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A Hamiltonian formalism is applied for the investigation of nonlinear spin wave dynamics under the influence
of antisymmetric magnetic interactions. In the framework of this formalism we account not only for symmetric
magnetic interactions (exchange, dipole-dipole, magnetocrystalline anisotropy), but also for antisymmetric
interactions, such as Dzyaloshinskii-Moriya exchange interaction. The account of antisymmetric exchange,
in general, could lead to the appearance of an additive nonreciprocal term in the spin wave dispersion law.
We present the generalization of the linear transformation for the diagonalization of quadratic part of the
Hamiltonian (so-called “third Holstein-Primakoff transformation”) for the antisymmetric case, which allowed
us to obtain generalized expressions for the coefficients of the nonlinear three- and four-magnon interactions.
As an example, nonlinear spin wave interactions in ultrathin ferromagnetic nanowires and films subjected to
interfacial Dzyaloshinskii-Moriya interaction (IDMI) are considered. It was found that three-magnon interaction
coefficients in the “Damon-Eshbach” geometry are nonzero only in the case of the noncollinear interacting
spin waves, and vanish in the case of the collinear spin waves. It was also found that the nonlinear spin wave
frequency shift caused by the four-magnon interaction is nonreciprocal, and has the sign opposite to that of the
nonreciprocal term in linear spin wave dispersion, so that the IDMI-induced nonreciprocity of the spin wave
spectrum decreases with the increase of the spin wave amplitude.
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I. INTRODUCTION

One of significant advantages of spin waves (SWs) as
signal carriers for microwave signal processing is the rela-
tively low amplitude levels at which SWs (or magnons) start
to demonstrate nonlinearity, and can be involved in nonlin-
ear processes, including parametric interaction with electro-
magnetic pumping, three-wave, four-wave, and higher-order
magnon-magnon interaction processes [1–3]. Nonlinear SW
properties manifest themselves in various phenomena, such as
parametric SW instability [4–7], saturation of the ferromag-
netic resonance and foldover effect [8–12], nonlinear decay
of SWs [13,14], and SW turbulence and chaos [2,15,16].
Exploration of these nonlinear phenomena made possible the
development of nonlinear microwave signal processing de-
vices, such as frequency-selective power limiters and signal-
to-noise enhancers based on three-wave interaction [1,17,18],
nonlinear delay lines based on formation, propagation and
manipulation of SW solitons caused by the four-wave inter-
actions [19–25], as well as the nonlinear spin wave switches
and logic devices [26–29].

To understand and explore nonlinear SW processes, one
needs to know which processes are allowed for a particular
group of SWs, and needs to be able to evaluate the efficiency
of these processes. Obviously, the understanding of nonlinear
SW properties is also necessary for the successful devel-
opment of linear SW devices since the nonlinear processes
often limit the power dynamic range of these linear devices.
Theoretically, the most general and powerful approach for
the quantitative analysis of nonlinear SW interactions and
calculation of the efficiencies of multimagnon interaction

processes (that is, nonlinear SW coefficients) is the classical
Hamiltonian formalism for SW that was originally proposed
by Schlömann [30], and, then, developed in Ref. [2]. In the
framework of this formalism the components of the dynamical
magnetization vector are represented in terms of two scalar
canonical Hamiltonian variables a(r, t ) and a∗(r, t ) [2]. The
coefficients of the nonlinear multimagnon interactions are
derived using the expansion of the Hamiltonian function for
the magnetization dynamics into a series of spatial Fourier
harmonics of the above-mentioned canonical variables, while
the dynamics is governed by standard Hamiltonian equations
[31]. This Hamiltonian formalism for the magnetization dy-
namics was extensively used for the investigation of nonlinear
SW dynamics under parametric pumping (see Refs. [2,32]
and references therein) and SW parametric instabilities in
different geometries [6,7,14]. More recently, the large-angle
magnetization dynamics induced by spin-transfer torque, was
explored in Refs. [33,34].

Calculation of nonlinear coefficients in the framework of
the above-described Hamiltonian approach is straightforward,
but rather cumbersome algebraically when applied to par-
ticular geometries (e.g., thin films) [35,36], and cannot be
easily generalized. Krivosik and Patton, using effective SW
tensor formulation [6], derived explicit general expressions
for nonlinear coefficients (up to four-wave coefficients) in a
uniformly magnetized sample, assuming that normal modes
of the system are plane waves [37]. Their theory is suitable
for bulk samples, fundamental modes of ferromagnetic films
and nanowires, ferromagnetic resonance of nanostructures,
and allows one to take into account symmetric magnetic
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self-interactions, quadratic in magnetization. Nonuniform ex-
change, magnetodipolar interaction, and uniaxial anisotropy,
which often are the most important interactions, belong to the
family of symmetric quadratic interactions, and are described
by symmetric tensor operators.

However, not all the quadratic magnetic self-interactions
are symmetric. In magnetic multilayers and materials with a
specific crystal structure the antisymmetric exchange interac-
tion, which is usually called “Dzyaloshinskii-Moriya” inter-
action (DMI), can appear and play an important role [38,39].
The DMI became of a significant research interest recently
when it became possible to fabricate ultrathin ferromagnetic
(Fe, permalloy, CoFe, etc.) films on a substrate made of a
heavy metal characterized by a large spin-orbit coupling (W,
Pt, etc.). In such systems at the interface between the ferro-
magnet and the heavy metal, the interfacial Dzyaloshinskii-
Moriya interaction (IDMI) manifests itself and significantly
influences the magnetization dynamics [40–42]. In particu-
lar, IDMI can stabilize topologically nontrivial magnetization
states [43,44], or lead to the nonreciprocity of the SW spec-
trum in magnetic films or nanowires magnetized to saturation
[41,45–48].

SW nonreciprocity could be very important for microwave
signal processing [49–55], and the use of IDMI in thin
ferromagnetic films is the most promising way to achieve
substantial nonreciprocity of SWs with the wavelength of
100 nm and below. Therefore, it is important to investigate
linear and nonlinear SW properties in magnetic materials with
IDMI. In particular, it is critical to investigate the variation of
SW spectrum at high SW amplitudes and calculate the three-
wave nonlinear SW coefficients that determine the threshold
of the SW parametric instability. This knowledge is especially
important for the successful development of parametric [54]
and spin-torque [56–58] IDMI-based devices, in which high
amplitudes of SWs are easily realized.

The IDMI is not the only example of antisymmetric mag-
netic interactions. Different kinds of bulk Dzyaloshinskii-
Moriya interactions, which exist in magnetic crystals
with specific broken symmetries, are nonsymmetric too
[38,39,59,60]. Also, the spin-flexoelectric interaction, which
was predicted to manifest itself in ferromagnetic insulators
under applied electric field [61,62], also belongs to the family
of antisymmetric interactions.

The main aim of our current work is to generalize the
existing theory of nonlinear spin wave dynamics based on
the Hamiltonian approach [2,35,37] to the case of any mag-
netic self-interactions, quadratic in magnetization. Similarly
to Ref. [37] we assume that ferromagnetic sample is in the
saturated state, and elementary excitations in this sample are
plane SWs. Throughout our current work we keep the nota-
tions of Ref. [37], and point out explicitly the main differences
which appear due to the presence of nonsymmetric magnetic
interactions.

The paper is organized as follows. In Sec. II an overview
of the Hamiltonian formalism is given, and magnetic Hamil-
tonian function is derived in terms of the magnetization
components and complex amplitudes of the plane spin waves.
The expansion of the Hamiltonian function in a series of
Fourier amplitudes of canonic variables ak(t ) and a∗

k(t ) up
to the fourth-order terms is presented in Sec. II E. The

diagonalization of the quadratic part of the SW Hamiltonian
using the generalized third Holstein-Primakoff transforma-
tions and expansion of the Hamiltonian function into linear
modes are given in Sec. III. In Sec. IV, as an example of
application of the developed formalism, we derive general
expressions to calculate three-wave splitting efficiency and
four-wave nonlinear frequency shift of the SWs in ferromag-
netic films subjected to IDMI. Finally, conclusions are given
in Sec. V.

