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Utilizing the Pauli equation based multislice method, introduced in a previous paper [A. Edström, A. Lubk,
and J. Rusz, Phys. Rev. Lett. 116, 127203 (2016)], we study the atomic-resolution differential phase contrast
(DPC) imaging on an example of a hard magnet FePt with in-plane magnetization. Simulated center-of-mass
pattern in a scanning transmission electron microscopy experiment carries information about both electric
and magnetic fields. The momentum transfer remains curl free, which has consequences for interpretation of
the integrated DPC technique. The extracted magnetic component of the pattern is compared to the expected
projected microscopic magnetic field as obtained by density functional theory calculation. Qualitative agreement
is obtained for low sample thicknesses and a suitable range of collection angles.
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I. INTRODUCTION

Differential phase contrast (DPC) imaging is a transmis-
sion electron microscopy (TEM) technique that measures de-
flections of an illuminating electron probe due to electric and
magnetic fields in a thin sample [1,2]. By scanning a conver-
gent electron probe over the sample in scanning transmission
electron microscopy (STEM) mode, spatially resolved maps
of these fields are generated with this technique, which makes
it an important characterization tool for nanoscale solid-state
phenomena. STEM-DPC has been used, for example, to detect
magnetic field in magnetic domains [3,4] or skyrmions [5,6],
and electric fields at nanoscale and recently even at atomic
resolution [7–11].

A beam deflection in real space corresponds to a shift in the
far field (Fourier space) and that is typically evaluated from
signals detected by a four-quadrant detector in a diffraction
plane. Detectors with more segments or increasingly fast pix-
elated detectors have been used in STEM-DPC more recently
[12–17]. With these one can acquire the whole diffraction pat-
tern (or ronchigram) at every scan point and obtain the center
of mass (COM) from each diffraction pattern numerically by
postprocessing [7,8].

Theoretical understanding of DPC is based on Ehrenfest’s
theorem [7,18]. The main result of these considerations is that
a straightforward interpretation of deflection angles in terms
of projected electric and magnetic fields is only possible in
the phase grating approximation. As its requirements typically
get violated under atomic-resolution conditions and specimen
thicknesses above a few nanometers already, a quantum me-
chanical treatment of measuring electric fields by DPC at
atomic resolution has been discussed thoroughly in several
works [7,19–21].
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Note, however, that atomic-resolution mapping of micro-
scopic magnetic fields has neither been reported experimen-
tally nor described theoretically. The main reason for this
blind spot is the weak perturbation of the scattered wave
due to atomic magnetic fields [22] rendering an experimental
detection challenging with state-of-the-art TEM instrumen-
tation. Notwithstanding further progress in terms of stability
and signal-to-noise ratio may further increase the DPC signal
resolution providing access to this very intriguing regime
(e.g., for studying antiferromagnetic textures).

In this work we therefore present a quantum mechanical
theory of magnetic STEM-DPC utilizing the paraxial Pauli
equation multislice method as introduced in Refs. [23,24]. We
have simulated STEM-DPC of a hard magnetic material FePt
with easy axis of magnetization oriented in plane. Extracted
magnetic signals at acceleration voltages ranging from 60
up to 1000 kV are compared to the projected microscopic
magnetic field, which was obtained by density functional
theory and served as an input for the calculations. Section II
describes the simulation details. Section III analyzes the ex-
pected magnetic contrast in the STEM-DPC images following
[7]. Section IV summarizes the results of our simulations. In
Sec. V we discuss qualitatively the individual terms of the
paraxial Pauli equation with focus on sources of microscopic
magnetic information.

II. SIMULATION DETAILS

We have performed multislice simulations based on parax-
ial Pauli equation [23,24], equivalently written as

p̂z
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ψ↓(r)

)
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2469-9950/2019/99(17)/174428(9) 174428-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.174428&domain=pdf&date_stamp=2019-05-28
https://doi.org/10.1103/PhysRevLett.116.127203
https://doi.org/10.1103/PhysRevLett.116.127203
https://doi.org/10.1103/PhysRevLett.116.127203
https://doi.org/10.1103/PhysRevLett.116.127203
https://doi.org/10.1103/PhysRevB.99.174428


EDSTRÖM, LUBK, AND RUSZ PHYSICAL REVIEW B 99, 174428 (2019)

where p̂z = −ih̄ ∂
∂z is the (canonical) momentum operator in

z direction, p̂⊥ = ( p̂x, p̂y), and ψ↑↓(r) are slowly changing
envelope wave functions along z (i.e., without the quickly
oscillating eikz factor) for spin up and down, respectively.
Furthermore, k is electron wave vector at acceleration voltage
Vacc, Ŝ is spin operator, and e > 0, m, h̄ are the elemen-
tary charge, relativistically corrected electron mass, and the
reduced Planck constant, respectively. The magnetic vector
potential A and induction B are obtained from electronic
structure calculations (see below), whereas the electrostatic
potential V is generated by superposing independent atomic
potentials using Kirkland’s parametrization [25]. We note that
a modified multislice approach in the presence of magnetic
lenses has been described in Ref. [26]. Pauli multislice method
used here is more general since it can deal with arbitrary
locally varying magnetization vector fields.

