, we can determine its correction form and
correction exponent to compare with those of the SDM as a
complement to the comparison in Ref. [21]. The nonmono-
tonic scaling behavior is not found in the criticality with
critical exponents in the O(3) universality class in any of these
three models, which is similar to the CDM. Thus, our results
give more examples that having local symmetry lacking cubic
couplings which can bring in corrections not present in the
standard O(3) class. The scaling correction forms and correc-
tion exponents in different models are the same as each other,
which implies that the different local Z4 (C2 × 2 and C4 × 4)
or Z2 (C2 × 4) symmetries do not result in any difference.
These results could be helpful in understanding the QPTs with
irrelevant field.

In addition to the main purposes above, the standard O(3)
value 1/ν = 1.4061(7) is chosen for all three models from
the 3D classical Heisenberg model [35] and χ2/d.o.f. (χ2 per
degree of freedom) close to 1 for all fits. Through these scal-
ings, all critical points obtained from different quantities agree
with each other in one system, which offers computational
evidence to confirm that QPTs in all three models belong to
the O(3) universality class. Besides ν, we also compare the
anomalous dimension η and the dimensionless Binder ratio
at critical points as further evidence to prove the predicted
universality class.

The rest of the paper is organized as follows. In Sec. II
we introduce the physical quantities calculated in this work
and the finite-size scaling method that we utilize to analyze
data from simulations. In Sec. III simulation and FFS results
of criticalities for all three models are presented with detailed
analysis. In the end we give a brief summary and discussion
in Sec. IV.

II. OBSERVABLES AND FINITE-SIZE SCALING

We use the SSE QMC simulation method with an operator-
loop updating algorithm to study all plaquette models in
our work. This computing method is based on sampling of
the diagonal elements of the Boltzmann operator exp(−βH ),
with β being the inverse temperature. In order to rule out
the effect of temperature on the scaling function near the
quantum critical point, β is always chosen as β ∼ Lz. The
QPTs in the plaquette models studied here are believed to
be in accordance with O(3) behavior so that z = 1 [37] in
these models; therefore we consider β = L in our study with
simulated system size L up to 160. In all calculations we use
104 Monte Carlo samplings to obtain average values of the
observables.

A. Observables

In order to study the criticality of the certain spin model,
we chose to measure several important physical quantities in
our work. The first one is the Binder ratio defined as

R2 =
〈(

mz
s

)4〉〈(
mz

s

)2〉2 , (2)
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where

mz
s = 1

N

N∑
i

Sz
i (−1)xi+yi , (3)

where N = L × L is the total number of spins on the square
lattice and (xi, yi ) are the coordinates of the corresponding
spin Si. The Binder ratio is dimensionless and universal re-
gardless of the detailed structures and couplings of the model.
However it does depend on the boundary conditions and
effective aspect ratios from previous studies [38–41]. Here we
use periodic boundary conditions on these three models and
the effective aspect ratio of time-space is related to the critical
spin-wave velocity.

Another quantity is the uniform susceptibility

χu = χ (0, 0) = β

N

〈(
N∑

i=1

Sz
i

)2〉
, (4)

whose scaling form at gc is χu ∼ Lz−d , giving χu ∼ L−1 and
χuL to be dimensionless in our case.

The last physical observable calculated in our work is the
spin stiffness ρs. The stiffness ρ is covered in the calculation

δ f = 1
2ρ(∇θ )2 = 1

2ρ(
/L)2 (5)

in the continuum field theory with f being the density of free
energy, 
 the boundary twist, and θ the order parameter field.
In the Heisenberg model, ρs is the spin stiffness determined
by the twist 
 directly to the Hamiltonian, which in the SSE
procedure can be obtained through the calculation

ρa
s = 3

2βN
〈(N+

a − N−
a )2〉, (6)

where N+
a (N−

a ) represent the total number of S+
i S−

j (S−
i S+

j )
operators in the sampling along the a (x or y) direction of
the square lattice. When the system is isotropic, the lattice
ρx

s is the same as ρ
y
s , while for the anisotropic system they

are different. So in the C2 × 2 and C4 × 4 models we only
calculate ρs = (ρx

s + ρ
y
s )/2, and for the C2 × 4 model both

ρx
s and ρ

y
s are recorded separately. However they all have

the same scaling form at the critical point as ρs ∼ L2−d−z,
with ρs ∼ L−1 in our models, which means that ρsL is a
size-independent dimensionless quantity.

