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Quantum thermal Hall effect of chiral spinons on a kagome strip
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We develop a theory for the thermal Hall coefficient in a spin- 1
2 system on a strip of kagome lattice, where

a chiral spin-interaction term is present. To this end, we model the kagome strip as a three-leg XXZ spin-
ladder, and use bosonization to derive a low-energy theory for the spinons in this system. Introducing further a
Dzyaloshinskii-Moriya interaction (D) and a tunable magnetic field (B), we identify three distinct B-dependent
quantum phases: a valence-bond crystal (VBC), a “metallic” spin liquid (MSL), and a chiral spin liquid (CSL).
In the presence of a temperature difference �T between the top and the bottom edges of the strip, we evaluate
the net heat current Jh along the strip, and consequently the thermal Hall conductivity κxy. We find that the
VBC-MSL-CSL transitions are accompanied by a pronounced qualitative change in the behavior of κxy as a
function of B. In particular, analogously to the quantum Hall effect, κxy in the CSL phase exhibits a quantized
plateau centered around a commensurate value of the spinon filling factor νs ∝ B/D.
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I. INTRODUCTION

Magnetic compounds dominated by spin- 1
2 degrees of

freedom which are subject to competing interactions provide
a fascinating platform for the potential realization of exotic
quantum phases. A prominent example is the case of an anti-
ferromagnetic (AFM) Heisenberg magnet on a geometrically
frustrated lattice such as the kagome or pyrochlore structures,
where a magnetically ordered ground state with well-defined
local spin orientation is not favorable. A possible consequence
is the formation of a state of matter dubbed a quantum spin
liquid (SL), a term first introduced by Anderson [1] along with
a concrete example: the resonating valence bond (RVB) state.
An appealing property of such a state is that it exhibits an
extreme case of spin-charge separation in strongly correlated
electron systems, where an electric insulator (in which the
charge sector is completely frozen) supports “electronlike”
low-energy fractionalized excitations (spinons). Hence in the
last decades, the search for SL phases in various quan-
tum spin systems has motivated considerable theoretical and
experimental work [2,3].

Convincing evidence for the existence of SL phases in
realistic materials is, however, rather scarce. A primary chal-
lenge is that such a state is extremely sensitive to the fine
balance between competing spin-exchange interactions [4].
These can favor alternative ground states which break transla-
tional symmetry and possess a local order parameter, such as
spin density wave or a valence bond crystal [5–7] (VBC)—an
ordered pattern where singlets are formed on particular bonds
in the lattice. In certain models, a SL state was found to be
confined to a fine-tuned critical point [8,9]. Specifically for
kagome AFM, numerical studies are highly challenged by
finite system size; thus far, despite applications of powerful
methods, they have not lead to a clear consensus on the nature
of ground state [10,11].

Experimentally, conclusively identifying a SL state is also
a challenge. Because of its liquid nature, thermodynamic

measurements such as magnetic susceptibility only show the
absence of magnetic order down to low temperatures [12–18].
As an alternative probe, heat transport measurements give
access to neutral low-energy excitations, and provide some ev-
idence for the presence of spinons in SL-candidate materials
[19]. Detecting magnetothermal transport under application of
a magnetic field can serve an effective means to disentangle
their contribution from the phonon background. Interestingly,
in certain magnetic insulating compounds (involving heavy
elements), such measurements indicate a finite transverse
component, i.e., a thermal Hall conductivity [20,21] κxy. This
suggests the presence of chiral spin-interaction terms, gener-
ated due to the enhanced spin-orbit coupling.

A pronounced role of chiral interactions provides the basis
for a unique species of SL—a chiral SL (CSL)—which does
possess a local order parameter: the expectation value of
a “three-spin” operator Si · (S j × Sk ), where i, j, k belong
to a triangle of a given lattice [22–31]. Most prominently,
the CSL provides an analog of the fractional quantum Hall
effect [22,25] (FQHE) in a charge-insulating electronic sys-
tem, where spinons are subjected to a fictitious flux on tri-
angular plaquettes. More recent theoretical studies [32–35]
have confirmed the emergence of such a phase in specific
lattice models. The anticipated hallmark of such a state is the

quantization of thermal Hall conductivity in units of π
6

k2
B
h̄ T

(with T the temperature), the contribution of a single channel
of chiral Luttinger liquid (LL) edge mode [36,37].

Lately, progress in the experimental search for CSL behav-
ior has been achieved by studies of Ir/Ru compounds, which
serve as potential realizations of the Kitaev model [38,39].
Remarkably, this model possesses an exact solution in two
dimensions (2D) by mapping to free Fermions, and predicts
fractionalized quasiparticles of which the gapless type are
Majorana fermions. Their expected signature is a fractional

thermal Hall effect: κxy = c π
6

k2
B
h̄ T with c = 1/2 (the central

charge corresponding to a Majorana mode). A pioneering
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FIG. 1. Structure of the three-leg kagome strip. Red dashed
vertical lines represent the boundaries of a unit cell n; black dots
represent localized spins, black lines spin-spin exchange bonds, and
red circles the chiral interaction, where solid lines denote intrachain
interactions and dashed lines interchain coupling. The indices label
the sites along each of the three chains.

recent measurement [40] has confirmed the existence of a
quantized plateau at this value in α-RuCl3, though confined
to a narrow range of the applied magnetic field B. Additional
evidence for the presence of a chiral order in these materials
is provided by magnetic torque measurements [41,42].

While the above-mentioned experimental results, as well
as the earlier thermal Hall measurements [20,21], provide
encouraging evidence for chiral spin excitations, certain cru-
cial features of the data call for further theoretical investi-
gation. In particular, the rather complex and nonmonotonic
B-dependence exhibited by κxy cannot be fully explained by
means of an ideal spin model [43,44]. Moreover, it reflects
the sensitivity of a CSL phase (if such exists) to system
parameters. Motivated by these observations, our present pa-
per addresses a tractable minimal model which allows us to
systematically explore the possible quantum phases of chiral
spin systems, their evolution with variations in a tunable
parameter such as the external field B, and their manifestation
in the thermal Hall effect.

To this end, in this paper we investigate a quasi one-
dimensional (1D) model for a spin- 1

2 system on a strip of
kagome lattice, in the presence of a three-spin chiral interac-
tion, a magnetic field B, and a Dzyaloshinskii-Moriya (DM)
interaction D. To allow for further tunability, we incorporate
anisotropy of the exchange interactions which break both
SU (2)-symmetry and the lattice symmetry (see Fig. 1). This
enables a treatment of the model in terms of weakly coupled
XXZ spin- 1

2 chains and subsequent application of bosoniza-
tion, which facilitates the analysis of the phase diagram. We
then derive the thermal Hall coefficient κxy by evaluating
the net heat current along the strip in response to tempera-
ture gradient across the transverse direction, and analyze its
dependence on B and T in each of the phases.

As a result of this analysis, we identify three distinct
B-dependent quantum phases. For low B, we obtain a VBC
phase with a gap to spin excitations, which makes it a “spin-
insulator” with activation behavior of the heat transport. By

B

κxy
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FIG. 2. Schematic behavior of κxy/T (in units of k2
B
/h̄) as a

function of magnetic field B; here BD is the value of B obeying
kB = ±kD/4 (see text).

further increasing the field B, it is possible to reach a com-
mensurability condition between the spinon density (dictated
by B) and the “magnetic flux” (proportional to the DM co-
efficient D), which leads to the formation of CSL phase, in
transparent analogy with FQHE states in electronic ladders
[45]. Its thermal Hall conductance κxy exhibits a quantized
plateau centered around the commensurate value of the field,
BD ∝ D. Finally, the phase that is achieved for other values
of B is a plain SL we dub a metallic SL (MSL) formed
by coupled LL channels, where the main contribution to κxy

results from interchain spinon scattering. Our main result can
be summarized by Fig. 2, where we schematically show κxy

as function of the magnetic field B while driving a transition
from one phase to another (i.e., along a vertical cut through
the phase diagram depicted in Fig. 3).

