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Temperature-dependent resistivity and anomalous Hall effect in NiMnSb from first principles
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We present implementation of the alloy analogy model within fully relativistic density-functional theory
with the coherent potential approximation for a treatment of nonzero temperatures. We calculate contributions
of phonons and magnetic and chemical disorder to the temperature-dependent resistivity, anomalous Hall
conductivity (AHC), and spin-resolved conductivity in ferromagnetic half-Heusler NiMnSb. Our electrical
transport calculations with combined scattering effects agree well with experimental literature for Ni-rich
NiMnSb with 1–2% Ni impurities on Mn sublattice. The calculated AHC is dominated by the Fermi surface
term in the Kubo-Bastin formula. Moreover, the AHC as a function of longitudinal conductivity consists of two
linear parts in the Ni-rich alloy, while it is nonmonotonic for Mn impurities. We obtain the spin polarization of
the electrical current P > 90% at room temperature and we show that P may be tuned by chemical composition.
The presented results demonstrate the applicability of an efficient first-principles scheme to calculate temperature
dependence of linear transport coefficients in multisublattice bulk magnetic alloys.
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I. INTRODUCTION

Microscopic description of finite temperature effects in
magnetic materials represents a longstanding challenge for
ab initio theory despite tremendous progress over the past 20
years in numerically demanding calculations of small quan-
tities such as magnetocrystalline anisotropies or anisotropic
magnetoresistance (AMR) [1–4]. A simulation of electrical
transport coefficients at room temperature, that are important
for spintronics, requires coupling of electrons to phonons or
magnons.

One possibility of ab initio descriptions of electronic cou-
pling to magnons and phonons is based on the alloy analogy
model (AAM), which was recently employed to calculate
electrical conductivity and the anomalous Hall conductivity
(AHC) in elemental ferromagnets and binary alloys [5,6].
The AAM simulates the effect of phonons by transforming
atomic displacements from the equilibrium positions to the
multicomponent alloy. Also, spin fluctuations or the magnetic
orientational disorder can be treated analogically in a similar
way. The limiting case of full spin disorder is called the
disordered local moment (DLM) state [7–10] and describes
the paramagnetic state above the Curie temperature.

The AAM employing the coherent potential approximation
(CPA) and Kubo-Bastin transport theory was implemented
in the framework of the Korringa-Kohn-Rostoker method
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[5,6] while the supercell AAM within the Landauer-Büttiker
scattering formalism was employed in the tight-binding linear
muffin-tin orbital method (TB-LMTO) [11,12]. Both, the
AAM-CPA and supercell AAM approaches allow one to also
include on the same footing the substitutional or chemical
disorder which is temperature independent. While the AAM-
CPA is more efficient computationally, in particular in the
presence of several types of defects with different concentra-
tions, the supercell AAM can, at least in principle, e.g., de-
scribe correlated spin-fluctuations near the Curie temperature
(the magnetic short-range order).

Recent zero-temperature calculations (with only static
structural disorder) of electron transport within the TB-
LMTO-CPA theory give good agreement with experimental
data, e.g., for residual resistivity of partially ordered L10 FePt
alloys [13], stoichiometric Heusler alloys [14], Mn-doped
Bi2Te3 [15], antiferromagnetic (AFM) CuMnAs [16], for the
sign of the AMR in NiMnSb [4], and the magnitude of the
AMR in AFM Mn2Au alloys [17]. Several of us have em-
ployed the relativistic variant of the TB-LMTO CPA-AAM to
investigate an influence of high-temperature magnetic disor-
der on electrical resistivity in NiMnSb [18], the temperature-
dependent electrical resistivity and the AHC in Ni a Ni-alloys
[19], and the spin-resolved conductivities of the Cu-Ni alloys
[20] at nonzero temperature; also justification of using the
scalar-relativistic approximation for describing temperature-
dependent electrical resistivity was demonstrated [21].

NiMnSb is a prototypical half-Heusler ferromagnet known
for the presence of states only for one spin at the Fermi level
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[22,23] and its Curie temperature is as high as 730 K [24].
The measured value of the spin polarization of the electrical
current is 45–58% [25–28] at low temperatures and about 50%
at room temperature [29]; spin-polarized photoemission ex-
periments show the spin polarization of the emitted electrons
about 50% at 300 K [30]. The polarization of the ballistic
transport for correlated electrons of about 50% was calculated
for Au–NiMnSb–Au heterostructures by the SMEAGOL DFT
code [31].

The TB-LMTO method (both LSDA and LSDA+U) was
previously used to estimate the Curie temperature, exchange
interactions, magnon spectra, and magnetic moments in
Ni2−xMnSb alloys [32,33]. A saturation magnetization of
NiMnSb is changing only slightly (by 5–10%) from zero to
room temperature [26,34,35] and the magnetic moments were
investigated by a polarized neutron diffraction [36]. Treating
NiMnSb within LDA+U (for temperature T = 0) results only
in a small correction to magnetic moments [33,37].

Here we apply our CPA-AAM for simulating the temper-
ature dependence of conductivity, AHC, and spin-polarized
conductivity of half-metal NiMnSb. In contrast to the so-
far investigated materials using the AAM, NiMnSb is more
complex and with a richer phenomenology due to two mag-
netic sublattices, a wide range of possible structure defects
with similar formation energies [38] make it difficult to
compare calculations and experiment, and Dresselhaus sym-
metry of its Wyckoff positions allow for spintronics effects
such as the observed room-temperature spin-orbit torque in
strained NiMnSb [4]. The material has been intensively stud-
ied for over 25 years, including AHC and electric resistance
[24,25,36,39], which makes it a favorable system for testing
ab initio methods.