B. Finite-size scaling

After all the mean observable values mentioned above
are obtained from the simulations, we need to deal with
all these data using the finite-size scaling study method to
estimate the critical properties in the thermodynamical limit
[10–12,14–16,21,25,42,43]. From the renormalization group
theory we know that the physical quantity Q near its critical
point obeys

Q(g, L) = Lκ/ν f (δL1/ν, λ1L−ω1 , λ2L−ω2 , . . . ), (7)

where κ is the critical exponent of Q, ν is the correlation
length exponent, and δ = g − gc. The set {λi} refers to all
irrelevant fields with their correction exponents {ωi}, which
are arranged as ωi+1 > ωi. Usually at most one irrelevant field
is supposed to be considered in the FSS analysis, but there are

still some special cases where more than one field is necessary
[21]. Here we start with one correction exponent to the first
order of the dimensionless quantities (κ = 0) so that Eq. (7)
can be written as

Q(g, L) = f (0)
Q (δL1/ν ) + L−ω1 f (1)

Q (δL1/ν ), (8)

in which L−ω1 is regarded as a deviation value of the the-
oretical scaling function fQ near the critical point. Ignoring
irrelevant items, the dimensionless quantity Q(g, L) does not
depend on the size of the system at the critical point gc because
g = 0 then. Thus, Q(g, L) values for different sizes cross at
the critical point in this simplified situation, but here we need
to take irrelevant items into consideration and Q(g, L) values
for different sizes would cross at gc(L), which is near to the
real gc with a correction to the order L−ω1 . For two different
simulated sizes L and L

′
, using Eq. (8), we have

f (0)
Q (g∗L1/ν ) + L−ω1 f (1)

Q (g∗L1/ν )

= f (0)
Q (g∗L

′1/ν ) + L
′−ω1 f (1)

Q (g∗L
′1/ν ) (9)

at the cross point gc(L), with g∗ = gc(L) − gc. Expanding f (0)
Q

and f (1)
Q to the first order of L−ω1 with L

′ = bL we can get

g∗ = f (1)
Q (0)

f (0)′
Q (0)

b−ω1 (bω1 − 1)

b1/ν − 1
L−ω1−1/ν, (10)

which is more easily understood as

gc(L) = gc(∞) + f 1
Q(0)

f (0)′
Q (0)

b−ω1 (bω1 − 1)

b1/ν − 1
L−ω1−1/ν . (11)

Insert Eq. (10) into Eq. (8) and again expand f (0)
Q and f (1)

Q to
the first order of L−ω1 , then we have

Q(L) = Q∞(gc) + b−ω1 (1 − b1/ν+ω1 ) f (1)(0)
Q

b1/ν − 1
L−ω1 . (12)

Besides, with the definition of

1

ν(L)
= 1

ln(b)

(
ln

S(L
′
)

S(L)

)
, (13)

where

S(L) = dQ(g, L)

dg

∣∣∣∣
g=gc (L)

, (14)

we can also obtain the scaling of critical exponent ν combin-
ing Eqs. (11) and (13) as

1

ν(L)
= 1

ν
+ aL−ω (15)

with a free parameter a. For simplicity the scaling forms of the
coordinates of crossing points [gc(L), Qc(L)] are written as

gc(L) = gc(∞) + bL−ω−1/ν, (16)

Qc(L) = Qc(∞) + cL−ω, (17)

with b and c to be fitted as free parameters. From Eqs. (16)
and (15), we know that by using crossing points from the
g dependence of the dimensionless quantity for two sizes
(L and bL), the extrapolation value when L → ∞ can give
the quantum critical point gc and the critical exponent ν at
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the thermodynamical limit. In our work, we use b = 2 in
obtaining all crossing points for different models.

III. SIMULATION RESULTS AND DATA ANALYSIS

We performed the SSE QMC simulations on the C2 × 2,
C2 × 4, and C4 × 4 models and obtained the average values
of all the observables R2, χu, and ρs (or ρx

s and ρ
y
s especially

for C2 × 4). One example of the simulation results for C2 × 4
is illustrated in Fig. 2 to show the crossings of different sizes
for the four dimensionless quantities R2, χuL, ρx

s L, and ρ
y
s L.