The paper is organized as follows: In Sec. II, we present
the model of coupled spin chains on a kagome strip, and
identify the low-energy theory followed by analysis of its most
dominant terms. In Sec. III, we analyze the phase diagram
emanating from this effective theory. In Sec. IV, we derive
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FIG. 3. Schematic phase diagram emanating from the low-
energy Hamiltonian as a function of the Luttinger parameter K and
the magnetic field B. To obtain it, we assume that K0 � K ; BD ∝ D is
the value of B which exactly obeys the commensurability condition
kB = ±kD/4 (see text). Red color corresponds to a CSL phase, blue
to a VBC, and violet to a MSL.
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expressions for the heat current operator and, consequently,
for κxy as function of B and T in each of the three phases.
Finally, we present concluding remarks in Sec. V. Throughout
the paper, we use units where h̄ = kB = 1.

II. THE MODEL

We consider a spin– 1
2 system on a long strip of kagome

lattice with anisotropic exchange interactions as depicted in
Fig. 1, regarded as a three-leg ladder of meandering XXZ
spin chains which are weakly coupled via the dashed bonds
in the figure. We further assume that spin–orbit coupling in
the underlying electronic system and an externally applied
magnetic field B (along the ẑ axis of the spins) lead to explicit
breaking of both time-reversal and parity symmetry. We hence
include a Zeeman coupling to B, and introduce additional spin
interactions including a DDM coupling to a vector �D = Dẑ,
as well as chiral three-spin ring-exchange interactions on all
triangles. The Hamiltonian describing this system is

H =
∑

l=−1,0,1

Hl + H⊥ , (1)

Hl =
∑
〈i, j〉

Jz
‖Sz

l,iS
z
l, j + 1

2
Jxy
‖ (S+

l,iS
−
l, j + H.c.)

+ Jch
‖
∑
{i, j,k}

�Sl,i · (�Sl, j × �Sl,k )

− B
∑

i

Sz
l,i + D

∑
[i, j]

(�Sl,i × �Sl, j )z (2)

H⊥ =
∑
〈i, j〉

∑
〈l,l ′〉

Jz
⊥Sz

l,iS
z
l ′, j + 1

2
Jxy
⊥ (S+

l,iS
−
l ′, j + H.c.),

+
∑
〈l,l ′〉

⎧⎨
⎩Jch

⊥
∑
{i, j,k}

�Sl,i · (�Sl ′, j × �Sl ′,k )

+ D
∑
[i, j]

(�Sl,i × �Sl ′, j )z

⎫⎬
⎭, (3)

where l denotes the chain index (l = −1, l = 0, and l = 1
denoting the bottom, middle, and top chains, respectively);
〈i, j〉 stands for nearest-neighbor sites, {i, j, k} for the corners
of the same triangle, [i, j] for sites connected by an edge of
a triangle, and 〈l, l ′〉 for adjacent chains. The actual choice of
indexing by unit cell along the 1D periodic structure is given
in Fig. 1. We assume the exchange coupling constant Jα

‖ , Jα
⊥

to be AFM, and that Jch
‖/⊥ is proportional to the magnetic field.

Also, for our construction to be valid, we assume that the
interchain couplings Jch

⊥ , Jxy
⊥ , and Jz

⊥, as well as Jch
‖ , B, and

D are small relatively to Jxy
‖ .

To properly bosonize the above Hamiltonian, we first per-
form a Jordan-Wigner (JW) transformation for each of the
chains followed by bosonization of fermions, leading to the
well-known mapping of the spin operators in the continuum
limit [46]:

S±(x) � 1√
2πa

e∓iθ̃l [(−)x + cos 2φ̃l ],

Sz
l (x) � − 1

π
∂xφ̃l + 1

πa
(−)x cos 2φ̃l .

(4)

Here a is the lattice constant, x = na with n integer, and the
bosonic fields φ̃l , θ̃l obey the canonical commutation relation:

[φ̃l (x
′), ∂x θ̃l (x)] = iπδ(x − x′).

Employing the mapping Eqs. (4) to obtain the continuum
limit of H [Eq. (1)] should be carried out with some caution.
Although the bosonization of spin- 1

2 models can be found in
the literature [46], we present some details of the derivation
for the less common terms in Appendix A.

The resulting low-energy representation of the Hamilto-
nian includes a quadratic part, where the XXZ couplings on
chain l yield a LL with velocity ul and Luttinger parameter
Kl . Note that the unit cell of the kagome strip consists of three
sites in the outer chains and four sites in the middle chain
(see Fig. 1). To allow for a unified continuum description,
we hereon adapt a notation where the local fields φ̃l (x), θ̃l (x)
are labeled by a course-grained coordinate x representing the
unit-cell index. This rescaling leads to normalization of the
gradient terms, and consequently to distinct values of their
coefficients for l = ±1 and l = 0. The magnetic field and DM
coupling generate terms linear in the fields θ̃l and φ̃l ,

B
∑

l=±1,0

∫
dx

1

π
∂xφ̃l + 2D

π

∫
dx(∂x θ̃1 − ∂x θ̃−1), (5)

which can be absorbed into the definition of a new set of fields:

θl = θ̃l + kD
l x,

φl = φ̃l + kB
l x,

(6)

where, for Jch
‖ , Jch

⊥ , Jα
⊥ � Jxy

‖ , kD
l � 2D

Kl ul
l and kB

l � Kl B
ul

. We
thus obtain for each chain l

Hl = H0
l + H int

l (7)

H0
l = HLL

l − gch
l

∫
dx∂xθl∂xφl , gch

l ≡ lg,

HLL
l = ul

2π

∫
dx

{
Kl (∂xθl )

2 + 1

Kl
(∂xφl )

2

}
, (8)

H int
l = 2gl

(2πa)2

∫
dx cos

(
4φl − 4kB

l x
)
, (9)

in which g = Jch
‖

8
π2 a, g±1 = 2(Jxy

‖ − Jz
‖ )a, g0 = 2(2Jxy

‖ −
Jz
‖ )a. The velocities ul ∼ Jxy

‖ a, hence within our
approximations they obey the condition |πg| < ul required
to ensure that H0

l has only positive eigenvalues. Due to
symmetry between the two outer chains l = ±1,

K±1 ≡ K, u±1 ≡ u, (10)

while the middle chain l = 0 has different parameters u0, K0.
These are affected by the combined effects of the distinct
spin densities mentioned above, and the number of next-
nearest neighbor bonds per unit cell. In the regime of strong

anisotropy (� ≡ Jz
‖

Jxy
‖

� 1), one can obtain approximate ex-

pressions for Kl [see Appendix A Eq. (A8)]; however, in
the remains of the paper, we view them as free parameters.
Note that u0 > u, and that the Luttinger parameters Kl are
reduced compared to the linear XXZ chain because of next-
nearest-neighbors coupling (e.g., the 3n + 1 and 3n + 3 sites
in Fig. 1). The coupling constants gl are positive for Jz

‖ < Jxy
‖ ,

174429-3



PAVEL TIKHONOV AND EFRAT SHIMSHONI PHYSICAL REVIEW B 99, 174429 (2019)

so at B = 0 (such that the oscillatory phase factor kD
l x van-

ishes), H int
l [Eq. (9)] is minimized by 2φl = ±π

2 . Therefore,
when this term is relevant, it generates a dimerized state with
〈Sz〉 = 0.