II. FORMALISM

A. Structure model and electronic structure calculations

We employ an ab initio relativistic TB-LMTO method in
combination with the multicomponent CPA and the atomic
sphere approximation (ASA) [40]. The effect of temperature
on the electronic structure is neglected in the DFT self-
consistent electronic structure calculations, which turned out
to be a good approximation for the temperature range from
zero to room temperature. We simulate the effect of disorder
via CPA-AAM in the transport calculations in conjunction
with using the electronic structure determined at T = 0 K.
Because of the displacement transformation of the TB-LMTO
potential functions required by the AAM, the spdf − basis
is used. We note that (standard) calculations without the dis-
placements usually only employ the spd − basis, especially
because of numerical expenses. The transformed potential
functions must be expressed in a larger basis; therefore,
functions for f −electrons are also included in our basis set.

NiMnSb has the cubic crystal structure C1b and the exper-
imental lattice constant [24] alatt. = 5.927 Å is used. Without
chemical disorder, NiMnSb consists of four FCC sublattices
Ni-Mn-empty-Sb equidistantly shifted along [111] direction.
The empty sublattice denotes interstitial sites, i.e., empty
positions in the half-Heusler lattice which would be occupied
in the full-Heusler structure. We investigate Mn- and Ni-rich

alloys with substitutional disorder, i.e., systems with sublat-
tices (Ni1−yMny)-Mn-empty-Sb and Ni-(Mn1−yNiy)-empty-
Sb, respectively, with y ∈ [0, 0.2]. Notation NixMn2−xSb with
x from 0.8 (Mn-rich) to 1.2 (Ni-rich) is used for brevity.

These defects are consistent with literature [4] and they
have low formation energies [38]: 0.49 and 0.92 eV per
formula unit for Mn- and Ni-rich case, respectively. Lower
formation energies were obtained for Ni- and Mn-atoms oc-
cupying the interstitial crystallographic positions (0.20 eV
and 0.73 eV per formula unit, respectively) but our calculated
resistivity as a function of temperature significantly underes-
timates experimental values for these systems.

B. Lattice vibrations

The AAM of finite temperature effects was recently imple-
mented within the TB-LMTO approach and applied to tran-
sition metals and simple alloys [19–21]. The model treats the
vibrational effects by introducing for each single lattice site
a mean-field CPA medium constructed from the chemically
equivalent atoms but shifted in different spatial directions
from their equilibrium position [5].

The displacements are chosen along high symmetry direc-
tions of the studied crystal. The shifts of atoms are realized
via a linear transformation of the LMTO potential functions
(with energy arguments omitted),

P0 = D(u)P̃0DT (u), (1)

where P̃0 is the LMTO potential function of an atom at
equilibrium position and the potential function P0 corresponds
to the atom displaced by the vector u. The displacement vec-
tors can be conveniently expressed in terms of displacement
matrix DL′s′,Ls(u)

DL′s′,Ls(u) = 8πδs′s
(2� − 1)!!

(2�′ − 1)!!

∑
L′′

(−1)�
′′
CLL′L′′

(2�′′ − 1)!!
JL′′ (u) .

(2)

In Eq. (2), CLL′L′′ = ∫
YL(r̂)YL′ (r̂)YL′′ (r̂) d� are the Gaunt

coefficients with real spherical harmonics YL, JL are reg-
ular solutions of the Laplace equation in the ASA [40],
and the quantum number L = (�, m) combining the orbital
quantum number � and the magnetic quantum number m
is used [40], and s and s′ are spin indices (s, s′ ∈ {↑,↓}).
The energy arguments and lattice-site indices are omitted for
the sake of brevity. For the summation index in Eq. (2), a
restriction � = �′ + �′′ holds; DL′s′,Ls(u) = 0 for �′ > � and
DL′s′,Ls(u) = δL′s′,Ls for �′ = �. After the transformation given
by Eq. (1), the screened TB-LMTO potential functions Pα

are obtained by using the matrix of screening constants α:
Pα = P0(1 − αP0)−1.

The increasing magnitudes of the displacements u corre-
spond to the rising temperature according to the Debye for-
mula. For N displaced atoms, the mean square displacement
reads 〈u2〉 = 1/N

∑N
i=1 |ui|2 and it is related to temperature T

via the Debye approximation [41,42],

〈u2〉 = 9h̄2

mkB�D

(
D1(�D/T )

�D/T
+ 1

4

)
, (3)
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for atoms with identical masses m and the material-specific
Debye temperature �D. A standard notation for the reduced
Planck constant h̄ and the Boltzmann constant kB is used and
the Debye function is Dn(x) = n/xn

∫ x
0 t n/(et − 1)dt . For sim-

plicity, we omit the quantum zero-temperature fluctuations,
i.e., the second term in Eq. (3). This omission is needed for
vanishing of the calculated residual resistivity (T = 0) for
ordered defect-free metallic systems [5]. Relative error in
the temperature–displacement conversion coming from this
neglect is about 15% at room temperature and 5% at 800 K,
and corresponding relative errors in the electrical resistivity
are about 27% and 10%, respectively.