II. MAGNETIC HAMILTONIAN FUNCTION

A. Overview of the Hamiltonian formalism

The most important step in the classical Hamiltonian ap-
proach is the transformation of the natural dynamic variables
of the problem (in our case, components of the dynamical
magnetization) into canonical variables a, a∗ in which the
energy of the studied system becomes a Hamiltonian function.
The Hamiltonian function is, commonly, a functional of the
full energy of the system E . In the study of ferromagnetic
materials, however, it is more convenient to use a reduced
Hamiltonian function [30,37]

H = H[M(r, t )] = γ E

MsV
, (2.1)

where γ is the modulus of the gyromagnetic ratio, Ms is
the saturation magnetization, and V is the volume of the
ferromagnetic material. The Hamiltonian function (2.1) is
measured in the units of frequency. The canonical variables
a(r, t ) and a∗(r, t ) are introduced as

α⊥(r, t ) = a(r, t )
√

2 − a(r, t )a∗(r, t ), (2.2a)

αz(r, t ) = 1 − a(r, t )a∗(r, t ). (2.2b)

Here, αx,y,z = Mx,y,z/Ms are the normalized magnetization
components and α⊥ = iαx + αy is the complex dynamic mag-
netization variable. Equations (2.2) use the convention that
static magnetization is directed along the z axis. It is clear
that |α⊥|2 + α2

z = 1, i.e., the transformation (2.2) satisfies the
condition of conservation of the magnetization vector length.

When Hamiltonian function of the system is expressed in
terms of the canonical variables, the dynamical equations for
the variables a(r, t ) and a∗(r, t ) can be written in a standard
Hamiltonian form:

i
da(r, t )

dt
= δH

δa∗(r, t )
, −i

da∗(r, t )

dt
= δH

δa(r, t )
. (2.3)

The next step in the Hamiltonian formalism for SW is the
expansion of a(r, t ) into a series of plane waves (in the case
when the plane waves are the normal modes of the system):

a(r, t ) =
∑

k

ak(t )eik·r, (2.4)

where new canonical variables ak(t ) describe amplitudes of
SWs with the wave vector k. Since the Fourier transform is
canonical, the dynamical equations for ak(t ) have the same
form as Eq. (2.3), namely,

i
dak(t )

dt
= ∂H

∂a∗
k(t )

, −i
da∗

k(t )

dt
= ∂H

∂ak(t )
. (2.5)
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The change of the variational derivative in Eq. (2.3) to the
partial derivative in Eq. (2.5) is related with the fact that H
is a functional in terms of a(r, t ), but becomes a polynomial
function in terms of the Fourier amplitudes ak(t ).

After the transformation (2.2), the Hamiltonian function
can be developed as a series in the SW Fourier amplitudes ak

and a∗
k and, thus, can be represented as H ≈ H(0) + H(1) +

H(2) + · · · , where the superscripts indicate the number of
amplitudes ak and a∗

k in the corresponding term. The term H(0)

which does not contain any SW amplitudes determines the
energy of the ground state, H(1) describes the linear excitation
of SWs by external forces (e.g., by a microwave magnetic
field), the term H(2) determines the “kinetic” energy of the
system in the linear regime defined by the linear spectrum of
the system SW eigenmodes, and all the higher-order terms
describe the nonlinear interactions between the SWs. It has
been shown in Ref. [2] that in most cases it is sufficient to
consider the expansion of the Hamiltonian function up to the
fourth order H(4) in terms of the variables ak and a∗

k .
Finally, it is, usually, convenient to diagonalize the

quadratic part H(2) of the SW Hamiltonian using the third
Holstein-Primakoff (or u-v Bogoljubov) transformation, and
introduce the new (elliptically polarized) variables ck and
c∗

k , which describe the amplitudes of the normal linear SW
modes. The derivation of the nonlinear terms H(3) and H(4) of
the Hamiltonian function in terms of the variables ck and c∗

k
is the final step, which gives the coefficients of the nonlinear
(three- and four-wave) SW interactions.

B. Terms of the magnetic Hamiltonian function

The first step in the Hamiltonian formalism is the deriva-
tion of the Hamiltonian function H in terms of the magne-
tization vector M(r, t ). A generic expression for H can be
written as

H = − γ

MsV

∫
M(r, t ) · Be(r, t )dr

− 1

2

γ

MsV

∫
M(r, t ) · BM (r, t )dr − · · · . (2.6)

Here, the first term corresponds to the Zeeman energy of
magnetization in the external magnetic field Be, which can
be both space and time dependent. The second term repre-
sents the interaction of the magnetization with the internal
field BM , which is produced by the magnetization itself. For
most common magnetic self-interactions, which are quadratic
functionals in terms of magnetization, the field BM can be
conveniently expressed as

BM (r, t ) = −μ0

∫
N̂(r, r′) · M(r′, t )dr′, (2.7)

where N̂(r, r′) is the tensor operator describing magnetic self-
interactions. It consists of the sum of different contributions,
the most important of which are exchange, magnetodipolar,
and anisotropy contributions. The isotropic exchange interac-
tion is described by the operator

N̂ex(r, r′) = −λ2
exδ(r − r′)Î∇r · ∇r′ , (2.8)

where λex = √
2A/μ0M2

s is the exchange length of the mag-
netic material, A is the exchange stiffness, Î is the unit matrix,

and subscripts of the nabla operators denote the coordinates
(r or r′) to which the operator is applied. Magnetodipolar in-
teraction in the magnetostatic approximation, i.e., neglecting
retardation effects, is expressed via the magnetostatic Green’s
function [63]

N̂dip = 1

4π
∇r

(
∇r′

1

|r − r′|
)

. (2.9)

The uniaxial magnetic anisotropy is given by

N̂an(r, r′) = − Ban

μ0Ms
δ(r − r′)eζ ⊗ eζ , (2.10)

where Ban = 2Ku/Ms is the anisotropy field, Ku is the constant
of uniaxial anisotropy, eζ is the unit vector in the direction
of the anisotropy axis (ζ direction), and the symbols ⊗ are
denoting the dyadic product of vectors. Dirac delta function
δ(r − r′) in Eqs. (2.8) and (2.10) indicates the local character
of the exchange interaction and the crystalline anisotropy,
in contrast with the nonlocal long-range character of the
magnetodipolar interaction.

In a general case, the Hamiltonian function (2.1) may
contain higher-order terms (in respect to the magnetization),
in particular, if the other than uniaxial crystalline anisotropy
is taken into account. For example, cubic magnetic anisotropy
is described by the third order in respect to M term [1].
Below, for simplicity, we skip these possible higher-order
contributions, although, if necessary they can be accounted
for in a similar way.

The energy of the IDMI in a thin ferromagnetic film or
nanowire can be expressed as

EIDMI =
∫

D̃

M2
s

[Mz∇ · M − M · (∇Mz )]dr, (2.11)

where z axis is a normal to the ferromagnetic–heavy-metal
interface, D̃ = Db/h is the effective IDMI parameter, D is the
IDMI constant, h is the thickness of the film or nanowire,
and b is the thickness of the ferromagnetic monolayer [47].
It is clear that the term representing IDMI in the Hamiltonian
function can be also expressed in the form of Eqs. (2.6) and
(2.7) with the tensor operator given by

N̂IDMI(r, r′) = 2D̃

μ0M2
s

δ(r − r′)[ez′ ⊗ ∇r′ − ∇r′ ⊗ ez′ ] (2.12)

or in the explicit matrix form

N̂IDMI(r, r′) = 2D̃

μ0M2
s

δ(r − r′)

⎛
⎝ 0 0 −∂x′

0 0 −∂y′

∂x′ ∂y′ 0

⎞
⎠. (2.13)

From Eq. (2.13) one can clearly see the main difference
of the IDMI term compared to the other magnetic self-
interactions, mentioned above. The tensor operator N̂IDMI is
antisymmetric, while the operators of the uniaxial anisotropy,
dipolar and exchange interactions are all symmetric. The
antisymmetric nature of the IDMI is also reflected by the fact
that N̂IDMI changes its sign to the opposite under the space
inversion operation r → −r, in contrast to the other self-
interaction operators, which remain unchanged in respect to
the space inversion.
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The bulk Dzyaloshinskii-Moriya interaction, which is
present in ferromagnetic crystals with lack of the inversion
symmetry, could be also accounted in the same manner as the
IDMI, and is represented by an antisymmetric tensor operator
[60]. Below, we will not use any specific features of the oper-
ator N̂, related to the IDMI or other interactions. We assume
that tensor operator N̂(r, r′) is nonsymmetric in a general case,
i.e., consists of symmetric and antisymmetric contributions.
Thus, the formalism presented below is applicable to any
magnetic self-interaction, quadratic in magnetization.