The interchain coupling becomes

H⊥ = H0
⊥ + H ch, (11)

H0
⊥ = gz

⊥

∫
dx(∂xφ1 + ∂xφ−1)∂xφ0

+ gch
⊥,0

∫
dx(∂xθ1 − ∂xθ−1)∂xφ0, (12)

H ch
⊥ =

∑
l=±1

∫
dx

gch
⊥

(2πa)2

+{cos(2φl + 2φ0 − θl + θ0 − �k−,l x − δ−,l )

+ cos(2φl + 2φ0 + θl − θ0 − �k+,l x − δ+,l )}, (13)

where

�k±,l = 4kB ± lkD,

kB ≡ 1

2

(
kB
±1 + kB

0

) = 1

2

(
K

u
+ K0

u0

)
B,

kD ≡ lkD
l = 2D

Ku
, (14)

gz
⊥ = Jz

⊥
2
π2 a and gch

⊥,0 = Jch
⊥

2
π2 a; as H ch

⊥ [Eq. (13)] com-
bines contributions from the last three terms of Eq. (3) (see
Appendix A), gch

⊥ and the constant phase shifts δ±,l are
functions of Jxy

⊥ , Jch
⊥ , D and B. In particular, such a term

exists even if in the microscopic Hamiltonian, the bare chiral
parameter Jch

⊥ = 0. Additional contributions to the low-energy
Hamiltonian, which are not capable of generating a mass, are
ignored at this stage and will be discussed later in the paper.

Note that the chiral term Eq. (13) includes four terms which
are typically frustrated due to the oscillation with wave-vector
�k± = 4kB ± kD. Hence, this term may turn relevant only
provided kB � ±kD/4. When either of these conditions on the
field B is satisfied, two of the four terms in H ch

⊥ dominate, and
tend to lock the combination of fields 2(φl + φ0) ± l (θl − θ0)
to a fixed value, generating spontaneous current loops with
opposite chiralities on the two interchain triangles (dashed
circles in Fig. 1). It is important to mention that the con-
ventional (typically more relevant) interchain coupling term
cos (θl − θl ′ ), which in standard spin ladders forces spins of
adjacent chains to order in the XY plane, is not present here
because of the triangular structure frustration.

III. PHASE DIAGRAM

Having derived the low-energy Hamiltonian [Eqs. (7)
through (14)], we next obtain the phase diagram by employing
perturbative renormalization group (RG) to analyze the effect
of various terms (see the resulting diagram Fig. 3). In what
follows, we regard the spin interaction parameters as fixed and
consider the magnetic field B as a tuning parameter.

For a general interaction term,

2gv

(2πa)2
cos(λφ + λ̃θ ), (15)

added to a quadratic part in the form of a LL, the correspond-
ing RG equations are

dK

dl
= 1

16
[λ̃2 − λ2K2(l )]g2

v (l ), (16)

dgv

dl
=
[

2 − 1

4

(
λ2K + λ̃2 1

K

)]
gv (l ). (17)

Our model includes two interaction terms of this form
[Eqs. (9) and (13)]; however, each is typically suppressed by a
rapid oscillating factor. For low magnetic fields (kB

l → 0), the
cosine H int

l Eq. (9) becomes relevant for Kl < 1
2 and favors

dimerization within each chain, where spins on adjacent sites
form singlets. The choice of dimer configuration is arbitrary,
which leads to a spontaneous symmetry breaking and for-
mation of a VBC. Subsequently, spin excitations are gapped,
making it a spin insulator. For stronger magnetic fields such
that kB

l is significant, this phase melts via a commensurate-
incommensurate type transition. It should be noted that due to
the generally different Luttinger parameters of the outer and
middle chains (K0 �= K), the transition line (boundary of the
blue region in Fig. 3) actually splits into two, supporting an
intermediate phase where only the middle chain is in the VBC
phase.

For typical values of the magnetic field B, the term H ch
⊥

[Eq. (13)] is suppressed as well for the same reason. However,
tuning the ratio between B and the DM coefficient D to the
commensurate value,

νs ≡ kB/kD � ± 1
4 , (18)

yields �k± � 0 [Eqs. (14)] and reduces the rapid phase os-
cillations. In that case, the corresponding RG equation for gch

⊥
is

dgch
⊥

dl
= [2 − �ch]gch

⊥ (l ) (19)

with

�ch �
(

1

2K
+ 2K

)
− 1 + 4K2

4

gz
⊥
u

, (20)

where (for simplicity of the presentation) we assume that
K0 ≈ K, u0 ≈ u; relaxing this approximation does not change
the qualitative result. The chiral term is hence relevant for
1
2 − δ < K < 1

2 + δ, where δ =
√

1
8

gz
⊥
u . In addition, using

Eq. (16) with λ = 2 and λ̃ = 1, we note that when gch
⊥ flows to

strong coupling, K flows to the stable fixed point K = λ̃
λ

= 1
2 .

Namely, SU (2) symmetry is recovered. To understand the
nature of the order induced by this term, it is natural to employ
the chiral representation of bosonic fields

φR,l = 1
2θl − φl , (21)

φL,l = 1
2θl + φl . (22)

In the chiral basis H ch
⊥ couples left (right) movers to right (left)

movers in adjacent chains, leaving two counterpropagating
modes on the outer chains. The resulting state is a CSL with a
quantized Hall heat conductance. It follows from the analysis
above that this phase is stable in the finite region in K − B
plane colored red in Fig. 3.
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It should be emphasized that the above estimated range
of stability is based on a perturbative treatment of the term
Eq. (13), which is capable of acquiring a vacuum expectation
value and provides a gap to excitations of the CSL. However,
this is likely an underestimate of the robustness of the CSL
phase. The chiral coupling constant gch

⊥ is further renormalized
by additional terms in the Hamiltonian, which can not gener-
ate a mass by themselves but have a lower scaling dimension
[47]. This point is further discussed in Sec. V.

Finally, for intermediate, incommensurate values of B
where none of the cosine terms are relevant we are left with
the quadratic part of the Hamiltonian, which is a gapless liquid
we dub MSL (the violet-colored region in Fig. 3). As shown in
the next section, the distinction between the various phases is
most prominently manifested by the behavior of their thermal
Hall conduction.

IV. THERMAL HALL CONDUCTIVITY

Now that we have identified the distinct phases dominating
the system for different parameters, we turn to the calculation
of thermal Hall conductivity characterizing each phase. The
heat current operator along the strip direction is defined by
the corresponding continuity equation:

∂tH(x) = −∂xJh(x), (23)

where H(x) is the energy density of the low-energy Hamilto-
nian [Eqs. (7)–(9) and Eqs. (11)–(13)]. To evaluate the left-
hand side of the above equation, we assume the full Hamilton
dynamics (including the terms H int

l and H ch
⊥ ); details are given

in App.endix B. The resulting operator has a quadratic form
and can be conveniently written as

Jh(x) = ∂x�
T Ĵh∂x� ,

Ĵh ≡
⎛
⎝Q̂1 K̂1 0

K̂T
1 Q̂0 K̂T

−1
0 K̂−1 Q̂−1

⎞
⎠, (24)

where �T = (θ1 φ1 θ0 φ0 θ−1 φ−1),

Q̂1 = u2

2π

(
2αK ; 1 + α2

1 + α2; 2α 1
K

)
, (25)

K̂1 = 1

2

(
gch

⊥u0K0 uKgz
⊥

u0K0gz
⊥ gch

⊥
u
K

)
, (26)

and

α ≡ πg

u
(27)

is a dimensionless parameter characterizing the chiral interac-
tion in the chains [see Eq. (8)]; K̂−1 and Q̂−1 are obtained by
taking α → −α and gch

⊥ → −gch
⊥ , and Q̂0 by the substitution

α → 0, u → u0. It is worth pointing out that the cosine terms
H int

l and H ch
⊥ , which are responsible for inducing the VBC

and CSL phases, do not affect the form of Jh (see Appendix
B). However, in both strong coupling phases they prominently
affect its expectation values.