C. Magnetic disorder

We investigate the influence of magnetic disorder on the
electrical transport within a model of tilted local moments.
The mean-field alloy was constructed by substituting a given
site occupied by a single local moment oriented along the z
direction by four different local moments tilted by the Euler
angle θ from the z axis symmetrically in the four directions x,
y, −x, and −y and parametrized by the second Euler angle
φ ∈ {0.0π, 0.5π, 1.0π, 1.5π}. Four directions are sufficient
for our case. This model is connected to temperature in the
same way as in the previous high-temperature study [18], i.e.,
the interpolation of measured magnetization [34] is used and
the reduced magnetization is identified with cos(θ ).

This approach interpolates between fully ordered spin fer-
romagnetic (FM) state (T = 0 K) and fully disordered spin
state (DLM, T above the Curie temperature). Attempts to
make descriptions of magnetic disorder more realistic were
published [5,12,43]. However, a fully ab initio theoretical
estimate of temperature-dependence of total magnetization
Mtot (T ) done by other authors can be also rather inaccurate
because it employs the classical Boltzmann statistics (Monte
Carlo) method, see the discussion in quaternary Heusler al-
loys [44].

We aim to estimate only the strength of the magnetic dis-
order contribution relative to the contribution from phonons
and chemical disorder. The order of magnitude is determined
from the energy difference between the disordered DLM state
and the FM ground state, which amounts to 
E ≈ 12 mRy
(0.16 eV) per formula unit. In such approximation, room-
temperature disorder roughly corresponds to θ = 0.10π . A
comparison to an experimentally observed change of the
saturation magnetization [26,34,35] would give θ = 0.15π .
The use of experimental Mtot (T ), if available, may be a better
choice but, in general, an accurate relation of the tilting angle
as a function of the temperature is missing.

D. Transport properties

The full conductivity tensor σμν (μ and ν are Cartesian
coordinates) is calculated by employing the Kubo-Bastin for-
mula. It consists of σ (1)

μν and σ (2)
μν which in Ref. [45] are called

the Fermi surface and the Fermi sea terms, respectively. The
first one can be separated into the coherent part σ (1,coh)

μν and
vertex corrections σ (1,v.c.)

μν , see Ref. [46]. We note that the
Fermi sea term contributes only to the antisymmetric part of

the tensor σμν ; the physical meaning is then related to the sum
of σ (1,coh)

μν and σ (2)
μν , see later Fig. 5.

The TB-LMTO method neglects electron motion inside the
Wigner-Seitz cells, the velocity operators describe only inter-
site hopings [47], and the resulting effective velocity operators
in a random alloy are spin-independent and nonrandom. The
polarization of the spin-resolved currents,

Pμμ = σ (1,coh),↑
μμ − σ (1,coh),↓

μμ

σ tot.
μμ

, (4)

describes a quality of the spin-dependent transport [20,48] for
the spin index s =↑ and s =↓. In the relativistic treatment of
the transport, strictly speaking, one cannot define precisely the
spin-resolved conductivities because of nonzero spin-flip con-
tribution to the total conductivity (spin-nonconserving term)

σ coh,flip
μν = σ (1,coh)

μν −
∑

s=↑,↓
σ (1,coh),s

μν . (5)

The spin-flip contribution was found to be small compared
to the total conductivity, e.g., for the Cu-Ni alloy in a wide
range of alloy compositions [20]. On the other hand, the spin-
flip contribution is essential, e.g., for the Ni-rich NiFe alloys
[49]. Calculating the coherent part of the conductivity tensor
projected onto the spin-up and spin-down terms is a sufficient
approximation for half-metals. The projected conductivity in
Eq. (4) is then

σ (1,coh),s
μν = σ0

∫ ∞

−∞
dE f ′(E ) Tr{vμḡs

+(E )vν[ḡs
+(E )

− ḡs
−(E )] − vμ[ḡs

+(E ) − ḡs
−(E )]vν ḡs

−(E )} ,

(6)

where ḡs
±(E ), and vμ is the averaged Green’s function and

velocity operator, respectively, expressed in an auxiliary form
suitable for the numerical implementation within the relativis-
tic TB-LMTO formalism after performing the configurational
averaging. A real-energy variable is denoted E and f ′(E )
is the energy derivative of the Fermi-Dirac distribution. To
simplify the notation, g±(E ) = g(E ± i0) is used. In Eq. (6),
σ0 = e2/(4πV0N0) depends on the charge of the electron e, on
the volume of the primitive cell V0, and on the number of cells
N0 in a large finite crystal with periodic boundary conditions.
If there was no spin-orbit interaction, in the two-current model
[50], the sum σ (1,coh),↑

μν + σ (1,coh),↓
μν would correspond to the

total coherent conductivity.
For an ideal half-metal (with exactly one of the spin-

channels insulating), this projection is valid and P → 1
(equals one without the spin-orbit interaction). If both chan-
nels are identical, e.g., for nonmagnetic materials, P = 0.

The effect of finite temperature is treated within the AAM.
Thus the configurationally averaged quantities ḡs

±(E ) are
calculated not only by averaging over the different alloy
configurations, but also over distinctly displaced (or magneti-
zation tilted) configurations. The contribution from the Fermi-
Dirac distribution can usually be neglected as we checked for
several transition metals (Pt, Pd, Fe, Ni). Thus we will use
the zero-temperature limits of the conductivity formulas CPA
configurationally averaged over the alloy and displacement
configurations.
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E. Computational details

The mesh of 150 × 150 × 150 k-points in the Brillouin
zone was used for transport calculations if not specified oth-
erwise. Smaller numbers of k-points as for, e.g., pure metals,
are required because of a large self-energy term originating
from chemical or temperature disorder. Increasing the mesh to
2003 k-points leads to a correction of 0.05 % for the isotropic
resistivity.