C. Conversion to the complex variables

The next step in the Hamiltonian approach is the conver-
sion to the canonic variables a(r, t ), a∗(r, t ). This step is just
a simple algebraic operation. For convenience and brevity,
we, following Ref. [37], introduce the dimensionless complex
vector α(r, t ) = [α⊥, α∗

⊥, αz], where α⊥(r, t ) and αz(r, t ) are
related to the canonical variables according to Eq. (2.2). The
real magnetization vector M(r, t ) is connected with α through
the relation M = MsT̂ · α, where

T̂ = 1

2

⎛
⎝−i i 0

1 1 0
0 0 2

⎞
⎠. (2.14)

It is also useful to establish the relation α∗ = Ŝ · α, where

Ŝ =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠. (2.15)

Here, we should recall that the introduction of the canon-
ical variables in the form of Eq. (2.2) assumes that the static
magnetization of a ferromagnetic sample is uniform, and is
pointed in the +z direction. Therefore, all the self-interaction
operators N̂(r, r′) should be derived in this coordinate system.
A more complex case of nonuniform static magnetization
configurations is considered in a similar way, with the differ-
ence that the relation between M and α becomes coordinate
dependent, i.e., T̂ = T̂ (r). The examples of application of the
Hamiltonian formalism to nonuniform magnetic states can be
found in Refs. [64,65].

The direct calculation allows one to obtain the Hamiltonian
function in the form

H = −γ

V

∫
α∗(r, t ) · B̃(r, t )dr

+ 1

2V

∫∫
α∗(r, t ) · �̂(r, r′) · α(r′, t )dr dr′, (2.16)

where

B̃(r, t ) = Ŝ · T̂
T · Be(r, t ) (2.17a)

and

�̂(r, r′) = ωM Ŝ · T̂
T · N̂(r, r′) · T̂ , (2.17b)

with ωM = γμ0Ms. Here, analogously to the complex mag-
netization vector α, we introduce the complex vector
field B̃(r, t ) = [B̃⊥/

√
2, B̃∗

⊥/
√

2, Be,z], where B̃⊥(r, t ) =
(iBe,x + Be,y)/

√
2 is the circular component of the external

field Be (the “tilde” sign over the complex vector field is added

in order not to mix this vector with the real external field
Be). The explicit derivation of the components of the tensor
operator �̂(r, r′) is not necessary at this step. It is convenient
to preserve the vector structure of this expression during the
operation of the Fourier transform (next step).

D. Conversion to the plane waves

The goal of the current and following sections in the paper
is to represent the Hamiltonian function in terms of the Fourier
amplitudes of the SW canonical variables ak and a∗

k. It should
be noted that the introduction of the SW amplitudes ak and
a∗

k in the form of Eq. (2.4) implies that the linear eigenmodes
of the considered ferromagnetic sample are plane waves. This
statement is correct for the bulk samples and for fundamental
SW modes in ferromagnetic films and nanowires, which have
almost uniform profiles along the thickness and width coor-
dinate of the sample. In other cases, e.g., when considering
quantized modes of a magnetic nanodot, Eq. (2.4) should
be modified taking into account the spatial profiles of the
quantized modes (see, e.g., Refs. [7,64,65]).

When performing Fourier transform, it is convenient to
preserve the vector structure of the Hamiltonian (2.16). Then,
all the terms of the Hamiltonian function change to their
Fourier images. Namely, the dimensionless complex magneti-
zation vector is represented via its Fourier image as

α(r, t ) =
∑

k

αk(t )eik·r, (2.18)

where αk = [Fk[α⊥(r, t )],Fk[α∗
⊥(r, t )],Fk[αz(r, t )]], and Fk

denotes the operator of the Fourier transform. The derivation
of the explicit relation between the components of αk and
canonical variables ak requires application of the Taylor ex-
pansion, and is given in the next subsection. The transforma-
tion of the complex vector of the external field is also trivial,
and is given by

B̃(r, t ) =
∑

k

B̃k(t )eik·r, (2.19)

with B̃k(t ) = [B̃⊥,k(t ), B̃∗
⊥,k(t ), B̃z,k(t )].

It should be noted that the Fourier transformation of the
operator of magnetic self-interactions is not so trivial in a
general case. Here, we restrict ourselves to the case when
the operator N̂(r, r′) depends only on the difference of argu-
ments N̂(r, r′) = N̂(r − r′). This implies that the considered
magnetic sample is spatially homogeneous, having no spatial
variations of the material parameters. In this case, the Fourier
transform of the operator N̂(r, r′) is introduced as

N̂keikr =
∫

N̂(r − r′)eikr′
dr′. (2.20)

The tensor Nk is often called the “effective spin wave tensor”
[6]. It is the most important universal characteristic of a ferro-
magnetic sample for the description of the propagating SWs in
it. Together with the direction of the static magnetization, and
the value of the external field, it contains all the information
about the linear SW spectrum and nonlinear interactions.
With certain modifications, the effective spin wave tensor can
be also introduced in the problems of spatially nonuniform
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propagating SW modes, e.g., for higher thickness or width
modes of ferromagnetic films or nanowires [66–68].

The properties of the tensor N̂k follow from the symme-
try of the magnetic self-interactions. Obviously, N̂k is self-
adjoint, i.e., (N̂

T
k )∗ = N̂k, which ensures that the Hamiltonian

function is real valued. Another general property is N̂−k =
N̂

∗
k. For symmetric self-interactions, e.g., exchange, dipolar

interaction, or anisotropy, the tensor N̂k is symmetric, N̂
T
k =

N̂k, and is real. In a general case, however, magnetic self-
interactions are not required to bear these properties. For ex-
ample, in the case of the IDMI the tensor N̂k is antisymmetric
and imaginary. Namely, in the coordinate system with z axis
being perpendicular to the ferromagnetic interface we get

N̂k,IDMI = 2D̃

μ0M2
s

⎛
⎝ 0 0 −ikx

0 0 −iky

ikx iky 0

⎞
⎠. (2.21)

Therefore, in a general case we should consider a complex-
valued nonsymmetric self-interaction tensor N̂k, having a
symmetric real part and antisymmetric imaginary part. Math-
ematically, the appearance of an antisymmetric imaginary
contribution of N̂k is the only difference from the previous
analysis of symmetric interactions, performed in Ref. [37].
However, it leads to significant modifications of all the ex-
pressions in the following analysis.

Using the above-defined Fourier images of the complex
magnetization vector, the complex vector of external field and
the operator of magnetic self-interactions, the Hamiltonian
function can be represented in the following form:

H = −γ
∑

k

α∗
k · B̃k(t ) + 1

2

∑
k

α∗
k(t ) · �̂k · αk, (2.22)

where �̂k = ωM Ŝ · T̂
T · N̂k · T̂ . Straightforward calculations

give the explicit form of the tensor �̂k:

�̂k =

⎛
⎜⎝

1
2Qk

1
2Bk

1√
2
Dk

1
2B∗

k
1
2Q−k

1√
2
D∗

−k
1√
2
D∗

k
1√
2
D−k 
zz,k

⎞
⎟⎠, (2.23)

where

Qk = ωM

2
(Nxx,k + Nyy,k − 2 ImNxy,k), (2.24)

Bk = ωM

2
(−Nxx,k + Nyy,k + 2i ReNxy,k), (2.25)

Dk = ωM√
2

(iNxz,k + Nyz,k ), (2.26)

and


zz,k = ωMNzz,k. (2.27)

Using the above-described general properties of the tensor
N̂k, one can prove that Bk = B−k, 
zz,k = 
zz,−k, and that the
values Qk and 
zz,k are real. Simultaneously, in a general case
Qk 	= Q−k and Dk 	= D−k, while corresponding equalities
take place in the case of symmetric self-interactions. These
inequalities lead to the appearance of terms with both k and
−k in the definition of the tensor �̂k. Another evident differ-
ence from the symmetric case is the appearance of real and

imaginary parts of Nxy,k in the definitions of the coefficients
Qk and Bk.

E. Expansion coefficients of the Hamiltonian function

Finally, in order to derive the Hamiltonian function in
terms of the canonical variables, one needs to express the
Fourier components of the complex magnetization vector αk

in terms of the variables ak and a∗
k. For the component αz this

operation is trivial, and, taking into account Eq. (2.2), we get

Fk[αz(r, t )] = �(k) −
∑

12

a1(t )a∗
2(t )�(1 − 2 − k). (2.28)

Here, � is the Kronecker delta function, and the abbreviated
notations 1 ≡ k1, 2 ≡ k2, etc., are used. The transformation of
the components α⊥, α∗

⊥ is not so trivial, as Eq. (2.2a) contains
a square root. Therefore, to proceed, one needs to expand it
into a Taylor series. Limiting the expansion to the first two
terms, we get

α⊥(r, t ) ≈
√

2a(r, t )
[
1 − 1

4 a(r, t )a∗(r, t )
]
. (2.29)

The error coming from this approximation is rather small. In-
deed, it gives |α⊥|2 + α2

z = 1 + |a|6/8, while the exact value
is 1. Even for the precession angles close to 90◦, for which
|a|≈1, the expansion (2.29) gives the error not exceeding
12%. The straightforward Fourier transform of Eq. (2.29) and
its complex conjugate yields the following relations:

Fk[α⊥(r, t )]

≈
√

2

(
ak(t )− 1

4

∑
123

a1(t )a2(t )a∗
3(t )�(1 + 2 − 3 − k)

)
,

(2.30a)

Fk[α∗
⊥(r, t )]

≈
√

2

(
a∗

−k(t )−
1

4

∑
123

a∗
1(t )a∗

2(t )a3(t )�(1 + 2 − 3 + k)

)
.