To proceed with the calculation of the thermal Hall con-
ductance, we introduce a thermal gradient across the strip,

assuming that the top and the bottom chains are held at tem-
peratures T1 and T−1, respectively, where T1/−1 = T ± 1

2�T
and �T � T . The calculation of the resulting net heat current
then follows a somewhat different path for each of the three
phases, as described in detail below. However, in all cases
it is dominated by contributions from two weakly coupled
channels with opposite chiralities on the top and bottom
sections of the kagome strip, each approximately given by its
local equilibrium value. This yields the linear response result
〈Jh〉 = κxy�T .

A. Metallic spin liquid

We first consider the MSL phase, established when none of
the cosine terms are relevant and we are left with the quadratic
part of H . For convenience, we write the corresponding action
and heat current operator [Eqs. (24)] in terms of chiral fields,
defined via the transformation

� =
⎛
⎝Â 0 0

0 Û0 0
0 0 Â

⎞
⎠�ch, (28)

where �T
ch = (φR

1 φL
1 φR

0 φL
0 φR

−1 φL
−1) and

Â = 1

2

( 1
K

1
K

−1 1

)
, Û0 = 1

2

( 1
K0

1
K0

−1 1

)
. (29)

In this basis, the action (at uniform T ) acquires the form

S = T

2L

∑
�q

�T
ch(−�q)

⎛
⎜⎝ Ŝ1 F̂1 0

F̂ T
1 Ŝ0 F̂ T

−1

0 F̂−1 Ŝ−1

⎞
⎟⎠�ch(�q) (30)

where

Ŝ±1 = 1

2πK

(
q(u∓q − iωn) 0

0 q(u±q + iωn)

)
(31)

Ŝ0 = 1

2πK0

(
q(u0q − iωn) 0

0 q(u0q + iωn)

)
(32)

and

F̂1 = q2

4

⎛
⎝− gch

⊥,0

K + gz
⊥

gch
⊥,0

K − gz
⊥

− gch
⊥,0

K − gz
⊥

gch
⊥,0

K + gz
⊥

⎞
⎠, (33)

F̂−1 = F̂1@
(
gch

⊥,0 → −gch
⊥,0

)
. (34)

Here �ch(�q) are the space-time Fourier components of
the local field �ch, where �q = (ωn, q) and ωn are Mat-
subara frequencies; u± ≡ (1 ± α)u. The off-diagonal blocks
are parametrized by the interchain interaction coefficients
gch

⊥,0, gz
⊥, which we treat perturbatively. In their absence (i.e.,

gch
⊥,0 = gz

⊥ = 0), heat flow is purely longitudinal and is carried
by two counter-propagating modes at the same temperature
on each side of the strip. As a result, even under application
of a finite transversal thermal bias �T , the net heat current
〈Jh〉 = 0. To obtain the leading correction for finite interchain
coupling, we apply a perturbation expansion to second order
in the coupling constants gch

⊥,0, gz
⊥. Leaving the details of the
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FIG. 4. The thermal Hall conductance as a function of the mag-
netic field B in the MSL phase, evaluated from Eq. (35) for differ-

ent values of the Luttinger parameter K . Here
gz
⊥
u � ±0.1,

gch
⊥,0
uK =

0.03α, u0 = 1.1u and K0 = 1.1K . Solid lines correspond to positive
values of gz

⊥ (AFM interchain interaction) and dashed to negative
(FM interaction).

calculation to Appendix C, we get

〈Jh〉 = κxy�T ,

κxy = T K0K
π

3

π2

u2
0

⎡
⎣ 1

K
gch

⊥,0gz
⊥ fs(α, γ )

+
⎛
⎝(gch

⊥,0

K

)2

+ (
gz

⊥
)2

⎞
⎠ fa(α, γ )

⎤
⎦, (35)

where

fa(α, γ ) = −α

[
1

(1 − α2)
+ 2γ

(1 − α2)2

+ γ (3γ − 1)(γ + 2)

((γ + 1)2 − α2)(1 − α2)

]
, (36)

fs(α, γ ) = 1 + 2

[
1

1 − α2
+ γ (1 + α2)

(1 − α2)2

+ γ (3γ − 1)(1 + γ + α2)

((γ + 1)2 − α2)(1 − α2)

]
, (37)

and γ ≡ u0
u . Recalling that gch

⊥,0 and α [proportional to g via
Eq. (27)] have the same origin (they are the coefficients of
the time-reversal-breaking three-spin interactions), we assume
them to be odd functions of the applied magnetic field B.
Hence, for low B, as long as the MSL phase is stable the
thermal Hall conductance is approximately linear:

κxy ∝ B . (38)

Note, however, that the sign of the coefficient depends on
details of the various parameters (see Fig. 4).

B. Chiral spin liquid

A more remarkable behavior of κxy is exhibited in the chiral
CSL phase, emerging in the vicinity of commensurate values
of the magnetic field B = ±BD (see Fig. 3). As discussed in
the previous section, in this phase the inter-chain chiral term
H ch

⊥ [Eq. (13)] becomes relevant, and moreover renormalizes
the Luttinger parameter to K → 1

2 . Employing Eqs. (28) and
(29) with K = K0 = 1

2 , the operators dominating H ch
⊥ can be

expressed in terms of the chiral fields in the following form
[48]:

Hch
⊥ ∼ cos

(
2φL

0 − 2φR
1

)+ cos
(
2φL

−1 − 2φR
0

)
, (39)

introducing two independent sine-Gordon models in the low-
energy Hamiltonian. These operators acquire a vacuum expec-
tation value and generate a mass to fluctuations in the fields
(φL

0 − φR
1 ), (φL

−1 − φR
0 ). As a consequence, we are left with

two counterpropagating chiral modes on opposite edges of
the strip, as φL

1 and φR
−1 remain gapless. In the presence of

a thermal gradient �T = T1 − T−1, this leads to a quantized
thermal Hall conductance,

κxy = π

6
T, (40)

which is exactly what we expect for one mode per edge to
contribute. There are corrections to the quantized value result-
ing from the interchain coupling, but they are exponentially
suppressed due to the bulk gap and thus negligible relatively
to π

6 . We note, however, that as B deviates from the ideal value
±BD, the gap is suppressed approaching a commensurate-
incommensurate transition. This enhances the deviation from
the universal value and causes an overall reduction of κxy.
We thus predict a plateau in κxy vs B centered at B = BD, as
indicated in Fig. 2.