In previous reports, the Debye temperature was theoreti-
cally estimated to be between 250 and 300 K [39], measured
(312 ± 5) K [51] or 322 K [52], and calculated 327 K [53] and
270 K [54]. We used �D = 320 K (see later Fig. 4); the above
scatter in Debye temperature values leads to approx. 10%
error in the root-mean-square displacement

√
〈u2〉. The best

agreement between experimental data [25,39,55] as concerns
the slope of the calculated temperature dependence of the re-
sistivity is obtained for �D = 350 K and 2% Ni-rich NiMnSb.

The Debye theory was derived for systems of identical
atoms; for alloys and compounds, magnitudes of the atomic
displacements might be different for different species [56].
To get a rough estimation of sensitivity of the transport
properties to the displacement magnitudes, we investigated
(a) the magnitudes identical for each atom or (b) scaled
according to atomic masses [57]. In our case, for atomic
masses, m(Ni) : m(Mn) : m(Sb) ≈ 1 : 0.93 : 2.07 holds. The
TB-LMTO approach assumes empty spheres at the empty
positions in the half-Heusler lattice which would be occupied
in the full-Heusler lattice. The potential functions of the empty
sphere may be (i) formally displaced like other nuclei or
(ii) independent on atomic shifts. We have tested all four
possibilities, i.e., combinations of models (a) and (b), and
(i) and (ii) above. We have found deviations in the isotropic
resistivities of the order of 5% by assuming

√
〈u2〉 = 0.20 aB

and 0.25 aB, where aB is the Bohr radius. This value should
be considered as a systematic error of the AAM (later shown
by error bars in Fig. 4). In the following sections, identical
magnitudes of the displacements are assumed for all atoms.
Each atom was assumed to have eight different directions of
displacements (within the CPA) uniformly distributed around
its equilibrium position.

III. RESULTS

A. Calculated magnetic moments and density of states

The magnetic moment of the stoichiometric NiMnSb is
m = 4.0μB per formula unit, which agrees well with the
half-metallic character (the Fermi level in the minority gap),
with its integer number of electrons per formula unit and
it is in good agreement with experimental data [36] and
previous calculations [4,37]. In Fig. 1, we show the av-
erage moment, local magnetic moments, as well as local
Mn- and Ni-impurity magnetic moments on Ni and Mn sub-
lattices, respectively. Local moments for the stoichiometric
system are mNi = 0.26μB, mMn = 3.75μB, mSb = −0.05μB,
and mempty = 0.08μB; for 10% Ni-rich mNi = 0.20μB, mMn =
3.69μB, mSb = −0.07μB, mempty = 0.06μB, and mimpurity =
−0.64μB; and for 10% Mn-rich mNi = 0.24μB, mMn =
3.68μB, mSb = −0.05μB, mempty = 0.08μB, and mimpurity =
−1.88μB (the mempty denotes moment induced on empty

FIG. 1. Total averaged magnetic moment (per formula unit) of
Ni- and Mn-rich NiMnSb and spin magnetic moments of individual
atoms for zero temperature. The Ni/Mn-impurity data set presents
the local magnetic moments of Ni and Mn atoms placed on the
crystallographic position of the second atom.

spheres at the interstitial positions). Both the Mn and Ni impu-
rities tend to couple antiferromagnetically and thus decrease
the net moment with increasing disorder; however, the main
reason is slightly different for the Mn- and Ni-rich systems: In
the former one, Mn atoms on the Ni sublattice have opposite
directions of the magnetic moments with respect to Mn atoms
on their own sublattice and the sum of all the moments
decreases with increasing concentration of antiparallel Mn
moments. For the Ni-rich case, the concentration of Mn atoms
having large moment decreases and they are replaced by Ni
having moments much smaller (five to thirty times, see Fig. 1);
moreover, with the antiparallel orientation.

The spin-resolved density of states (DOS) of the studied
systems is displayed in Fig. 2. The stoichiometric NiMnSb
is the half-metal as indicated by the DOS in Fig. 2(b). Our
results are in agreement with literature [37]. The influence of
atomic displacements slightly broadens peaks in the DOS (see
Fig. 2 for 540 K) but the DOS around the Fermi level is almost
the same. The half-metallic character is thus preserved even at
nonzero temperatures.

The behavior of Ni-rich and Mn-rich samples differs
significantly. Mn atoms on Ni sublattice preserve the half-
metallic character of the alloy, see Fig. 2(a), while Ni atoms on
the Mn sublattice give a nonzero spin-down DOS at the Fermi
level for Ni concentration x � 1.02, see Figs. 2(d) and 3.
This opens the spin-down channel for the electron transport,
which in turn leads to an increase of the conductivity with
increasing Ni impurity content (for x � 1.07), see Fig. 6(a)
and also Fig. 11 in the Appendix. Later presented electrical
transport calculations are in agreement with these changes.
The inset [Fig. 2(c)] shows a minor influence of the magnetic
disorder (tilting of moments with θ = 0.1π ) on the DOS of
stoichiometric NiMnSb at both zero and finite temperature
(T ≈ 220 K).