The material chosen for this study is ferromagnetic FePt.
FePt crystallizes in a tetragonal L10 structure (space group
P4/mmm) with a = 2.71 Å and c = 3.72 Å [27]. It has a
Curie temperature safely above room temperature, close to
700 K. This material is notable for its large magnetocrys-
talline anisotropy energy [28], which makes it important for
applications, such as in magnetic recording [29–31]. The spin
density has been calculated by density functional theory using
WIEN2K code [32] in the generalized gradient approximation
of exchange-correlation effects (see Ref. [24] for details).
From the spin density we have evaluated the spin current
density by Gordon decomposition, followed by solving the
Poisson equation to obtain the magnetic vector potential A in
Coulomb gauge (which is used throughout this work), from
which the magnetic induction B = ∇ × A follows. Details
about the procedure can be found in Ref. [24].

In Pauli-multislice calculations presented here, we have
set the orientation of the FePt crystal such that the longer c
axis is oriented in plane, along the x axis. The macroscopic
magnetization is then oriented along the x axis, along the
easy axis of magnetization of the material. Due to the large
magnetocrystalline anisotropy, it is expected to keep a sizable
fraction of its magnetization in this direction also in the
presence of a magnetic field, such as that typically present in
an electron microscope. Moreover, dedicated Lorentz imaging
microscopes exist to examine specimens in field-free condi-
tions and TEM instrumentation development is being actively
pursued in this area to achieve scanned diffraction mapping at
atomic resolution [33].

III. MOMENTUM TRANSFER TO PARAXIAL ELECTRONS
IN ELECTROMAGNETIC FIELDS

Ehrenfest’s theorem for an electron in an electromagnetic
field allows to write the dynamics of the mechanical momen-
tum operator expectation value as

d2

dt2
〈r̂〉 = d

dt
〈p̂ + eA〉 = −e〈v × B + E〉, (2)

which corresponds to the classical Lorentz force law for an
electron traveling at velocity v through the fields A, B =
∇ × A, and E. In Ref. [7], relations between momentum
transfer to an illuminating electron probe and the electric
field in a solid were derived without taking into account

magnetic fields, i.e., A = B = 0. Here, we wish to generalize
this description to a situation including magnetic fields. As
usual, we are interested in a situation where the velocity v ‖ êz

is large, so paraxial quantum mechanics can be used. Using
d
dt = dz

dt
d
dz = v d

dz , we can write

d

dz
〈p̂ + eA〉⊥ = − e

v
〈v × B + E〉⊥, (3)

where 〈Ô〉⊥ denotes the expectation value of operator Ô in a
plane perpendicular to the propagation direction (the xy plane)

〈Ô〉⊥(z) =
∫

d2r⊥ψ∗(r⊥, z)Ôψ (r⊥, z), (4)

with r⊥ = (x, y).
Here, an important distinction needs to be made about

the left-hand side of Eq. (3). In actual DPC measurement
we detect the intensity of the scattered electron probe in
the diffraction plane (ronchigram, far field) and then in the
postprocessing we evaluate the mechanical momentum dis-
placement vector P as

〈P⊥〉 =
∑

n

P⊥,nwn, (5)

where the sum goes over segments or pixels of the detec-
tor. Importantly, weights wn follow from intensities that are
measured in the field-free far field after the electron probe
has propagated through the microscope optics from the exit
surface of the sample to the detector. Association of n with
P⊥,n is done a posteriori by calibrating the experimental
geometry and interpreting the measured intensities.

As a consequence, Eq. (5) in general differs from the quan-
tum mechanical expectation value of canonical momentum
p̂⊥ = −ih̄∇⊥ in the object exit plane, which is gauge depen-
dent. Gauge dependence arises from the freedom of choosing
gauge for magnetic vector potential A → A + ∇�(x, y, z, t ).
Change of gauge modifies the electron probe wave func-
tion ψ → exp{−i e

h̄�}ψ . Instead of gauge-dependent canon-
ical momentum −ih̄∇ one defines mechanical momentum
P = −ih̄∇ + eA, as in the left-hand side of Eq. (3), which
is gauge invariant. Note that 〈P⊥〉 defined in Eq. (5) ap-
proximates the expectation value of mechanical momentum
transfer, expressed as a quantum mechanical expectation value
of mechanical momentum 〈ψ |p̂⊥ + eA⊥|ψ〉. Precision of this
approximation as a function of number of segments, their
geometry, and an angular coverage of pixelated detector has
been analyzed in Refs. [19–21].