(2.30b)

Using the above expansions in Eq. (2.22), it is possible to
represent the Hamiltonian function H in terms of canonical
SW amplitudes ak, a∗

k. Then, it is easy to collect the terms
of the same power in the SW amplitudes, representing, thus,
the Hamiltonian function as H ≈ H(0) + H(1) + H(2) + · · · ,
where the superscript denotes the power of the terms respec-
tive to the SW amplitudes. Here, we limit the expansion to
the fourth-order term H(4), which corresponds to the four-
magnon processes. Usually, this expansion is sufficient as the
four-magnon processes are almost never prohibited by the
conservation laws, and the higher-order terms in the expansion
are rather small [2].

1. Zeroth-order terms

The zeroth-order term of the Hamiltonian function is ex-
pressed as

H(0) = −γ B̃z,0(t ) + 1
2
zz,0. (2.31)

This term does not contain any SW amplitudes, and, con-
sequently, does not affect the magnetization dynamics. It
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determines the energy of the static magnetization state, which
consists of the Zeeman energy of the magnetization in a
uniform magnetic field [recall that B̃z,0 is the spatially uni-
form component of the external field Be,z(r, t )] and the static
demagnetization energy of a uniformly magnetized body.

2. First-order terms

The first-order terms of the Hamiltonian function have the
following form:

H(1) = −
∑

k

γ B̃∗
⊥,k(t )ak + D∗

0a0 + c.c., (2.32)

where for brevity we omit the explicit notation of the time
dependence of the SW amplitudes ak ≡ ak(t ). To analyze
these terms it is convenient to split the external field into
a static and dynamic components: B̃⊥,k(t ) = B̃⊥,k + b̃⊥,k(t ).
Hereafter, we denote the static part of the external field by a
capital symbol, and the time-dependent one (e.g., microwave
field) by a lowercase symbol b̃(t ). First, let us look at the static
part. Using the relations (2.5), one can derive the dynamic
equations for the SW amplitudes, associated with the first-
order terms of the Hamiltonian function:

dak

dt
= −i

∂H(1)

∂a∗
k

= i(γ B̃⊥,k − D0�(k)). (2.33)

If the considered static magnetization state is stable, then,
in the absence of a time-dependent field, the time derivative
vanishes, dak/dt = 0 (note that this is a necessary, but not
a sufficient condition). Then, we get the following condition:
B̃⊥,k = 0 for k 	= 0, i.e., the static field perpendicular to the di-
rection of static magnetization should be spatially uniform. It
is an absolutely natural condition for the stability of a uniform
magnetization state which is considered here. Simultaneously,
the parallel component of the external field Be,z(r) can remain
spatially nonuniform. From the dynamic equations for a0 one
gets the following condition:

γ B̃⊥,0 = D0. (2.34)

Recalling the definitions (2.26) and B̃⊥(r) =
(iBe,x + Be,y)/

√
2, this condition can be transformed to the

standard conditions of the static equilibrium in a uniformly
magnetized sample Be,x = μ0MsNxz,0, Be,y = μ0MsNyz,0.

If the static equilibrium conditions are satisfied, the first-
order terms of the Hamiltonian function are simplified to

H(1) = −
∑

k

γ b̃∗
⊥,k(t )ak + c.c. (2.35)

These terms describe the interaction of the SWs with the
time-dependent magnetic field which is perpendicular to the
direction of static magnetization. Such an interaction is re-
sponsible for the linear excitation of SWs. In the opposite
case, when the equilibrium conditions are not satisfied, one
can not follow the formalism below and should find a real
equilibrium magnetization state (possibly, nonuniform), and
introduce canonical variables on the background of this real
equilibrium state.

3. Second-order terms

After collecting all the terms, the quadratic part H(2) of the
Hamiltonian function can be expressed as

H(2) =
∑

k

[
Aka∗

kak +
(Bk

2
a∗

ka∗
−k + c.c.

)]

+
∑
1	=2

γ B̃z,2−1a1a∗
2 +

∑
1,2

γ b̃z,2−1(t )a1a∗
2. (2.36)

The first sum is familiar from the linear SW theory. It involves
pairs of SWs with the same wave vectors, and coupling of the
SWs with opposite wave vectors, which can be present in a
general case. In fact, this coupling reflects the fact that the
magnetization precession is not circular, but is elliptical, as it
is shown in the next section. The coefficient Ak is equal to

Ak = γ Bz,0 − 
zz,0 + Qk

= ωH + ωM

2
(Nxx,k + Nyy,k − 2 ImNxy,k), (2.37)

where ωH = γ (Bz,0 − μ0MsNzz,0). A general assumption of
the existence of nonsymmetric magnetic self-interactions used
in this work results in the appearance of the last term ImNxy,k

in the definition of Ak. As a consequence, Ak loses the
symmetry in respect to the wave-vector inversion Ak 	= A−k,
while such a symmetry is valid for the symmetric magnetic
self-interactions. As it will be shown below, this inequality
qualitatively affects the procedure of diagonalization of the
quadratic part of the Hamiltonian function.

The second term in Eq. (2.36) describes the coupling of
plane waves with arbitrary unequal wave vectors. This cou-
pling is present only in the case of a spatially inhomogeneous
external field Be,z(r), and the coupling strength is proportional
to the Fourier component of the external field at nonzero k.
In fact, it means that in the case of an inhomogeneous field
the plane waves having a definite k cease to be the normal
modes of a ferromagnetic body. Instead, normal modes are
formed by the sums of plane waves, which are finite in the
case of harmonic (e.g., sinelike or cosinelike) field, and are
infinite otherwise. In the following, we will not address this
case and will assume that the static external field is spatially
uniform.

Finally, the last term represents the coupling of the SW
pairs having, in general, different wave vectors with the time-
dependent external field. It is a well-known “parametric”
coupling in the so-called “parallel pumping geometry” [1,2],
which can be understood as a “three-quasiparticle” interaction
when one microwave photon splits into two magnons. The
spatially uniform parametric pumping couples with the SWs
having opposite wave vectors, while a spatially nonuniform
pumping can lead to a coupling of SWs with arbitrary wave
vectors [69]. The different condition of the summation in the
second and last terms (1 	= 2 in the second term) appears
because the term B̃z,0a1a∗

1 is already accounted in the first sum∑
k Akaka∗

k.

174431-6



HAMILTONIAN FORMALISM FOR NONLINEAR SPIN WAVE … PHYSICAL REVIEW B 99, 174431 (2019)

4. Third-order terms

The part of the Hamiltonian, which includes three SW
amplitudes ak, can be written as

H(3) = −1

2

∑
123

[(D∗
1 + D∗

2 )a1a2a∗
3 + c.c.]�(1 + 2 − 3)

+ 1

4

∑
123k

[γ b̃∗
⊥,k(t )a1a2a∗

3 + c.c.]�(1 + 2 − 3 − k).

(2.38)

In the derivation of this third-order contribution we took
into account the stability conditions (2.34). The expres-
sion for H(3) is absolutely the same as in the case of
symmetric magnetic self-interactions [37]. However, one
should remember that the presence of antisymmetric in-
teractions changes the properties of the coefficients Dk

(see above).
The first term in Eq. (2.38) represents a pure three-

magnon scattering process, namely, splitting of a magnon
3 into a pair of magnons 1 and 2, and the opposite pro-
cess. These scattering processes are allowed only when the
momentum and energy conservation conditions are satisfied,
which depends on the sample geometry and material, and
on the external field. It should be noted that if the res-
onant three-magnon processes are not allowed (i.e., if the
conservation laws for the three-magnon process are not sat-
isfied), but the three-magnon interaction efficiency (D∗

1 +
D∗

2 ) is nonzero, these “prohibited” processes may affect the
strength of the nonlinear processes of higher orders (see
Sec. III C).

The second term in Eq. (2.38) describes the scatter-
ing of a microwave photon and a magnon into two other
magnons. Such a process is, typically, weak, compared to
the common parametric interaction of SW pairs by a mi-
crowave photon and the three-magnon splitting processes.
Nevertheless, in certain cases such a process can be involved
in the limitation of the FMR amplitude at high excitation
fields [6].