Figure 3 presents the DOS at the Fermi level for the Ni-
rich NiMnSb. The negligible DOS in the minority channel is
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FIG. 2. Temperature and alloying disorder dependence of the half-metallicity in NiMnSb. Atomic concentrations are used as weights
of the local DOS and data for impurities (Mn and Ni). (a) The 10% Mn-rich NiMnSb preserves the half-metallic character for all of the
considered atomic displacements. Mn-impurity virtual bound state forms in the majority spin-channel. (b) Stoichiometric NiMnSb exhibits the
half-metallic band gap also at room temperature. Inset (c) shows that magnetic disorder (tilted magnetic moments with θ = 0.1π ) has almost
no influence on DOS, especially in the minority channel. (d) The 10% Ni-rich NiMnSb is no longer half metal and the states around EF are
almost independent on temperature.

preserved for small amounts (up to 2%) of Ni impurities. With
increasing Ni concentration, the difference between spin-up
and spin-down DOS is getting smaller. They become equal at
approximately 11% of impurities and the spin-down states are
dominant after this value.

For further investigation of the electronic structure in the
terms of the Bloch spectral function, see Appendix C which
shows smeared bands for the Ni-rich NiMnSb.

B. Temperature-dependent resistivity and anomalous
Hall effect calculation

Calculated temperature dependence of the resistivity and
the anomalous Hall effect (resistivity ρxy) are shown in Fig. 4.

FIG. 3. Total DOS at the Fermi level (solid lines) as well as
the local DOS for Ni impurities (dashed lines) are increasing with
higher substitution of Mn atoms by Ni. The spin-up states (red lines,
squares) are dominant for less than 10% of Ni impurities, after 12%
the spin-down states (blue lines, circles) prevail. The total DOS (sum
of the spin channels, not shown here) increases monotonically.

The results are in agreement with experimental data; mea-
sured resistivities are taken from Refs. [39,55], and experi-
mental ρxy was obtained by combining Refs. [24,55].

Experimentally observed resistivity of NiMnSb exhibits
a linear dependence on temperature [39,55] (up to room
temperature) which was ascribed to phonons [24]. The resis-
tivity calculated only with phonons and impurities (without
magnetic disorder) also leads to an almost linear dependence
for temperatures from 100 K to 300 K and our data agree
with measured values [39,55]. This agreement indicates that
phonons can be considered as the most important scattering
mechanism in this temperature range. The quadratic (nonlin-
ear) behavior of calculated electrical resistivities as a function
of temperature is important especially for low temperatures
(T � 100 K) and experimental resistivities exhibit only a
small deviation from the quadratic form [34]. The residual re-
sistivity and the weak influence of magnons are in agreement
with other studies [4,24,39,55]. It is consistent with the high
Curie temperature, resulting in a weak influence of magnetic
disorder and it also agrees with the DOS showing a negligible
influence of the magnetic disorder on the number of carriers
at the Fermi level [Fig. 2(c)]. Our results also agree with
the observed sign of the AMR [4] and its qualitatively good
description is also given by the finite-relaxation time (FRT)
approximation, see Appendix B.

The comparison of calculated and measured ρ and ρxy in-
dicates that the presence of the Mn-rich phase in real samples
is unlikely because an increasing presence of additional Mn
atoms dramatically increases both the resistivity and ρxy at the
zero temperature and, moreover, slopes of these quantities as
a function of temperature are much higher than the measured
counterparts [24,36], see Fig. 4. The calculated transport
properties as a function of Ni impurity are nonmonotonic,
both the resistivity and ρxy have maxima around a 10% Ni-rich
sample. The measured residual resistivity could correspond to
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FIG. 4. (a) The isotropic resistivity and (b) anomalous Hall effect (ρxy) of Ni- and Mn- rich NiMnSb monotonously increase with increasing
temperature. Experimental results [24,39,55] agree with our theoretical data obtained for the Ni-rich case with low concentration of impurities.
(c) The model of finite-relaxation time (stoichiometric NiMnSb) for an unknown disorder qualitatively agrees with calculated data at nonzero
temperature.

a presence of additional Ni atoms on the empty atomic sites
(unoccupied positions of the half-Heusler structure); however,
the calculated results contradict the experimental data that
exhibit much steeper temperature dependence of both the
resistivity and the ρxy for these defects.

Comparing our theoretical results with data from literature
(especially Refs. [24,55]), the best mutual agreement is ob-
tained for Ni-rich samples with 1–2% of Mn atoms replaced
by Ni; we note that the exact composition and chemical disor-
der in the experimental samples is unknown. In real samples,
a wide range of different defects may occur but a systematic
investigation of the huge number of different combinations of
such defects goes beyond the scope of this paper.

In calculations including the magnetic disorder that corre-
sponds to room temperature, transport properties differ less
than by 1% when only Mn moments are tilted or when mo-
ments of all atoms are tilted. It is caused by a dominant con-
tribution to the total moment from Mn atoms. The influence
of magnetic disorder on the electrical resistivity for the stoi-
chiometric NiMnSb is negligible up to room temperature as
can be seen in Table I. Experimentally documented decrease
of the saturation magnetization is from 4.0μB at zero tem-
perature to 3.6μB at room temperature [26,34,35]. When we
assume magnetic disorder corresponding to the same change
of magnetization, θ = 0.14π , we obtain electrical resistivity
between ρ = 17 μ� cm and ρ = 25 μ� cm (see the caption
of Table I). It is in perfect agreement with experimental values
of ρ = 23 μ� cm. The small influence of magnetic disorder
on electrical transport properties agrees with literature [55]
and it is supported by negligible influence on the DOS at the
Fermi level, see the inset in Fig. 2 for θ = 0.1π .