Similar figures can also be obtained from the SSE data for the
C2 × 2 and C4 × 4 models. The obvious shift of crossings
from different sizes implies that it is necessary to take the
correction into account in the scaling analysis.

A. Critical points and corrections

After all crossing points are extracted from the raw data
we use the finite-size scaling method to estimate the critical
points of our models. By fitting all the data points in Fig. 3
using the function in Eq. (16) separately for each quantity, we
obtain all the gc results shown in Table I. In all the fits we
use the standard O(3) value 1/ν = 1.406 with one correction
exponent ω to the first order. For the C2 × 2 model, gc from
each quantity is the same considering one error bar and agrees
with the former result gc = 0.548 54(1). It is also true for
the other two models with χ2/d.o.f. close to 1, implying
the credibility of the fits. These results give further evidence
to show that plaquette models with different checkerboard
patterns all belong to the O(3) universality class.

In order to obtain a better estimation of the critical points,
we continue to deal with the crossing points by joint fits as
all size dependencies of gc(L) for different quantities should
converge to the same value in one system. Therefore we fix
gc(∞) to be the same in each curve and fit all data together
with other parameters being independent and 1/ν = 1.406.
The fitting results are shown in all curves in Fig. 3, with
gc = 0.548 524(3) in C2 × 2, 0.456 978(2) in C2 × 4, and
0.314 451(3) in C4 × 4. Our result for the C2 × 2 model
is fully consistent with the value in Ref. [34] with higher
precision. By comparing these critical point values we find
gc gets smaller from the C2 × 2 model to the C4 × 4 model,
indicating that our models more easily turn into the QPM
state with less strong couplings in the unit cell. Therefore we
deduce it is a universal rule in QPTs of any CLx × Ly models.

From the separately fitting results in Table I, we find that
with only one correction term included the correction expo-
nents ω are not the same for different quantities in the same
model, while they are the same for same quantity in different
models within at most two error bars with taking average of
ρx

s and ρ
y
s in the C2 × 4 model. The difference shows that ω

calculated here is more likely to be an “effective correction”
including higher orders. However, fitting including 2ω or
higher order is very difficult and challenging with too many
free parameters. Here we did not find any nonmonotonic be-
havior in the size dependence of all crossings in the plaquette
models as shown in Fig. 3; therefore, one correction term
can also give convincing criticality analysis, which is also
confirmed by the χ2/d.o.f. of each fit. The joint fitting results

FIG. 2. The Binder ratio (a), uniform susceptibility multiplied by
L (b), and spin stiffness in the x (c) and y (d) directions multiplied
by L versus the coupling ratio g. All data points are connected by
polynomial fitted curves to the third order with χ 2/d.o.f. close to 1.
This means that the ranges of g are chosen correctly as being close
enough to gc and for larger sizes the fitting range is smaller. We also
adjust the display range of all subgraphs to make the shift of the
crossings more clear.

still share the same rule as the separate ones. Thus, we can
estimate the effective ω by taking the weighted average values
of the joint fitting results of ω from three models. We have
the effective correction exponent ω = 1.058(7) for R2, for
χuL ω = 0.834(7). For ρsL we first get the average ω from
the correlated results of ρx

s and ρ
y
s in the C2 × 4 model and

we take the larger error of them as the error, which gives
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FIG. 3. Size dependence of gc(L) of all (L, 2L) crossings from
the g dependence of R2, χuL, and ρsL in the (a) C2 × 2, (b) C2 × 4,
and (c) C4 × 4 models. The curves stand for the fitting function in
Eq. (16) with the same gc(∞) in each model and the fixed value
1/ν = 1.406. The joint fits give gc = 0.548 524(3) and ω = 1.12(2),
0.82(3), and 0.67(1) for R2, χuL, and ρsL, respectively, in panel (a);
gc = 0.456 978(2) and ω = 1.06(1), 0.83(1), 0.692(8), and 0.62(1)
for R2, χuL, ρx

s L, and ρy
s L, respectively, in panel (b); and gc =

0.314 451(3) and ω = 1.04(1), 0.84(1), and 0.66(1) for R2, χuL, and
ρsL, respectively, in panel (c). All fits give the estimates of gc and ω

with χ 2/d.o.f. close to 1.