5. Fourth-order terms

The highest-order nonlinear SW processes, which we
consider in this work, are the fourth-order processes. The
importance of these processes is related with the fact that
some of them are always allowed, as the energy and mo-
mentum conservation laws for such processes can be satis-
fied for any SW spectrum. For example, a scattering of a
pair of magnons with wave vectors 1 and 2 into a pair of
magnons with the same wave vectors (1, 2) → (1, 2), but,
possibly, different phases, is always allowed. Obviously, the
process (1, 1) → (1, 1) is also allowed in any case. While
this kind of the four-magnon processes does not change
the number of magnons, these processes affect the magnon
phase, being, in particular, responsible for the nonlinear fre-
quency shift (process (1, 1) → (1, 1)), or the “phase mech-
anism” of the limitation of the parametric instability growth
[process (1, 2) → (1, 2)] [2].

In a general case, the fourth-order terms of the Hamiltonian
function can be written as

H(4) = 1

2

∑
1234

�12,(−3)(−4)a1a2a∗
3a∗

4�(1 + 2 − 3 − 4)

+ 1

3

∑
1234

[123,4a1a2a3a∗
4 + c.c.]�(1 + 2 + 3 − 4),

(2.39)

where the coefficients are equal to

�12,34 = − 1
4 (Q1 + Q2 + Q−3 + Q−4)

+ 1
4 (
zz,1+3 + 
zz,1+4 + 
zz,2+3 + 
zz,2+4) (2.40)

and

123,4 = − 1
4 (B1 + B2 + B3). (2.41)

In the notations of the above-presented coefficients we used
a common convention, when the indices, which can be in-
terchanged without any effect on the coefficient, are not
separated by a comma, while the indices (or groups of indices)
separated by a comma can not be interchanged. For example,
�12,34 = �21,34, but �12,34 	= �13,24, as one can check from
the definition (2.40).

The properties of the four-magnon coefficients follow
from Eqs. (2.24), (2.25), and (2.27). Namely, the coefficient
�12,34 is real valued: �12,34 = �(−3)(−4),(−1)(−2). At the same
time, �12,34 	= �(−1)(−2),(−3)(−4) in the general case, while the
equality in this equation is fulfilled in the case of symmetric
magnetic self-interactions.

III. CONVERSION TO THE LINEAR NORMAL MODES

A. Diagonalization of the quadratic part
of the SW Hamiltonian function

The Hamiltonian expansion presented in the previous sec-
tion gives, in principle, the full description of the linear and
nonlinear SW processes up to the fourth order. However, this
description is rather cumbersome since SWs with different
wave numbers remain coupled even in the second-order terms
of the Hamiltonian, which describe the linear SW dynamics.
This demonstrates that circularly polarized plane waves are
not the normal modes (or eigenmodes) of a considered fer-
romagnetic sample. It turns out that the normal SW modes
have the elliptical polarization because of the presence of
the anisotropy in a magnetic material and because of the
anisotropic nature of the dipolar interaction. Only in some
specific cases, and in the limit of purely exchange SWs, the
polarization of SWs becomes circular.

The transformation from the circularly polarized plane
waves to elliptically polarized linear SW normal modes is
called the diagonalization of the quadratic part of the SW
Hamiltonian, and is performed using a canonical linear trans-
formation. In the SW theory, this transformation was intro-
duced by Hostein and Primakoff [70], and is often called
“third Holstein-Primakoff transformation.” The similar trans-
formation was later introduced by Bogoliubov and Valatin in
the theory of superconductivity [71,72]. By this transforma-
tion, new SW variables ck [73] are introduced, and in terms
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of these variables the quadratic part of the SW Hamiltonian
function assumes a diagonal form

H(2) =
∑

k

ωkckc∗
k. (3.1)

Then, it becomes clear that in terms of the variables ck

[73], the Hamiltonian equations of motion, in which only a
quadratic part of the Hamiltonian function is retained, become
uncoupled from each other and assume the simple form
dck/dt = −iωkck, which demonstrates that ck are the linear
eigenmodes of the system. Naturally, the quantity ωk has the
meaning of an eigenfrequency of a linear SW mode ck.

In the case of a uniform external field, when the second
sum in Eq. (2.36) is identically zero, the relation between the
new variables ck and the old variables ak is given by

ak(t ) = ukck(t ) + vkc∗
−k,

a∗
−k(t ) = v∗

kck(t ) + ukc∗
−k, (3.2)

where the coefficients are equal to

uk =
√
Ak + ωk

2ωk
, vk = − Bk

|Bk|

√
Ak − ωk

2ωk
, (3.3)

and the SW frequency is defined as

ωk =
√
A2

k − |Bk|2. (3.4)

It is important to note that the third Holstein-Primakoff
transformation (3.2) was derived in the case of symmetric
magnetic self-interactions, and is not applicable in our more
general case of nonsymmetric interactions. Using the math-
ematical procedure of a matrix diagonalization, we found
that the quadratic part of the Hamiltonian function in the
presence of antisymmetric interactions can be diagonalized by
the transformation (3.2), but with the coefficients defined by
the following relations:

uk =
√

A−k + ωk

2ωk + A−k − Ak
,

vk = − Bk

|Bk|

√
Ak − ωk

2ωk + A−k − Ak
. (3.5)

The SW frequency in this case is given by

ωk = Ak − A−k

2
+

√(Ak + A−k

2

)2

− |Bk|2. (3.6)

The above-derived transformation (3.5) represents an impor-
tant result of this work, which allows us to derive explicit
expressions for the coefficients of nonlinear interactions of
normal SW modes.

One can easily verify that these transformations are canoni-
cal, as (u2

k − |vk|2) = 1, that allows to fulfill the conditions of
the canonical transformations: {ck, ck′ } = 0, {c∗

−k, c∗
−k′ } = 0,

and {ck, c∗
−k′ } = �(k − k′), where { f , g} denotes the Pois-

son’s brackets respective to ak, a∗
−k. It is also clear that

in the case of symmetric magnetic self-interactions, when
Ak = A−k, the expressions (3.5) are reduced to the standard
Holstein-Primakoff transformations (3.3).

It is important to note that in a general case ωk 	= ω−k,
which means that the SW spectrum can be nonreciprocal.
We also have uk = u−k and vk = v−k, meaning that the SW
structure (ellipticity) does not change with the reversal of the
propagation direction. Moreover, using the definition (2.37) of
Ak, one can find that the coefficients uk and vk are completely
independent of the term ImNxy,k, which is the only term in Ak

and Bk reflecting the presence of the antisymmetric interac-
tions. Thus, we can conclude that the presence of antisym-
metric magnetic self-interactions affects the SW dispersion
relation ωk, but does not affect SW polarization properties.
For the case of IDMI, this fact has been previously pointed in
Refs. [55,58].

B. Transformation of the nonlinear coefficients

Now, using the transformations (3.2) and (3.5) in the SW
Hamiltonian function, we can represent it in terms of the am-
plitudes of the SW normal modes ck(t ). Although this action
is straightforward, it is a rather tedious and cumbersome al-
gebraic operation. Below, we present the general expressions
for all the third- and fourth-order nonlinear coefficients in
the Taylor expansion of the SW Hamiltonian function. These
general expressions for the nonlinear interaction coefficients
of SWs having arbitrary wave vectors are rather cumber-
some, but in many important particular cases they could be
significantly simplified due to a symmetry of the considered
nonlinear processes. For example, among the fourth-order
nonlinear processes, the most important are the processes
(1, 1) → (1, 1) and (1, 2) → (1, 2).

The zeroth-order term of the SW Hamiltonian function,
naturally, remains unchanged. The first-order term (2.35) is
transformed to the following form:

H(1) = −
∑

k

γ [ukb̃∗
⊥,k(t ) + v∗

k b̃⊥,−k]ck + c.c. (3.7)

The term in the brackets here describes the effect of the
precession ellipticity on the interaction of a SW with an
external magnetic field.

The second-order term, including the interaction of
magnons with dynamic magnetic fields, can be written as

H(2) =
∑

k

ωkckc∗
k +

∑
12

b̃z,2−1(u1u2 + v∗
1v2)c1c∗

2

+
∑

12

[
1

2
b̃−1−2(u1v

∗
2 + v∗

1u2)c1c2 + c.c.

]
. (3.8)

The first term here, as discussed above, defines the eigen-
frequencies of the SW normal modes. The second term de-
scribes interaction of a microwave photon with two differ-
ent magnons. This interaction, usually, is not very strong
since the resonance condition for such a process is rather
difficult to satisfy because it requires a highly spatially
nonuniform distribution of the microwave magnetic field. The
last term corresponds to the familiar (and much more effi-
cient) parametric excitation of SWs under parallel microwave
pumping [1,2].