The calculated weak dependence of the resistivity on mag-
netic disorder justifies neglecting magnetic disorder in fur-
ther discussion for T � 300 K. However, the larger magnetic
disorder (for larger temperatures) dramatically decreases the
total magnetic moment and increases the resistivity value, see
Table I.

Chemical impurities decrease the total magnetic moment,
similar to the pure magnetic disorder. If the scattering prop-
erties are considered as a function of the alloy magnetization,

results obtained by the different scattering mechanisms (mag-
netic disorder and chemical impurities) quantitatively agree
with each other.

C. Anomalous Hall effect mechanism in NiMnSb

We calculated the σ (1)
xy and σ (2)

xy contributions to the anoma-
lous Hall effect at zero temperature. In Fig. 5, we show the
separation of the AHC into σ (1)

xy and σ (2)
xy contributions; for

a detailed analysis of the contributions see Appendix A. We
observe a strong dependence of the AHC magnitude on the
type of disorder. In general, the AHC is much larger for
the Ni-rich system (σxy ∼ 103 S/cm) than for the Mn-rich
NiMnSb (σxy ∼ 101 S/cm). Both the Mn and Ni rich cases
show the same positive sign of the AHC in agreement with
experimental literature [4,39,55]; an exception of a small
negative AHC is found for the 2% Mn-rich material due to
large negative vertex corrections. The vertex part of the AHC
diverges in the dilute limit, approaching zero disorder, of
both Ni- and Mn-rich branches. Similar behavior is obtained
in binary transition-metal alloys due to the skew-scattering

TABLE I. Pure NiMnSb: Isotropic resistivity (in μ� cm, seven
rows and three columns in the right bottom block of the table) for
different magnitudes of displacements (

√
〈u2〉) and tilting angles (θ ).

Empty values in the table were smaller than the numerical accu-
racy. Room temperature roughly corresponds to

√
〈u2〉 ≈ 0.21 aB for

�D = 300 K (between the two bold values), and the experimental
decrease of saturation magnetization is up to 10% [26,34,35].

Tilting angle, Total mag. Displacement,
√

〈u2〉
θ moment 0.00 aB 0.20 aB 0.25 aB

0.00π 4.04 μB - 15.0 23.4
0.10π 3.82 μB 0.47 15.6 24.0
0.14π 3.58 μB 1.38 16.7 25.2
0.20π 3.16μB 6.47 22.4 31.8
0.30π 2.25μB 42.5 59.3 68.3
0.40π 1.17μB 120 133 140
0.50π 0.00μB 173 180 184
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FIG. 5. Negative sign of the calculated (T = 0) total AHC σxy

(black solid line) was observed only for Ni0.98Mn1.02Sb, which is
caused by a small contribution of the intrinsic term (red dashed line
with squares) but dominant vertex corrections (blue dashed line with
circles).

mechanism [58]. The small magnitude of the Fermi sea term
allows us to neglect the σ (2) term in the temperature study
of the AHC by the AAM, which substantially speeds up our
calculations.

Simulating up to 20% of Mn or Ni-rich swapping disorder
allows us to vary in our calculations the residual resistivities
over a broad range from ρ ≈ 0 for stoichiometric NiMnSb
to 150 μ� cm for 20% of Mn-rich and 11 μ� cm for 10%
Ni-rich materials. In Fig. 6(a), we show the dependence of the
longitudinal resistivity on the disorder. While the resistivity
monotonically increases for the Mn-rich system, consistent
with the appearance of the virtual bound state [Fig. 2(a)], for
the Ni-rich case we observe a maximum around 10% of Ni.

In Figs. 6(b) and 6(d), we present the anomalous Hall
versus longitudinal conductivity dependence for both the Mn-
rich and Ni-rich calculations. A linear fit of the dependences is
shown in Figs. 6(b) and 6(d). In the insets [Figs. 6(c) and 6(e)],
we also show the experimentally relevant anomalous Hall

angle ρxy/ρxx obtained by the full inversion of the conductiv-
ity tensors (instead of the usually used approximation ρxy ∼
σxy/σ

2
xx). A part of the Ni-rich branch belongs to a rather

high conductivity regime (105 S/cm) and follows linear de-
pendence σxy ∼ σxx, signaling the dominating extrinsic, skew-
scattering mechanism of the AHC [59,60]. In contrast, the
behavior of Mn-rich system with higher conductivities is non-
monotonic but different from a power dependence reported
in literature [60]. It is rather linear for larger conductivities
(small Mn disorder below 6%), where the AHC is influenced
by the disorder [59], see Fig. 6(d).

Interestingly, for Ni-rich branch around ∼10 %, the slope
of the AHC as a function of σxx changes sign. It signals
multiband character of the transport [Fig. 6(b)], see also
Appendix C. As long as the Friedel sum rule [60,61] can be
applied, the change of the AHC sign can be attributed to the
change of the dominating spin channel at the concentration of
∼10 % Ni-rich (Fig. 3).