C. Valence bond crystal

We finally focus on the VBC phase dominating the low
B, low K regime where the interaction term Eq. (9) is rele-
vant and induces dimerization in each chain, resulting in an
ordered pattern of spin singlets [46]. The effective low-energy
theory, describing fluctuations of the bosonic fields φl around
the favored values ±π/4, is massive. To calculate the heat
current, we exploit the fact that deep in this phase there is a
point of free massive fermions (K = 1

4 ) for which we can treat
the intrachain terms exactly. The Hamiltonian Hl acquires the
form

H (l )
f =

∫
dx[u(ψ†

R(−i∂x )ψR − ψ
†
L (−i∂x )ψL )

− E (ψ†
RψL + ψ

†
LψR)]

+π lg
∫

dx{ψ†
R(−i∂x )ψR + ψ

†
L (−i∂x )ψL}, (41)

where E ∼ gl is the energy gap to excitations. The heat
current in the Fermionic representation is given by

Jh �
∑

l

J (l )
f , (42)
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where

J (l )
f (x) = u2(1 − lα)2ψ

†
R(−i∂x )ψR

× u2(1 + lα)2ψ
†
L (−i∂x )ψL, (43)

and we neglect subdominant corrections due to interchain
coupling. In the presence of a thermal gradient, the expec-
tation value of each term J (l )

f is evaluated at the correspond-

ing local equilibrium temperature Tl = T + l
2�T . Taking the

large gap limit (E � T ), this yields

〈Jh〉 = κxy�T, (44)

where

κxy � E
3
2

T
1
2

e− E
T × f (α)

and

f (α) = 2
√

2√
π

α(1 + α2)

(see Appendix C for details). Interchain interactions induce
even smaller exponential corrections to κxy, which we there-
fore neglect. This activated suppression of κxy dominates as
long as T is below the gap E ; as the latter is maximized for
B → 0, we obtain the behavior depicted in the lower B part of
Fig. 2.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have studied a quasi-1D toy model for
quantum spins with chiral interactions, focusing on a strip
of the distorted kagome lattice structure depicted in Fig. 1.
We showed that this system possesses three distinct phases
(see Fig. 3), stabilized in different regions of a parameter
space including a Luttinger parameter K (parametrizing the
XXZ anisotropy of spin exchange interactions) and a tunable
magnetic field B. In the low B regime, the spins form a VBC
with gapped counterpropagating modes on the opposite edges
of the strip; it therefore exhibits a “spin-insulator”-like ex-
ponential suppression of the thermal Hall conductance κxy at
low T (and similarly of the longitudinal thermal conductivity,
which we did not explicitly calculate). As the magnetic field is
increased, destroying the singlet-crystal order of VBC, a MSL
phase emerges, characterized by the thermal Hall conductance
being linear in T with a nonuniversal coefficient. By further
increase in B, it reaches the vicinity of a commensurate value
of BD favoring the formation of a CSL with a plateau of
κxy/T at π

6 , resulting from the effective decoupling of two
counterpropagating edge modes on opposite sides of the strip
(see Fig. 5). The transitions from one phase to another are
transparently manifested in the behavior of the thermal Hall
effect as a function of B (see Fig. 2).

Among the three phases, the most intriguing is the CSL
which exhibits a topological order. Notably, in our model it
is restricted to a narrow range of B surrounding a “magic”
value BD ∝ D; here D denotes the strength of a DM interac-
tion, which introduces a fictitious “magnetic flux” due to the
formation of spin-current loops within triangular plaquettes.
The CSL therefore reflects a remarkable reminiscence to a
FQH state in 2D charge conductors subject to a perpendicular

(a)

V BC

(b)

MSL

(c)

CSL

FIG. 5. Sketch of the chiral modes pattern in each of the three
phases. Here full lines represent gapless modes, dashed lines massive
modes, and dotted lines denote coupling between the modes. (a) All
the modes are gapped so the heat current is exponentially suppressed.
(b) The modes are all gapless, and the net heat current is resulting
from the coupling between the chains. (c) Only one of the edge
modes on each side is gapless, yielding a quantized κxy of π

6 .

magnetic field: With respect to the spinons, the magnetic field
serves as a gate potential dictating their density compared to
the particle-hole symmetric point B = 0; a FQH liquid state
is then established when this density is commensurate with
the effective flux density proportional to D or −D (yielding a
particle or holelike FQH state, respectively). We emphasize,
however, that the parameter D (whose chirality can be traced
back to spin-orbit interaction in the underlying material) is not
analogous to a uniform magnetic field in an electronic system.
Rather, in our model where we have introduced a distortion
of the kagome lattice with an explicit breaking of inversion
symmetry in the transverse direction (see Fig. 1), it induces
flux of opposite sign on the top and bottom chains; i.e., on
the two chains containing an odd number of triangles. This
inversion symmetry breaking of the star-of-David building
block is essential to the formation of the CSL phase.

The above-described behavior can persist into a fully 2D
kagome lattice, provided it undergoes the appropriate distor-
tion. A possible extension of our model to a 2D periodic
structure can be constructed by adding a simple (linear) XXZ
chain along one of the edges (see Fig. 6). The resulting pattern

FIG. 6. An extension of the kagome strip where we add an
additional chain to the top edge (solid blue line). Duplicating this
unit in the vertical direction yields a periodic 2D structure.

174429-7



PAVEL TIKHONOV AND EFRAT SHIMSHONI PHYSICAL REVIEW B 99, 174429 (2019)

can then be duplicated to a periodic lattice in the transverse
direction, with a unit cell consisting of four weakly-coupled
chains: two of them contain an odd number of triangles per
(longitudinal) unit cell, supporting a well-defined chirality
of spin current, and two nonchiral ones containing an even
number (2 or 0). In such a 2D structure under a suitable
choice of parameters, a 2D CSL phase can form where the
bulk is gapped, and only the outer chiral modes contribute
to the thermal Hall conductance, thus maintaining the phe-
nomenology of CSL. While our model is artificial in the sense
that it assumes a particular generalization of the ideal kagome
lattice, we argue that qualitatively similar ingredients might
play a role in other realizations of a CSL state, and manifest
themselves in the observation of a quantized plateau in κxy vs
B as in Ref. [40].

We finally comment on the possible effect of additional
contributions to the model Hamiltonian allowed by symmetry,
which we did not account for in our study. First, similarly to
the FQHE, other commensurate ratios of B and D besides B �
BD may favor additional CSL states. The operators supporting
the formation of such states are of the general form

cos (θ0 − θl + 2nφl + 2nφ0 − kDx − 4nkBx), (45)

with an arbitrary integer n > 1. However, except for n = 1,
such terms are typically irrelevant. More interesting is the
effect of additional terms arising from the chiral interac-
tions, which cannot acquire a vacuum expectation value but
significantly contribute to the flow of the chiral coupling
constant gch

⊥ under RG. This includes operators of the form
∼ sin(θ±1 − θ0 ∓ kDx), which are frustrated due to the finite
value assumed for kD ∝ D, as well as chiral operators of the
form ∼ cos(2φ±1 ± θ±1 ∓ θ0). While they cannot generate a
mass, their relatively low scaling dimension dictates important
corrections to the RG Eq. (19) which drive gch

⊥ to strong
coupling in a wider range of parameters [47].