TABLE I. The finite-size scaling results of the critical point gc

using different quantities for the C2 × 2 (top), C2 × 4 (middle), and
C4 × 4(bottom) models. Here we fit all the data points in Fig. 3 using
scaling formula Eq. (16) with 1/ν = 1.406.

gc ω χ 2/d.o.f.

R2 0.548532(6) 1.14(2) 0.89

χuL 0.548522(8) 0.83(4) 0.88

ρsL 0.548521(5) 0.68(2) 1.09

R2 0.456985(6) 1.08(2) 0.63

χuL 0.456972(8) 0.86(3) 0.67

ρx
s L 0.456975(5) 0.70(2) 0.92

ρy
s L 0.456983(6) 0.60(3) 0.95

R2 0.31446(1) 1.08(5) 1.11

χuL 0.314441(9) 0.87(5) 0.80

ρsL 0.314449(6) 0.67(3) 0.92

FIG. 4. The size dependence of 1/ν(L) defined in Eq. (13) for all
models. All data are fitted with Eq. (15) and give 1/ν = 1.406(6) in
C2 × 2, 1/ν = 1.401(6) in C2 × 4, and 1/ν = 1.404(5) in C4 × 4.
The correction exponents ω in Eq. (15) are 1.8(1), 1.6(1), and 1.7(1)
for C2 × 2, C2 × 4, and C4 × 4, respectively. The χ2/d.o.f. of all
fittings are close to 1. The inset figure zooms in with the same data
and fitted curves for only larger system sizes to show details of the
convergence more clearly.

ω = 0.65(1) in the end. Then taking the weighted average of
all three values gives ω = 0.66(1) for ρsL. Comparing with
the standard correction exponent ω ≈ 0.78 [35] in the O(3)
universality class, we can see that the system sizes included
in our fits are still not large enough to rule out the affection of
higher-order corrections even with L up to 160. Therefore the
value of the effective ω becomes very important in the FSS
study to obtain the critical point and critical exponents.

B. Universal quantities at critical points

As discussed above, in order to study the critical point we
use the fixed standard O(3) value 1/ν = 1.406. The goodness
of all fitting results also proves the theoretical prediction.
In this section we consider further tests by studying some
universal properties to give further evidence of the universality
class of the phase transitions.

We start with two critical exponents ν and η, which are two
sensitive universal quantities derived from the Binder ratio
and magnetization at the critical point, respectively, and share
scaling behavior similar to that of the physical quantities as
we discussed in Sec. II. To begin with, the correlation length
exponent is calculated using the scaling of 1/ν(L), which is
defined as Eq. (13), in Eq. (15). The simulation and scaling
results are shown in Fig. 4 for all three models. Fitting values
of 1/ν are the same for all models considering error. The
weighted average of all three 1/ν values is 1.404(4). Com-
pared with the best estimate of 1/ν = 1.4061(7) (reciprocal
value of ν = 0.7112(5) in Ref. [35]) in O(3) it is proved
again that the QPTs here are in the same universality class as
the CDM, the SDM, and the 3D classical Heisenberg model.
However, the accuracy of the estimation using scaling of
1/ν(L) in our work is much less compared to the previous
results. Usually ν can be obtained from the data collapse
together with the critical point and corrections. Here we use
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the combination of two sizes together at once in order to
lease the influence of the corrections. It does help as the
fitting results of ω are very large in our study, which means
that 1/ν converges very fast with the increase of L. But the
values of 1/ν(L) obtained from simulations have much larger
errors compared with other quantities studied before, which
brings in larger error to the final extrapolation value. Much
more computational effort is needed in order to obtain better
estimation of ν. We stop here in this paper as it is not a key
point of our work, but we want to point it out for other studies
using this procedure.

Another critical exponent considered here is the anomalous
dimension η. Once the critical point gc is obtained, we can
study the scaling of order parameter at gc using〈

m2
s

〉 ∝ L−(1+η)(1 + aL−ω ). (18)

Similar to 1/ν(L), we can also define η(L) from the scaling of
pairs of size L and 2L as

η(L) = ln
[〈

m2
s (L)

〉
/
〈
m2

s (2L)
〉]

ln(2)
− 1. (19)

In this way, the size dependence of η(L) is

η(L) = η + dL−ω, (20)

with correction to the first order. This time our fits use the
best-known estimation of η = 0.0375(5) [35] and leave the
other parameters in Eq. (20) free. The fitting results shown in
Fig. 5 again imply that it is correct to set η = 0.0375(5) here
as all QPTs are in the O(3) universality class. Furthermore, all
corrections are the same in the three models considering error
and the weighted averaged ω = 0.78(1) is the same as the first
correction exponent ω1 = 0.782(13) in the O(3) model [35].
This shows that η could be a good quantity in testing the cor-
rection exponent in the FSS study once a good estimation of gc

is obtained. And these scaling results also give us more confi-
dence in the accuracy of gc here for all three plaquette models.