We note that the half-metal and multiband character of the
transport in NiMnSb can be responsible for notably different
behavior than that generally reported in metals. For metals,
only one slope exists (variations of disorder are typical on the
level of a few percents) and it is difficult to achieve more than
one conductivity regime [59,60].

D. Spin-resolved electrical conductivities

To obtain maximal efficiency of the spin-polarized cur-
rents, their polarization P should approach unity and both the
spin-flip part (of the coherent conductivity) and the vertex
part (of the total conductivity) should be negligible. Ni-rich
NiMnSb has ten or more times larger conductivity of the
majority channel than similar concentration of the Mn-rich
material and, unlike the minority channel, it strongly depends
on temperature (especially Ni-rich), see Appendix D.

The Mn impurities do not destroy the half-metallic char-
acter of the system while the Ni impurities lead to nonzero
density of minority carriers at the Fermi level (Fig. 2). It
leads to the spin polarization that is almost unity for the
Mn-rich case (for all temperatures) and in the Ni-rich region

FIG. 6. Total resistivity (a) for zero and finite (540 K) temperature is monotonic in the Mn-rich region but it has a maximum in the Ni-rich
case at 10% and 8% of Ni impurities for T = 0 and 540 K, respectively. Zero-temperature AHC plotted as a function of the total conductivity
has (b) two piecewise linear parts for the Ni-rich NiMnSb, one having a negative slope (fitted from 1, 2, 4, 6, 8, and 10% of Ni) and the second
with a positive slope (10, 12, 14, 16, 18, and 20% of Ni). The parts are distinguishable when the resistivity for the same data is plotted (c). The
same dependence in the Mn-rich region (d) exhibits a linear (2, 4, and 6% of Mn impurities) and a nonmonotonic (8, 10, 12, 14, 16, 18, and
20% of Mn) behavior; a ratio of resistivities (e) shows a smooth transition between both parts.
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FIG. 7. The spin-polarization of the electrical current for the in-
plane direction is almost unity for the Mn-rich NiMnSb (small total
conductivity) and it is predicted to be larger than 90% also in the
Ni-rich system at room temperature.

it decreases with increasing impurity concentration or increas-
ing temperature, see Fig. 7. However, even at room temper-
ature and in the Ni-rich case, P > 0.9, which ensures highly
polarized electrical current. The influence of the spin-flip term
and vertex contributions on the polarization P is small, see
Appendix D, which justifies employing Eq. (4).

Combined effects of magnetic and atomic displacements
were investigated for stoichiometric NiMnSb. The change
between T = 0 and room temperature (

√
〈u2〉 = 0.21 aB, θ =

0.1π ) is 0.8% in the polarization value P.
We focused on systems similar to samples from literature

(about 1 to 2% Ni-rich, see Sec. III B) but experimental P(T )
was measured with a wide range of samples: 44% for a free
surface of a bulk material with MS = 3.6μB [28], 45% for a
thin film with MS = 4.0μB [25], 45% for bulk NiMnSb with
MS = 3.6μB [26], 58% for thin films [27], and from 20–50%,
depending on temperature in polycrystalline samples [30].

Saturation magnetization MS < 4.0μB indicated disordered
samples but the disorder is unknown, which makes it hard
to reproduce. The discrepancy is not caused by the magnetic
disorder [18]. It is dominant close to the Curie temperature,
where spin fluctuations lead to P = 0; the zero polarization
cannot be achieved by phonons themselves. For room temper-
ature, the decrease of the polarization caused by the magnetic
disorder is negligible, i.e., P > 0.98 for θ ≈ 0.14π .

We also investigated the polarization anisotropy. Similarly,
the small AMR (difference between σzz and σxx = σyy is
around 0.25%), the polarization Pzz is almost the same as
Pxx = Pyy.

The polarization for Mn- and Ni-rich cases with impurities
occupying the empty crystallographic position of the Heusler
structure was also calculated. The Ni atoms on interstitial
positions behave similarly to the Ni-rich system with Mn
atoms substituted by Ni impurities; on the other hand, for the
20% Mn-rich case with access Mn in the interstitial positions,
P(0 K) ≈ 91 % and P(400 K) ≈ 87 %. This demonstrates a
strong dependence of the polarization on the kind of chemical
disorder.

IV. CONCLUSIONS

We have formulated the CPA-AAM approach in the frame-
work of the fully relativistic TB-LMTO method and Kubo-
Bastin formula for the calculation of the longitudinal and
anomalous Hall conductivities and applied it to the half
Heulser FM NiMnSb with alloy and temperature-induced
disorder. The main conclusions are (i) The calculated tem-
perature dependence of the longitudinal conductivity is dom-
inated by the phonon contribution and it is in agreement with
experimental literature. Specifically, the Ni-rich alloys (from
1–2% of Ni atoms on the Mn sublattice) fit the experimental
data [24,55]. (ii) The Ni-rich samples are also consistent with
the sign of the AMR found in literature. (iii) The effect of the
Fermi-sea contribution to the AHC is generally weak although
it is stronger for the Mn-rich case. The anomalous Hall effect
in Ni-rich NiMnSb is dominated by the σ (1) part (“integration

FIG. 8. σ (1)
μν (left axes, red lines with triangles) and σ (2)

μν (right axes, blue lines with squares) contribution to the anomalous Hall effect in
NiMnSb: (a) Total conductivity, (b) its coherent part, and (c) the vertex contribution to σ (1)

xy .
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FIG. 9. Bloch spectral functions displayed for the Fermi level and kz = 0 for the majority spin (a), (b), and (c) and the minority one (d),
(e), and (f); (a) and (d) for Ni1.06Mn0.94Sb, (b) and (e) for Ni1.10Mn0.90Sb, and (c) and (f) for Ni1.14Mn0.86Sb.