The above-described operators may assist in maintaining
the robustness of the CSL phase against disorder, e.g., due to
defects in the perfect lattice structure, which inevitably exists
to some degree in any realistic system and typically raises a
serious concern in 1D systems. Its effect may be introduced
via random variations of the exchange coupling constants:

J → J + δJ (x). (46)

In the presence of a finite field B, this introduces coupling
to the backscattering operator cos(2φl ) in each chain l . Such
a term is obviously more relevant than the interaction terms
inducing the interesting phases in the clean limit for a wide
range of the Luttinger parameter K . In particular, for K < 3/2,
the disorder is relevant and tends to induce localization of
the spin excitations [49] in the limit T → 0. Recalling that
AFM spin chains (where K < 1) are fully included in this
regime, this appears to severely challenge the possibility to
observe a CSL behavior. However, competition with relevant
chiral terms can shift the disorder-dominated localized phase
to lower values of K . Either way, disorder poses a practical
limitation on the observation of CSL in real materials: Similar
to FQH states in electronic systems, the samples have to be
sufficiently clean that the characteristic energy scale (�dis)
associated with disorder, the energy gap (�csl) to excitations
of the CSL, and the temperature T of the measurement obey
the hierarchy �dis � T � �csl. Lastly, we note that since K is
an arbitrary parameter in our theory, it can be readily extended
to spin systems with ferromagnetic (FM) interactions (K > 1)
which are more immune to disorder. Indeed, the thermal Hall
measurement of Ref. [20] was performed on a FM kagome
compound [50]; rather than a CSL, the data indicate a behav-
ior qualitatively consistent with the MSL phase dominating
the high K region of Fig. 3. In this regime, though, a spin-wave
theory [43] provides a more suitable approach to the 2D
system. Our model and analysis are more likely relevant to
AFM kagome compounds with strong DM interactions, e.g.,
the material recently studied by Doki et al. [51].

ACKNOWLEDGMENTS

Useful discussions with Sam Carr, Eyal Leviatan, David
Mross, Raul Santos, Eran Sela, and Chandra Varma are grate-
fully acknowledged. P.T. thanks the Bar-Ilan Institute for Nan-
otechnology and Advanced Materials for financial support
during the academic year 2017. E.S. thanks the Aspen Center
for Physics (NSF Grant No. 1066293) for its hospitality.
This work was supported by the US-Israel Binational Science
Foundation (BSF) Grant No. 2016130, and the Israel Science
Foundation (ISF) Grant No. 231/14.

APPENDIX A: BOSONIZATION

In this Appendix, we present some details of the derivation of a bosonized form for several nonstandard terms in the
Hamiltonian Eq. (1), particularly including the chiral terms. Throughout the derivation, we keep only the most relevant operators.
It is important to point out that we perform a “shift” transformation [Eqs. (6)] to eliminate linear terms that are induced by the
bosonization, but it does not affect quadratic terms and results in oscillation for the cosine (sine) terms. We comment about these
oscillations where appropriate.

We start with the exchange terms
∑

〈i, j〉 S+
l,iS

−
l, j , and employ a JW transformation for each of the chains:

Sz
l,i = C†

l,iCl,i − 1
2 , (A1)

S+
l,i = C†

l,i

(
1
2 eiπ

∑
j<i C†

l, jCl, j + H.c.
)
, (A2)
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where C†
l,i and Cl,i are spinless Fermions. For the lower chain l = −1 (see Fig. 1), this yields∑

〈i, j〉
S+

−1,iS
−
−1, j =

∑
n

{S+
3nS−

3n+1 + S+
3n+1S−

3n+2 + S−
3nS+

3n+2 + S+
3n+2S−

3n+3}

=
∑

n

∑
m=0,1,2

{
C†

3n+mC3n+m+1 +
∑

n

C†
3n(1 − 2C†

3n+1C3n+1)C3n+2

}

= −
∑

n

∑
m=0,1,2

{
C†

3n+mC3n+m+1 − 2
∑

n

C†
3nC3n+2Sz

3n+1

}
, (A3)

where in the last step we performed a transformation Cn → (−)nCn. Bosonizing the fermions by

Cl,i ∝ eikF xψl,R(x) + e−ikF xψl,L(x) (A4)

ψl,r (x) = lim
a→0

1√
2πa

e−i[rφ̃l (x)−θ̃l (x)] (A5)

results in∑
〈i, j〉

{S+
−1,iS

−
−1, j + H.c.} �

∫
dx

3

πa2
{(a∂xφ̃−1)2 + (a∂x θ̃−1)2} +

∫
dx

4

(πa)2
(a∂xφ̃−1)2 +

∫
dx

2

(πa)2
cos 4φ̃−1. (A6)

By symmetry, the continuum limit for the upper chain (l = 1) is the same. A similar calculation for the middle chain (l = 0)
gives a result that is only different by numerical factors. In particular, the coefficient of the last (cosine) term is doubled due to
the presence of two triangles in the unit cell. Transformation to the “shifted” fields [Eqs. (6)] induces oscillation in the cosine
term, which we discuss in the main text.

The bosonization of
∑

〈i, j〉 Sz
l,iS

z
l, j is simpler because we can use the closed form of Sz [Eqs. (4)] in terms of the corresponding

boson fields, leading to ∑
〈i, j〉

Sz
−1,iS

z
−1, j =

∑
n

{
Sz

3nSz
3n+1 + Sz

3n+1Sz
3n+2 + Sz

3nSz
3n+2 + Sz

3n+2Sz
3n+3

}

�
∫

dx

{
6

π2
(∂xφ̃−1)2 − 1

π2a2
cos 4φ̃−1

}
. (A7)

Again, for the upper chain we get the same result, and the middle chain result only differs by the prefactors of bosonic operators.
Combining Eqs. (A6) and (A7), and accounting for the prefactors 1

2 Jxy
‖ , Jz

‖ of the corresponding exchange terms, we find the
overall coefficient of the cos(4φ̃±1) term to be g±1 ∝ (Jxy

‖ − Jz
‖ ). Similarly, the coefficient of the cos(4φ̃0) term is g0 ∝ (2Jxy

‖ −
Jz
‖ ). Combining the quadratic terms, we obtain approximate expressions for the LL parameters:

K2
±1 � 1

1 + 8
3π

+ 4
π
�

, K2
0 � 1

1 + 4
π

+ 4
π
�

, (A8)

where � = Jz
‖

Jxy
‖

.

We now turn our attention to the last intrachain interaction term, introducing the chiral operators �Sl,i · (�Sl, j × �Sl,k ). For the
lowermost triangle (residing on l = −1), we obtain∑

{i, j,k}
�Si · (�S j × �Sk ) =

∑
n

�S3n · (�S3n+1 × �S3n+2)

=
∑

n

{−i[C†
3nC3n+1 − C†

3n+1C3n]Sz
3n+2 − i[C†

3n+1C3n+2 − C†
3n+2C3n+1]Sz

3n + 2i[C†
3nC3n+2 − C†

3n+2C3n]Sz
3n+1}

�
(

−i
1

2πa
4ia∂x θ̃−1 × 2 + 4a

π
∂xφ̃−1∂x θ̃−1

)(
− 1

π
∂xφ̃−1

)

� −
∫

dx
4

π2
∂x θ̃−1∂xφ̃−1. (A9)

For the upper chain (l = 1), the above term gives the same result but with a plus sign, because of the opposite chirality on the
top and bottom triangles. However, in the middle chain (l = 0), this leading contribution cancels altogether, having contributions
from triangles of both chiralities. The resulting low energy limit of the three-spin operator within l = 0 is irrelevant, and hence
neglected.
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Next, we consider the interchain interactions. Here we present the coupling between the upper (l = 1) and the middle (l = 0)
chains; the coupling between the bottom (l = −1) and middle (l = 0) chains can then be inferred by symmetry. Recalling the
bosonic representation of the S± operator Eqs. (4), we get for the xy-exchange term

∑
〈i, j〉

(S+
1,iS

−
0, j + H.c.) =

∑
n

{S+
1,3nS−

0,4n+1 + S+
1,3n+1S−

0,4n+1 + H.c.} �
∫

dx

{
1

2πa
cos(θ̃1(x) − θ̃0(x))

× [(−)3n + cos 2φ̃1(x)] + 1

2πa
cos(θ̃1(x + a) − θ̃0(x))

× [(−)3n+1 + cos 2φ̃1(x + a)]

}
× [(−)4n+1 + cos 2φ̃0(x)] . (A10)

Due to the staggering factor (−)3n, the continuum limit of this term is dominated by operators of the form cos(θ̃1 − θ̃0) cos 2φ̃1

and cos(θ̃1 − θ̃0) cos 2φ̃1 cos 2φ̃0. The latter contributes to H ch
⊥ [Eq. (13)], and the former is a sum of chiral operators that cannot

generate a mass. After performing the shift transformation [Eqs. (6)], one observes that these terms typically exhibit rapid phase
oscillations.