In the consideration of the third-order terms in the SW
Hamiltonian function, we limit ourselves to the pure nonlinear
magnon-magnon interactions, and neglect the processes of the
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photon-stimulated three-magnon interactions caused by the
the second term in Eq. (2.38). Then, the third-order term in the
Hamiltonian function describing only the magnon-magnon
interactions in terms of the amplitudes of the normal SW
modes is expressed as

H(3) = 1

3

∑
123

[U ∗
123c1c2c3 + c.c.]�(1 + 2 + 3)

+
∑
123

[V ∗
12,3c1c2c∗

3 + c.c.]�(1 + 2 − 3). (3.9)

The coefficients of the three-magnon interaction are

U123 = − 1
2 [(D1u1 + D∗

−1v1)(u2v3 + v2u3)

+ (D2u2 + D∗
−2v2)(u1v3 + v1u3)

+ (D3u3 + D∗
−3v3)(u1v2 + v1u2)] (3.10)

and

V12,3 = − 1
2 [(D1u1 + D∗

−1v1)(u2u3 + v2v
∗
3 )

+ (D2u2 + D∗
−2v2)(u1u3 + v1v

∗
3 )

+ (D∗
3u3 + D−3v

∗
3 )(u1v2 + v1u2)]. (3.11)

Although these expressions appear to be cumbersome, they
have a clear structure, if one recalls the above introduced
rules of indices interchange in the SW nonlinear interaction
coefficients.

It should be noted that the ellipticity of the magnetization
precession results in the appearance of qualitatively new term
in the expansion of the SW Hamiltonian function: the first
term in Eq. (3.9). From a formal point of view, this term
and its complex conjugate correspond to the appearance of
three magnons from “vacuum” or to the annihilation of three
magnons. Such a term, however, can not become resonant
since, although the momentum conservation 1 + 2 + 3 = 0
can be satisfied, the energy conservation condition ω1 + ω2 +
ω3 = 0 can not because for any stable magnetization configu-
ration ωk � 0. Nevertheless, these nonresonant three-magnon
processes can play a role in the resonant nonlinear processes
of a higher (fourth) order (see explanation presented in the
next subsection).

The fourth-order terms in the expansion of the Hamiltonian
function after the transformation to normal SW modes acquire
the following form:

H(4) = 1

2

∑
1234

W12,34c1c2c∗
3c∗

4�(1 + 2 − 3 − 4)

+
∑
1234

[G∗
123,4c1c2c3c∗

4 + c.c.]�(1 + 2 + 3 − 4)

+ 1

4

∑
1234

[R∗
1234c1c2c3c4 + c.c.]�(1 + 2 + 3 + 4).

(3.12)

As in the case of the third-order terms, the SW ellipticity
results in the appearance of new terms in the Hamiltonian
expansion, in particular, the last sum in the above-presented
expression. These terms are always nonresonant and, there-
fore, can effectively contribute only to the five-wave and
higher-order magnon-magnon interaction processes. For this

reason, we do not present here the explicit expression for the
corresponding nonlinear coefficient R1234.

The remaining coefficients of four-magnon nonlinear inter-
action are given by the following expressions:

W12,34 = �12,(−3)(−4)u1u2u3u4 + �(−1)(−2),34v
∗
1v

∗
2v3v4

+�2(−3),1(−4)v
∗
1u2v3u4 + �(−2)3,(−1)4u1v

∗
2u3v4

+�1(−3),2(−4)u1v
∗
2v3u4 + �(−1)3,(−2)4v

∗
1u2u3v4

+123,4v
∗
1v

∗
2u3v4 + ∗

123,4u1u2v3u4

+412,3v
∗
1v

∗
2v3u4 + ∗

412,3u1u2u3v4

+341,2v
∗
1u2u3u4 + ∗

341,2u1v
∗
2v3v4

+234,1u1v
∗
2u3u4 + ∗

234,1v
∗
1u2v3v4 (3.13)

and

G123,4 = 1
3 [�12,3(−4)u1u2v3u4 + �(−1)(−2),(−3)4v1v2u3v

∗
4

+�23,1(−4)v1u2u3u4 + �(−2)(−3),1(−4)u1v2v3v
∗
4

+�13,2(−4)u1v2u3u4 + �(−1)(−3),(−2)4v1u2v3v
∗
4

+123,4u1u2u3u4 + ∗
123,4v1v2v3v

∗
4

+412,3u1u2v3v
∗
4 + ∗

412,3v1v2u3u4

+341,2u1v2u3v
∗
4 + ∗

341,2v1u2v3u4

+234,1v1u2u3v
∗
4 + ∗

234,1u1v2v3u4]. (3.14)

One can easily derive these expressions by direct substitution
of the transformations (3.2) to (2.39), accounting for the
symmetry properties of the coefficients �12,34 and 123,4.

Using the above-presented expressions, one can calcu-
late the efficiency of any relevant nonlinear SW interac-
tion up to the fourth order. In the limit of symmetric
magnetic self-interactions, when Dk = D−k and �12,34 =
�(−1)(−2),(−3)(−4), these expressions are reduced to Eqs. (60)–
(65) from Ref. [37]. Also, in the case of a circular polarization
of SWs (e.g., in the limit of purely exchange SWs), when
uk = 1 and vk = 0, one can find U123 = 0, V12,3 = −(D1 +
D2)/2, W12,34 = �12,(−3)(−4), G123,4 = 123,4/3, and R1234 =
0, in full agreement with Eqs. (2.38) and (2.39).

C. Elimination of the nonresonant three-wave terms

Using the above-derived expansion of the SW Hamiltonian
function in terms of the normal mode amplitudes ck, one can
investigate the nonlinear SW dynamics. Naturally, in practical
particular cases it is not necessary to take into account all the
existing nonlinear magnon-magnon interactions as, typically,
only the resonant ones, which satisfy both the momentum
and energy conservation laws, play a significant role in the
interaction outcome. In real magnetic systems, due to the
effect of dissipation, the frequency (energy) conservation laws
can be satisfied only approximately to the accuracy of the SW
damping rate. Therefore, in most practical cases it is sufficient
to take into account only the “resonant” nonlinear processes
since the influence of other processes, which are far from the
resonance conditions, is typically negligible.

However, in certain cases the nonresonant processes cannot
be simply neglected. It is known that the nonresonant non-
linear processes of a lower order can significantly influence
the resonant processes of a higher order. In particular, the
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nonresonant three-wave processes can contribute to the inten-
sity of the resonant four-wave processes, as it was pointed out
by Zakharov [74]. This contribution can be understood as a
four-wave process, mediated by the creation and annihilation
of a “virtual” magnon. For example, a four-magnon process
(1, 2) → (3, 4) can be a combination of two subsequent three-
magnon processes (1, 2) → 5 and 5 → (3, 4), mediated by
a “virtual” magnon 5. To account for the effect of such
nonresonant interaction processes, one needs to perform an
additional transformation of variables, which is nonlinear and,
strictly speaking, only approximately canonical. The presence
of the antisymmetric interactions does not lead to any changes
in this additional transformation, and we will not reproduce it
here. The complete description of this transformation can be
found, e.g., in Refs. [7,75,76].

IV. APPLICATION: THREE-MAGNON SPLITTING AND
NONLINEAR FREQUENCY SHIFT OF SPIN WAVES

SUBJECTED TO IDMI

A. Ferromagnetic nanowire

In this section we apply the above-developed formalism to
the investigation of nonlinear SW interaction in a magnetic
sample subjected to IDMI. Specifically, we study a nanowire
made of a ferromagnetic–heavy-metal bilayer (e.g., CoFeB-
Pt), having the width wx and the ferromagnetic layer thickness
h, as shown in Fig. 1. The nanowire is magnetized in its plane
by an external field Be, so that the static magnetization M0

makes the angle φM with the direction of the SW propagation
(axis of the nanowire). The spectrum of a nanowire, in general,
contains a set of SW modes with different width profiles.
Here, we restrict our analysis to the case of a quasiuniform
width mode. If the nanowire is sufficiently narrow (the width
is less than 100–200 nm, typically [67]), the quasiuniform
mode is the fundamental mode of the nanowire, being the
lowest in frequency. Also, in a certain frequency range this
mode is not frequency degenerate with any other width mode
of the nanowire, meaning that it can be the only one excited,
and that the magnetization dynamics in this frequency range
is determined by the fundamental mode only.