over the Fermi sheets”) of the conductivity, while for the
Mn-rich case, the σ (2) (“complex integration over the valence
spectrum”) term represents a sizable contribution of the order
of 20%. Moreover, qualitatively different behavior of the AHC
was observed for the Mn- and Ni-rich systems. (iv) The cal-
culated spin-current polarization is typically greater than 0.9
for studied concentrations of the impurities and its behavior
correlates with the half-metallic-like character (small amount
of states in the minority channel). Its values overestimate
available experimental data. (v) The calculations indicate the
possibility to influence current spin polarization by tuning
chemical composition.
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APPENDIX A: CONTRIBUTIONS TO THE
ANOMALOUS HALL CONDUCTIVITY

We study an influence of different contributions to the
AHC, see Sec. II D. Its total value (Fig. 5 for T = 0) is
given by the σ (1)

xy and σ (2)
xy terms. The major contribution

comes from the former one, which is about two orders of
magnitude larger than σ (2)

xy , see Fig. 8. This justifies omitting
σ (2)

xy in the temperature-dependent calculations. While the
concentration dependence of σ (1,coh)

xy consists of two linear
parts (one in the Mn-rich region, the second one for the
Ni-rich system), σ (1,v.c.)

xy diverges for small concentrations of
impurities.
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FIG. 10. Bloch spectral functions of (a) Ni1.06Mn0.94Sb, (b) Ni1.10Mn0.90Sb, and (c) Ni1.14Mn0.86Sb for spin-up (upper panels) and spin-
down (lower panels) channels.

APPENDIX B: FINITE-RELAXATION TIME MODEL
AND THE ANISOTROPIC MAGNETORESISTANCE

The FRT model corresponds to the spin- and orbital inde-
pendent scatterings, which is technically realized by adding
a finite imaginary constant (Im z) to the Fermi energy in
corresponding Green functions in the Kubo-Bastin equa-
tion. The FRT model assumes zero vertex corrections and
does not allow us to separate out the phonon and spin-
disorder contributions to the conductivity tensor. The cal-
culated negative AMR sign for Hall bars oriented along
the [110] directions within the FRT is consistent with
previous estimates of AMR in NiMnSb [4], i.e., ρ(m ‖
j) < ρ(m⊥j), where ρ is the longitudinal resistivity and j

the electric current. Remarkably, the AMR value is well
described within the FRT applied in combination of the
10% Ni-rich disorder. Our calculated value changes from
(ρm‖E [110] − ρm⊥E [110])/(ρm‖E [110] + ρm⊥E [110])=−1.6% (for
Im z = 10−5 Ry corresponding to low temperatures) to
−0.3 % (roughly to room temperature residual resistivity val-
ues, Im z = 3 × 10−3 Ry). The sign of the AMR is the same
as in Mn-doped GaAs and opposite to the typical transition
metal ferromagnets Ni, Co, and Fe.

APPENDIX C: BLOCH SPECTRAL FUNCTIONS

In this Appendix, the electronic structure is visualized
by using the spin-resolved Bloch spectral functions [40]

FIG. 11. The spin-resolved in-plane (perpendicular to the magnetization) coherent conductivity for the majority channel (a) differs by
several orders of magnitude for the Mn- and Ni-rich cases. On the other hand, the conductivity for the minority channel (b) is almost
independent of the temperature, except for extreme displacements in the Mn-rich case. Both the spin-flip term (c) and vertex part of the
conductivity (d) are larger for the Ni-rich system than in the Mn-rich region.
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As(k, E ), where s ∈ {↑,↓} is the spin index, k is a reciprocal-
space vector, and E is the electron energy. For 6, 10, and
14% of Ni-rich NiMnSb, we plot in Fig. 9 the Bloch spectral
function for E = EF and in Fig. 10 the energy-dependent
spin-resolved Bloch spectral function along the L − � − X
path in the reciprocal space.

We observe that at 10% of Ni impurities in the Ni-
rich system minority-spin bands smeared due to disorder
emerge at the Fermi surface (region marked by the violet
circle in Fig. 10(b)), also visible for 14%, but absent for
6%. These bands may be responsible for the AHC slope
change, Fig. 6, where we observe smearing out of the spin-
down band at the � point and emergence of more spectral
weights at around the X point for the critical Ni disorder. See
also Fig. 9 for kz = 0 and total DOS at the Fermi level in
Fig. 3.

APPENDIX D: SPIN-RESOLVED TRANSPORT
QUANTITIES

The spin-resolved conductivity is crucial for spintronic
applications but its measurement is difficult. The total conduc-
tivity is the largest (infinitely high) for stoichiometric NiMnSb
with resistivity going to zero.

For most of the impurities and temperatures, the conduc-
tivity of the majority spin channel is at least two orders of
magnitude larger than the vertex contribution and about four
orders of magnitude larger than the spin-flip term (Fig. 11).
The spin-flip term [Fig. 11(c)] and the vertex contributions
[Fig. 11(d)] are at least three orders of magnitude smaller than
the conductivity of the majority channel. These features jus-
tify the simple definition of the spin polarization of the current
in terms of the coherent majority and minority conductivities
in Eq. (4).
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