FIG. 5. The size dependence of η(L) defined in Eq. (19) for
all three models. The function used for fitting curves connecting
simulation data is Eq. (20) with η = 0.0375 fixed from the 3D
classical Heisenberg model, and ω = 0.77(1) in both the C2 × 2 and
C2 × 4 models with χ 2/d.o.f. ≈ 1.14 and 1.16, while ω = 0.79(1)
in the C4 × 4 model with χ 2/d.o.f. ≈ 0.72.

FIG. 6. The Binder ratio R2c at all crossings of (L, 2L) versus
1/L for C2 × 2, C2 × 4, and C4 × 4 models. All data points are
connected by fitting curves using Eq. (17) with the parameters in
Table II.

At last we test the universal quantity Binder ratio R2 in
the thermodynamic limit. With crossing points extracted from
two different sizes (L and 2L) of the g dependence for R2

near the critical point, we can obtain the scaling of R2c(L) in
Fig. 6. The results of fits using Eq. (17) in Table II indicate
that R2c converges to the same value within one error bar
in three models with different checkerboard patterns. Except
for a further proof of the same universality class, the same
R2c in all cases implies that different plaquette models might
have the same aspect ratios as well. Taking the weighted
average of all R2c values gives R2c = 2.2547(4) for a series
of plaquette models. Thus, we predict that in all CLx × Ly

models according to our model definition, the Binder ratios
R2 would all converge to 2.2547(4) as long as there is an even
number of spins in one unit cell with simulated β = L.

IV. SUMMARY AND DISCUSSIONS

In this paper we carried out the FSS study on data with
high-precision using the SSE QMC method. The criticality of
three S = 1/2 Heisenberg models on the square lattice with
strong and weak couplings in plaquette patterns C2 × 2, C2 ×
4, and C4 × 4 was studied using the Binder ratio, uniform
susceptibility, and spin stiffness. By the joint fits combining
the scalings of crossing points from all three quantities we
have obtained the most accurate estimates of the critical points
gc for three plaquette models up to now. Our scaling analysis
implies the importance of corrections in FSS, and with only
one correction term the value of ω is more likely to be an
effective one. The effective ω does not change in different

TABLE II. Estimate results of the critical binder ratio R2c for the
C2 × 2, C2 × 4, and C4 × 4 models. The fitted curves are shown in
Fig. 6.

R2c ω χ 2/d.o.f.

C2 × 2 2.2549(5) 1.163(9) 1.00

C2 × 4 2.2549(7) 1.17(1) 1.29

C4 × 4 2.2542(9) 1.02(2) 0.84
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models as long as it describes the scaling behavior of the same
physical observable. The calculation of 1/ν, η, and R2 at the
critical point shows that QPTs in all three models are in the
O(3) universality class as predicted. The scaling of η using the
order parameter at the critical point also gives ω ≈ 0.78, the
same as ω1 determined in the 3D classical Heisenberg model,
which further supports the estimate of the critical points.

The fitting results of ω using different quantities in these
three models help us to understand the influence of corrections
in the scalings. With system sizes up to L = 160 the correction
exponent ω is still an effective one that differs with different
variables. However, fitting including higher orders of correc-
tion terms would be quite challenging and difficult. Here we
find that for models with detailed difference structures in our
case the effective ω does not change for the same quantity.
This might be helpful in further FSS studies on other similar
models. We also obtain the value of the universal quantity

R2 at the critical point, and we suggest that any CLx × Ly

models might have the same critical Binder ratio value with
LxLy being even and the same β/L. This value could be a very
important referee in later study of quantum phase transitions,
since the same Binder ratio value could be very convincing
supporting evidence to show whether a new phase transition
belongs to the O(3) universality class.
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