To apply the above-developed formalism, one needs to de-
rive expressions for effective SW tensor N̂k for the nanowire
sample. It is convenient, first, to derive the tensor N̂ in a
standard coordinate system, having axes aligned with the axes
of the nanowire [coordinate system (xyz) in Fig. 1]. The

FIG. 1. A sketch of the considered bilayer nanowire, showing the
directions of the bias magnetic field Be, static magnetization M0, and
the principal and auxiliary coordinate systems (see text).

contribution of the IDMI in this “principal” coordinate system
is described by the expression (2.21). Since in our case the
SW wave vector is always parallel to the y axis, k = kyey,
in Eq. (2.21) we set kx = 0. The exchange interaction is de-
scribed by the diagonal tensor N̂ex,k = λ2

exk2
y Î [see Eqs. (2.8)

and (2.20)]. The dipolar interaction in the considered case of
quasiuniform mode is described by the tensor [66,67]

N̂dip,k ≡ F̂k = 1

2πwx

∫ ∞

−∞
sinc2

(
kxwx

2

)
ˆ̃Ndip,Kdkx, (4.1)

where

ˆ̃Ndip,K =

⎛
⎜⎜⎝

k2
x

K2 f (Kh) kxky

K2 f (Kh) 0

kxky

K2 f (Kh)
k2

y

K2 f (Kh) 0

0 0 1 − f (Kh)

⎞
⎟⎟⎠, (4.2)

with K =
√

k2
x + k2

y and f (x) = 1 − (1 − e−|x|)/|x|. In fact,
the integration in Eq. (4.1) yields identical zeros for all the off-
diagonal components, so the tensor F̂k has only three nonzero
components Fxx,k, Fyy,k, and Fzz,k. Finally, we also need to take
into account the perpendicular surface magnetic anisotropy,
which is especially important for ultrathin magnetic films.
According to Eqs. (2.10) and (2.20), the corresponding con-
tribution to the SW tensor has only one nonzero component
(N̂an,k)zz = nan = −2Ks/(μ0M2

s h), where Ks is the constant
of the surface magnetic anisotropy.

In the Hamiltonian formalism the effective SW tensor
should be expressed in the coordinate system having axis z′
parallel to the static magnetization (x′y′z′ system in Fig. 1).
The rotation of the coordinate system is expressed via the
rotation tensor

T̂ =
⎛
⎝− cos φM sin φM 0

0 0 1
sin φM cos φM 0

⎞
⎠. (4.3)

Then, the effective SW tensor in the new (auxiliary) coor-

dinate system is expressed as N̂
(x′y′z′ )
k = T̂ · N̂

(xyz)
k · T̂

−1
. By

direct calculations, one finds the following expressions for the
components of the effective SW tensor:

Nx′x′,k = λ2
exk2

y + Fxx,k cos2 φM + Fyy,k sin2 φM,

Nx′y′,k = −Ny′x′,k = −ikyd̃ sin φM,

Nx′z′,k = Nz′x′,k = (Fyy,k − Fxx,k) sin φM cos φM,

Ny′y′,k = λ2
exk2

y + Fzz,k − nan,

Ny′z′,k = −Nz′y′,k = ikyd̃ cos φM,

Nz′z′,k = λ2
exk2

y + Fxx,k sin2 φM + Fyy,k cos2 φM, (4.4)

where we used the short notation d̃ = 2D̃/(μoM2
s ). Using

these expressions for the components of the effective SW ten-
sor, we derived the following expressions for the coefficients
(2.24)–(2.27):

Qk = ωM

2

(
2λ2

exk2
y + Fxx,k cos2 φM + Fyy,k sin2 φM

+ Fzz,k − nan + 2kyd̃ sin φM
)
,

Bk = ωM

2
(Fzz,k − nan − Fxx,k cos2 φM − Fyy,k sin2 φM ),
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Dk = iωM√
2

[(Fyy,k − Fxx,k) sin φM + kyd̃] cos φM,


z′z′,k = ωM
(
λ2

exk2
y + Fxx,k sin2 φM + Fyy,k cos2 φM

)
. (4.5)

The equilibrium condition (2.34) in our case is reduced
to μ0MsFxx,0 sin φM cos φM = Be sin(φB − φM ), which is a
pretty standard condition for a ferromagnetic nanowire. Nat-
urally, this condition is not affected by the IDMI. For the
derivation of this condition we used the identities Fyy,0 = 0
and B̃⊥,0 = iBe,x′/

√
2 = −iBe sin(φB − φM )/

√
2.

According to Eq. (2.37), the coefficient Ak = ωH + Qk,
where ωH = γ Be cos(φB − φM ) − ωMFxx,0 sin2 φM . Using
these expressions in the general equation (3.6), we can
directly calculate the dispersion relation of the linear SWs
propagating in the nanowire:

ωk =
√

ωH + ωM
(
λ2

exk2
y + Fxx,k cos2 φM + Fyy,k sin2 φM

)
×

√
ωH + ωM

(
λ2

exk2
y + Fzz,k − nan

) + ωMkyd̃ sin φM .

(4.6)

A similar SW dispersion equation in different particular cases
was previously derived in Refs. [46,47,55,60]. The influence
of the IDMI results in the appearance of the last term, which is
linear in the SW wave number, and is nonreciprocal. Note that
this peculiarity is general. The nonreciprocity coming from an
antisymmetric magnetic self-interaction always appears as an
additive term in the dispersion relation for SWs, as can be seen
from Eq. (3.6).

Next, let us look at the three-wave terms of the Hamilto-
nian. The coefficients of the three-magnon interaction V12,3
and U123 are proportional to the values D1, D2, D3. The Di

values are proportional to Dk ∼ cos φM , independently of the
length of the SW wave vector. Thus, in the case φM = 90o

(often called the “Damon-Eshbach geometry”), i.e., when the
nanowire is magnetized in its plane perpendicularly to the
nanowire axis, the three-magnon interaction efficiency is iden-
tically zero for all the SWs independently of the magnitude
of their wave vector. Thus, the fundamental SW mode of a
transversely magnetized nanowire cannot split into two other
SWs of the fundamental SW branch (notes on the splitting of
a propagating fundamental SW into different SW branches are
given below).

This feature could be very useful, as the three-magnon
splitting is often an undesirable process, which limits the
maximum power at which the SW propagation is stable. It is
also important that the three-magnon splitting is prohibited for
the propagation angle φM = 90o, at which the nonreciprocity
of a linear SW dispersion is maximum. Thus, the nanowires
made of the ferromagnetic–heavy-metal bilayers with a proper
magnetization direction can support the propagation of stable
nonreciprocal SWs of a relatively large amplitude.

Now, we consider the influence of the IDMI on the non-
linear frequency shift of SWs propagating in a ferromagnetic
nanowire. This nonlinear frequency shift is a result of the
four-magnon interaction of the type (k, k) → (k, k), and leads
to the following power-dependent modification of the SW
dispersion:

ωk (ck) = ωk(0) + Tk|ck|2, (4.7)

where ωk(0) describes the linear SW dispersion, given by
Eq. (4.6), and the coefficient Tk ≡ Wkk,kk. For this particular
four-wave process, the general expression (3.13) is greatly
simplified, and yields

Wkk,kk =�kk,(−k)(−k)u
4
k+4�k(−k),k(−k)u

2
k|vk|2

+�(−k)(−k),kk|vk|4
+ 2

[
kkk,kukv

∗
k

(
u2

k + |vk|2
) + c.c.

]
. (4.8)

For simplicity, we consider here only the case of the Damon-
Eshbach geometry, i.e., φM = φB = 90o. As it was pointed
out above, in this geometry all the three-magnon splitting
processes have zero efficiency, and, therefore, one does not
need to calculate the contribution from the nonresonant three-
magnon processes to the four-magnon scattering efficiency.

Calculating the values of the coefficients �12,34 according
to Eq. (2.24), and using the definitions (3.5), we finally arrive
to the following compact expression for the coefficient of the
nonlinear frequency shift:

Tk = (γ Be − Āk) + B2
k

2ω̄2
k

(
ωM

[
4λ2

exk2
y + Fxx,2k − Fxx,0

]

+ 3γ Be
) − kyd̃

ωMĀk

ω̄k
. (4.9)

Here, for brevity, we introduce Āk ≡ (Ak + A−k)/2 and
ω̄k = (ωk + ω−k)/2, which are, in fact, the values of Ak

and ωk in the absence of the IDMI. The first two terms in
the expression (4.9) are standard ones for a ferromagnetic
nanowire without the IDMI [77]. The influence of the IDMI
is reflected in the appearance of the last term, which is non-
reciprocal. It is important that this nonreciprocal contribution
to the nonlinear frequency shift has the sign that is opposite to
the sign of the IDMI contribution to the linear SW dispersion
[see Eqs. (4.6) and (4.9)]. This means that with the increase
of the SW amplitude, the nonlinear nonreciprocal term in the
dispersion law will partly compensate the linear one. Thus,
the nonreciprocal splitting of the SW dispersion will decrease
with the increased SW power, and the dispersion relation of
a nonlinear SW becomes less nonreciprocal with the increase
of the wave amplitude.