For the z component of the exchange coupling between chains l = 1 and l = 0, using Eqs. (4) we obtain a quadratic
perturbation:

∑
〈i, j〉

Sz
1,iS

z
0, j =

∑
n

(
Sz

1,3n + Sz
1,3n+1

)
Sz

0,4n+1 �
∫

dx
2

π2
∂xφ̃1∂xφ̃0. (A11)

The coupling between the middle (l = 0) and the lower (l = −1) chains gives the same result, so the terms are a part of H0
⊥

[Eq.(12)].
Finally, we consider the chiral three-spin operator

∑
{i, j,k}

�S0,i · (�S1, j × �S1,k ) = �S0,4n+1 · (�S1,3n+1 × �S1,3n) =
∑

n

i

2
Sz

0,4n+1 · (S+
1,3n+1S−

1,3n − S−
1,3n+1S+

1,3n)

+
∑

n

i

2
Sz

1,3n · (S+
0,4n+1S−

1,3n+1 − S−
0,4n+1S+

1,3n+1)

+
∑

n

i

2
Sz

1,3n+1 · (S+
1,3nS−

0,4n+1 − S−
1,3nS+

0,4n+1). (A12)

Here, the first term has a simple form in the fermionic language,

∑
n

1

2i
Sz

0,4n+1 · (C†
1,3n+1C1,3n − C1,3n+1C

†
1,3n), (A13)

and induces gradient couplings between the outer chains and the middle one as a part of H0
⊥ [Eq. (12)]. The last two terms

generate many operators, most of which exhibit rapid oscillations. Among them, we maintain the ones which contain oscillating
phase factors depending on both wave vectors kB and kD, which can therefore cancel upon tuning them to a particular
commensurate ratio. In particular, the following contribution couples to operators that are capable of acquiring a vacuum
expectation value and induce the CSL phase:∫

dx

{
1

2(πa)2 cos
(
2φ1 − 2kB

1 x
)

cos
(
2φ0 − 2kB

0 x
)× sin

(
θ0 − kD

0 x − θ1 + kD
1 (x + a)

)

+ 1

2(πa)2 cos
(
2φ1 − 2kB

1 (x + a)
)× sin

(
θ1 − kD

1 x − θ0 + kD
0 x
)

cos
(
2φ0 − 2kB

0 x
)}

. (A14)

After applying trigonometric identities, this leads to an expression of the form H ch
⊥ [Eq. (13)].

APPENDIX B: DERIVATION OF THE HEAT CURRENT OPERATOR

In this Appendix, we present some details for the derivation of the heat current density operator, which follows from the
definition Eq. (23). The most common contribution to the left-hand side, i.e., the commutator i[H,H], is arising from the LL
Hamiltonian density HLL

i
∫

dx′[HLL(x′),HLL(x)] = iu2π2 1

(2π )2
×
∫

dx′{[(∂x′φ)2,�2(x)] + [�2(x′), (∂xφ)2]}, (B1)
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which gives a well-known result,

u2∂x(∂xφ�(x)); (B2)

here and throughout this section, �(x) = 1
π
∂xθ . This result can be readily interpreted as a contribution (JLL

h ) to the right-hand
side of Eq. (23) where JLL

h = u2∂xφ�(x). We proceed with a characteristic term included in the quadratic part of H , which is a
commutation relation between HLL and a gradient coupling of two fields:

i
∫

[HLL(x′), ∂xφ∂xφ0], (B3)

= i
u

2π

∫
dx′
[

K (π�(x′))2 + 1

K
(∂x′φ)2, ∂xφ∂xφ0

]
, (B4)

= i
u

2π

∫
dx′[K (π�(x′))2, ∂xφ]∂xφ0, (B5)

= i
u

2π

∫
dx′Kπ2(−∂x(2iδ(x − x′)�(x′)))∂xφ0, (B6)

= uπK∂x�(x)∂xφ0. (B7)

Together with its complementary term,

i
∫

dx′[∂x′φ∂x′φ0,HLL(x)], (B8)

it yields a full derivative

i
∫

dx′{[HLL(x′), ∂xφ∂xφ0] + [∂x′φ∂x′φ0,HLL(x)]} = uπK∂x(�(x)∂xφ0). (B9)

Once again, it is straightforward to deduce the corresponding contribution to Jh. The rest of the quadratic contributions to the
heat current operator may be derived by a simple change of the field labels or by substitution:

φ → θ, K → 1

K
. (B10)

The last type of contribution we need to consider is the one coming from cosine terms like Eqs. (9) and (13). Plugging into
the commutator i[H,H], one encounters terms of the following form:

i
∫

dx′[eiθ (x′ ), (∂xφ)2], (B11)

= ∂xφi
∫

dx′ieiθ (x′ )iπδ(x − x′), (B12)

+ i
∫

dx′ieiθ (x′ )iπδ(x − x′)∂xφ, (B13)

= −iπ{∂xφ, eiθ (x)}, (B14)

which exactly cancels out with the complementary term i
∫

dx′[(∂x′φ)2, eiθ (x)]. Again, we can change the labels of the fields and
substitute φ → θ to see that other combinations vanish too. The finite result for Jh can be written in a matrix form as shown in
Eq. (24).

APPENDIX C: EVALUATION OF κxy IN THE MSL AND VBC PHASES

In this Appendix, we present the derivation of key correlation functions, contributing to the calculation of heat current
expectation value. We focus first on the MSL phase, where corrections to the quadratic bosonized form of the Hamiltonian
Eq. (1) are irrelevant. The action corresponding to this quadratic part may be written in a block-matrix form:

S = T

2L

∑
�q

�T (−�q)

⎛
⎝D̂1 Ĝ1 0

ĜT
1 D̂0 ĜT

−1
0 Ĝ−1 D̂−1

⎞
⎠�(�q), (C1)

where

D̂1 =
(

q2uK
π

i qωn

π
+ gq2

i qωn

π
+ gq2 q2u

πK

)
, Ĝ1 =

(
0 gch

⊥,0
0 gz

⊥

)
q2 ; (C2)
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D̂−1 and Ĝ−1 can be obtained by taking g → −g and gch
⊥,0 → −gch

⊥,0, while D̂0 by u → u0 and K → K0. Here �T (�q) are the
Fourier components of the local field �T defined after Eq. (24). In the chiral basis [Eq. (28)], the action acquires the form
Eq. (30) where the diagonal blocks are diagonalized. We then write the heat current operator [Eq. (24)] in the same basis:

Jh(x) = ∂x�
T
chĴch

h ∂x�ch , (C3)

where

Ĵch
h =

⎛
⎜⎝

Q̂1 K̂1 0

K̂T
1 Q̂0 K̂T

−1

0 K̂−1 Q̂−1

⎞
⎟⎠ (C4)

and

Q̂±1 = u2

4πK

(
−(1 ∓ α)2 0

0 (1 ± α)2

)
, Q̂0 = u2

0

4πK0

(−1 0
0 1

)
,

K̂1 = 1

8

(
−ugz

⊥ − u0gz
⊥ + gch

⊥,0u ugz
⊥ − u0gz

⊥ − gch
⊥,0u

−ugz
⊥ + u0gz

⊥ − gch
⊥,0u ugz

⊥ + u0gz
⊥ + gch

⊥,0u

)
. (C5)

Here α is related to g via Eq. (27), and K̂−1 can be obtained by taking gch
⊥,0 → −gch

⊥,0.
To proceed with the calculation of the net heat current in the presence of a small temperature difference �T applied across the

kagome strip, we first consider the equilibrium contributions to 〈Jh〉 which include several correlation functions of the bosonic
fields φl . These are straightforwardly obtained by inverting the action Eq. (30), and approximating the result up to second order
in the interchain coupling constants gz

⊥, gch
⊥,0, both assumed to be weak. This yields the following expressions:

T

L

(〈
φR

�q,0φ
R
−�q,0

〉 〈
φR

�q,0φ
L
−�q,0

〉
〈
φL

�q,0φ
R
−�q,0

〉 〈
φL

�q,0φ
L
−�q,0

〉
)

�
(

GR,0 0

0 GL,0

)
+ A

(
G2

R,0 −GR,0GL,0

−GR,0GL,0 G2
L,0

)
, (C6)

T

L

(〈
φR

�q,1φ
R
−�q,0

〉 〈
φR

�q,1φ
L
−�q,0

〉
〈
φL

�q,1φ
R
−�q,0

〉 〈
φL

�q,1φ
L
−�q,0

〉
)

� q2

4
×
⎛
⎝GR,1GR,0

(
− gch

⊥,0

K + gz
⊥
)

; GR,1GL,0

(
gch

⊥,0

K − gz
⊥
)

GL,1GR,0

(
− gch

⊥,0

K − gz
⊥
)

; GL,1GL,0

(
gch

⊥,0

K + gz
⊥
)
⎞
⎠, (C7)

T

L

(〈
φR

�q,1φ
R
−�q,1

〉 〈
φR

�q,1φ
L
−�q,1

〉
〈
φL

�q,1φ
R
−�q,1

〉 〈
φL

�q,1φ
L
−�q,1

〉
)

�
(

GR,1 0

0 GL,1

)
+
(

q2

4

)2(
GR,0 + GL,0

)
(C8)

×

⎛
⎜⎜⎝

G2
R,1

(
gch

⊥,0

K − gz
⊥
)2

GR,1GL,1

((
gch

⊥,0

K

)2
− (gz

⊥)2

)

GR,1GL,1

((
gch

⊥,0

K

)2
− (gz

⊥)2

)
G2

L,1

(
gch

⊥,0

K + gz
⊥
)2

⎞
⎟⎟⎠, (C9)

where

A =
(

q2

4

)2
⎡
⎣(GR,1 + GL,−1

)(gch
⊥,0

K
− gz

⊥

)2

+ (
GL,1 + GR,−1

)(gch
⊥,0

K
+ gz

⊥

)2
⎤
⎦ (C10)

and

G−1
R,1 = q

2Kπ
(qu− − iωn), G−1

R,−1 = q

2Kπ
(qu+ − iωn), G−1

R,0 = q

2K0π
(qu0 − iωn), (C11)

G−1
L,1 = q

2Kπ
(qu+ + iωn), G−1

L,−1 = q

2Kπ
(qu− + iωn), G−1

L,0 = q

2K0π
(qu0 + iωn). (C12)

The rest of the correlation functions may be obtained by changing the chain index 1 → −1 and substituting gch
⊥,0 → −gch

⊥,0.
Direct correlations between the l = 1 and l = −1 chains appear only to higher order in gz

⊥, gch
⊥,0. Hence the leading contribution

to 〈Jh〉 includes two types of terms, arising from the top side of the strip (〈φχ

1 φ
χ ′
1 〉, 〈φχ

1 φ
χ ′
0 〉 where χ, χ ′ = R, L), and from

the bottom part (〈φχ

−1φ
χ ′
−1〉, 〈φχ

−1φ
χ ′
0 〉) separately. Accumulating these expressions, substituting in Eq. (C3) and performing the

summation over �q = (ωn, q), we obtain a net heat current 〈Jh〉 as sum of two contributions which cancel at equilibrium. We then
introduce a small temperature imbalance �T � T between the top and bottom sectors, assumed each to be at local equilibrium
with temperature T ± 1

2�T . We thus obtain a finite 〈Jh〉 = κxy�T , with κxy an odd function of g and gch
⊥,0 [Eq. (35) in the main

text].
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We next consider the VBC phase, where the bosonic fields are strongly interacting. However, an approximate free massive
theory can still be employed, particularly in the vicinity of the special point K = 1/4 where the Hamiltonian in each chain can
be mapped to free fermions [Eq. (41)]. The corresponding action is given by

S f [ψ†
R, ψR, ψ

†
L , ψL] = T

L

∑
ωn,k

�†(k, ωn)Ŝ f �(k, ωn), (C13)

where

�†(k, ωn) = (ψ†
R(k, ωn)ψL(−k,−ωn)), (C14)

Ŝ f =
(−iωn + uR k E

E −iωn − uL k

)
. (C15)

Here ωn is the fermionic Matsubara frequency, and we drop the chain index (l ) for the fields; in the outer chains (l = ±1)
uR = u(1 ∓ α), uL = u(1 ± α) and in the middle chain (l = 0) uR = uL = u0. This leads directly to the correlation functions

T

L

(〈ψ†
R,�kψR,−�k〉 〈ψ†

R,�kψL,−�k〉
〈ψ†

L,�kψR,−�k〉 〈ψ†
L,�kψL,−�k〉

)

= 1

det S f

(−iωn − uL k −E
−E −iωn + uR k

)
, (C16)

where

det S f = (−iωn + πgk)2 − (uk)2 − E2. (C17)

The calculation of κxy proceeds following the same approach as in the MSL phase: since the chains are weakly coupled, we
assume a local equilibrium in chain l at temperature Tl = T + l

2�T , and evaluate the corresponding contribution 〈J (l )
f 〉 to the

net expectation value of Jh [Eq. (42)]. Note that here, unlike the MSL phase, a net heat current stemming from the difference in
velocities uR , uL is present in each of the outer chains l = ±1. For the upper chain (l = 1), we obtain〈

J (1)
f

〉 = T1

L

∑
�q

{u2(1 − α)2q〈ψ†
R,�qψR,�q〉

+ u2(1 + α)2q〈ψ†
L,�qψL,�q〉}. (C18)

Plugging in the correlation functions [Eq. (C16)] and employing the low T approximation E � T , we get the leading order
expression 〈

J (1)
f

〉 � e− E
T1 × 2

π

√
2πα(1 + α2)

√
ET

3
2

1 . (C19)

Combining the result with the lower (l = −1) chain contribution, with the substitution T1 → T−1 and α → −α, leads to the final
expression for the heat current [Eq. (44)].
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