To illustrate this effect, we calculated the dispersion re-
lation of SWs having different amplitudes for the example
of a CoFeB/Pt bilayer nanowire of the width wx = 50 nm,
and CoFeB thickness h = 1.5 nm. The material parameters
used in calculations are [56] saturation magnetization μ0Ms =
1.28 T, exchange stiffness A = 2 × 10−11 J/m (correspond-
ing exchange length λex = 5.5 nm), constant of the surface
magnetic anisotropy Ks = 5.5 × 10−4 J/m2, and the effective
IDMI strength per 1.5 nm film is Db/h = 6.6 × 10−4 J/m
(corresponding value d̃ = 1). The value of the external bias
magnetic field is assumed to be Be = 0.2 T.

The calculated SW spectra are shown in Fig. 2. For all the
SW wave vectors the nonlinear frequency shift is negative
(which is typical for the in-plane magnetized ferromagnetic
films and nanowires), and increases with the SW wave num-
ber. It is also clearly seen that the nonreciprocity of the SW
spectrum decreases with the increase of the SW amplitude.
While for small-amplitude linear SWs the spectrum is clearly
nonreciprocal, having the nonreciprocal linear frequency shift
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FIG. 2. SW spectrum of a CoFeB/Pt bilayer nanowire for dif-
ferent dimensionless amplitudes ck of the propagating SWs. The
calculation parameters are given in the text.

of (ωk − ω−k)/2π = 7.2 GHz at |ky| = 0.1 nm−1, the spec-
trum of nonlinear SWs with the amplitude ck = 0.8 looks
much more reciprocal, and the corresponding nonreciprocal
spectral shift at the same value of the SW wave number is
only 2.4 GHz. This effect can be useful for the development
of power-dependent nonreciprocal devices.

B. Ferromagnetic film

The case of a ferromagnetic film, magnetized in its plane,
is considered in a similar way. All the expressions (4.4)
for the effective SW tensor remain the same with only the
change of the dynamic dipolar contribution, namely, Fxx,k =
0, Fyy,k = f (kh), and Fzz,k = 1 − f (kh) [note that f (x) = 1 −
(1 − e−|x|)/|x|]. Making this substitution in Eq. (4.6), one gets
a well-known dispersion relation for the linear SWs in a thin
ferromagnetic film [46,56].

Considering three-magnon splitting, we arrive at the same
conclusion, that an SW, which propagates perpendicular to the
static magnetization, cannot split into two SWs, propagating
in the same direction. Indeed, in this case we get D1 = D2 =
D3 = 0 and, consequently, V12,3 = 0.

However, in the case of a film that is unrestricted in its
plane, the SWs can propagate at an arbitrary angle to the
static magnetization, and the three-magnon splitting into non-
collinear SWs is allowed. To analyze this case, it is convenient
to use the components of the SW wave vectors instead of
the angles φ in respect to the static magnetization direction.
The reference coordinate system is shown in Fig. 3(a). Then,
the coefficient Dk for an arbitrary SW can be obtained from
Eqs. (4.5) in the form

Dk = iωM√
2

(
kxky

k2
f (kh) + kxd̃

)
. (4.10)

Denoting the initial SW as the third one, and the secondary
SWs as the first and second [i.e., considering the three-wave
splitting process k3 → (k1, k2)], we get Dk3 = 0. Addition-
ally, the momentum conservation rule requires that k3 = k1 +

FIG. 3. Three-magnon splitting in a ferromagnetic–heavy-metal
bilayer film: (a) considered geometry of the static magnetization
and initial SW propagation direction, (b), (c) prohibited splitting
processes, (d) allowed splitting process.

k2 or, in terms of the wave-vector components, ky,3 = ky,1 +
ky,2 and kx,1 = −kx,2.

Substituting these expressions into the definition of the
three-magnon scattering coefficient (3.11), we found, that in
a general case, the splitting coefficient V12,3 is not required to
be zero, and the three-magnon splitting processes are allowed.
The are only two exceptions: (i) splitting of an SW into two
collinear SWs, and (ii) a symmetric splitting, when the wave
vectors of the resulting waves possess a mirror symmetry
relative to the initial SW, i.e., when ky,1 = ky,2. Thus, in a
ferromagnetic–heavy-metal bilayer film, three-magnon split-
ting can occur even in the Damon-Eshbach geometry if, of
course, the resonance conditions are satisfied. A schematic
illustration of the prohibited and allowed splitting processes
is shown in Fig. 3.

These results can be generalized qualitatively to the case
of a relatively wide ferromagnetic nanowire, in which many
different width modes are degenerate, and the three-magnon
splitting resonance condition ω3 = ω1 + ω2 can be satisfied
for the SWs belonging to different branches of the SW spec-
trum (i.e., to the modes having different width profiles).

If we consider a higher-order SW width mode as a super-
position of a plane wave with a transverse component of the
wave vector kx and −kx, it becomes clear that in the Damon-
Eshbach geometry a fundamental (uniform) SW mode cannot
scatter into higher-order SWs of the same SW branch. At
the same time, the scattering into SW modes having different
width profiles could be allowed. The SW property that in a
symmetric system a symmetric three-magnon SW splitting
is prohibited, while a nonsymmetric one is allowed, is not
unique, and was described for the SWs in bulk ferromagnets
[2] and for SW modes of a magnetic vortex [65].

Finally, we note that the nonlinear frequency shift in the
case of a bilayer film and magnetization angle φM = 90o is
also expressed by Eq. (4.9) with corresponding substitution
of the dipolar tensor components. Indeed, as it is shown in
Refs. [2,75], only the nonresonant three-magnon processes
involving the SWs with wave vectors ±k, ±2k, and k = 0
contribute to the renormalization of the four-magnon nonlin-
ear coefficients. In the considered case, all the three-magnon
processes that involve the SWs, which are collinear, and
propagate perpendicular to the static magnetization, have
zero efficiency and, therefore, it is not necessary to calculate
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corrections caused by these three-wave processes to the ex-
pression (4.9).

V. SUMMARY

In this work we presented a generalization of the theory
of nonlinear spin wave dynamics based on the Hamiltonian
approach to the case when the antisymmetric magnetic in-
teractions are present. The developed formalism allows one
to calculate the linear SW dispersion and the coefficients of
nonlinear SW interactions for propagating SWs in a uniformly
magnetized sample with arbitrary symmetric and antisym-
metric magnetic self-interactions, quadratic in magnetization.
In particular, it allows to account for the various types of a
bulk and interfacial Dzyaloshinskii-Moriya interactions, spin
flexoelectric interaction, etc.

It was shown that the presence of antisymmetric magnetic
self-interactions reduces the symmetry of the effective SW
tensor and, consequently, the symmetry of the coefficients of
the Hamiltonian function expansion, both for quadratic terms,
three-magnon, four-magnon, and higher-order terms. We de-
rived the generalized third Holstein-Primakoff transformation,
which diagonalizes the quadratic part of the SW Hamiltonian
function in a general case, as well as the explicit expressions
for the three- and four-magnon interaction coefficients. At the
same time, it was shown that the antisymmetric interactions
can lead to the frequency nonreciprocity of the SW spectrum,
and could affect the nonlinear SW processes. Also, it turned
out that the structure (ellipticity) of the linear SWs is not
affected by the antisymmetric interactions, and the SWs prop-
agating in opposite directions have the same ellipticity (in the
case of a uniform SW spatial profile).

As an example of application of the developed gener-
alized formalism, we considered nonlinear SW interactions

in ferromagnetic–heavy-metal bilayer nanowires and films,
subjected to the IDMI. It was shown that three-magnon split-
ting, that is often undesirable in practical signal-processing
applications, can be completely avoided in a nanowire, which
is in-plane magnetized perpendicularly to the nanowire axis.

In the case of a magnetic film which is unrestricted in
plane, however, the three-magnon splitting for noncollinear
SWs could be allowed. Thus, the three-magnon splitting into
noncollinear SWs can occur for any magnetization direction
if, of course, the resonance conditions for this splitting are
satisfied.

It was also shown that the nonlinear frequency shift,
which is caused by the four-magnon interaction processes,
is nonreciprocal, and the sign of the nonreciprocal term in
the nonlinear frequency shift is opposite to the sign of the
term describing the frequency nonreciprocity of linear (small-
amplitude) SWs. Consequently, the nonreciprocal shift of
the SW dispersion decreases with the increase of the SW
amplitude. This fact can be used for the development of
power-dependent nonreciprocal devices.
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