Thus, the shift in the expectation value of the electron mo-
mentum as the electron scatters through a sample of uniform
thickness d becomes

�〈P⊥〉 = − e

v

∫ d

0
〈v × B + E〉⊥dz. (6)

For thin enough samples [7,18–21] one can make the
approximation I (r⊥, z) = ψ∗(r⊥, z)ψ (r⊥, z) ≈ I (r⊥, 0) ≡
I (r⊥). That refers to a beam centered at R = 0. Electron
probe centered on R has an intensity distribution I (r⊥ − R).
We now introduce the following notations. First, averaging
over z is denoted by a bar above the symbol:

B̄(r⊥) = 1

d

∫ d

0
B(r⊥, z)dz, (7)
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and analogically for the electric field. Such averaged variables
can depend only on r⊥ = (x, y) coordinates. Second, the
convolution with intensity of the electron probe centered at
position R is denoted by ⊗ in superscript:

B̄⊗(R) =
∫

B̄(r⊥)I0(r⊥ − R)d2r⊥. (8)

Such convolution is also a function of (x, y) coordinates only.
For clarity, we will use capital R to denote dependence on
beam position.

With this notation, considering that v = vêz, we obtain for
the shift in the expectation value of P⊥

�〈P⊥〉 = −ed

v
[Ē⊗ + v(−B̄⊗

y , B̄⊗
x )], (9)

where we suppressed writing explicitly the R dependencies.
Note that the magnetic contribution increases with v, relative
to the electric field contribution, whereby magnetic effects
should increase in relative strength for high-energy illuminat-
ing electron probes.

In the Appendix we show that the STEM-DPC pattern
[i.e., a two-dimensional (2D) vector field] of such transversal
momentum transfers remains conservative (i.e., a gradient
of a scalar field) even in presence of magnetic fields. An
interesting question arises: What is the scalar function ϕ for
which vêz × B̄ = v∇ϕ? Following [23], B can be split into
a macroscopic magnetization μ0M and a periodic part with
zero average Bnc. Similarly, the vector potential splits into
nonperiodic part Anp = 1

2μ0M × r and remaining, periodic
part with zero average Ap, where Bnc = ∇ × Ap. For the
periodic part we can then write

B̄nc(r⊥) = 1

d

∫ d

0
Bnc(r⊥, z)dz (10)

= 1

d

∫ d

0
∇ × Ap(r⊥, z)dz (11)

and we directly obtain

vêz × B̄nc = v∇Āp,z, (12)

where we have used periodicity of Ap, whenever derivatives
with respect to z have appeared. For the macroscopic part of
the magnetic field, which is parallel to the x axis in our case,
the scalar potential is vμ0My, so that

vêz × B̄ = v∇(Āp,z + μ0My). (13)

The apparent gauge dependence does not actually play a
role here. For the reason that we work in Coulomb gauge,
the magnetic vector potential is determined up to a constant
vector, the gradient of which vanishes.

Equation (13) determines the scalar potential of vêz × B̄.
This has consequences for interpretation of the integrated
DPC (iDPC) technique [8,11,34] because that means that
in magnetic materials the extracted scalar potential will not
reflect purely the electrostatic potential: it will also contain a
magnetic contribution.

IV. RESULTS

A. Projected magnetic fields

Based on Ehrenfest theorem and derivations in Sec. III
the magnetic contribution that we would expect to see in
the STEM-DPC experiment is approximately given by the
z-averaged magnetic induction, convolved with squared mod-
ulus of the illuminating electron probe wave-function [see
Eq. (9)]. Namely, the goal is to observe

−edμ0Mêy − ed (−B̄⊗
nc,y, B̄⊗

nc,x ). (14)

The macroscopic field term is a constant throughout the unit
cell and independent from the shape of the (normalized) illu-
minating electron probe wave function. On the other hand, the
second term originates from microscopic magnetic fields that
vary within the unit cell and, therefore, B̄⊗

nc,y, B̄⊗
nc,y will depend

on the beam shape. In this work we have kept convergence
semiangle fixed at 25 mrad, but the acceleration voltage Vacc

was varied between 60 to 1000 kV, thus, the R dependence
of the magnetic contribution will be dependent on Vacc. In
Fig. 1 we have plotted the x, y components of B̄⊗ including
r⊥ dependence of B̄, which can be considered as a limit of B̄⊗
for an infinitely thin probe. Note the gradual blurring of the
magnetic signal as the voltage is lowered. These results will

3.7 Å

2
.7

 Å

B (T)
x

y

FIG. 1. The magnetic field averaged in the z direction B̄ (bottom
row) and its convolution with the initial beam intensity B̄⊗ for a beam
with 25-mrad convergence angle and various acceleration voltages of
60, 100, 300, and 1000 kV in the first to fourth rows. The fields are
shown within one unit cell with the Fe atom in the middle and Pt
at the corners. The first two columns show the x and y components
of the fields. The third column shows the vector field represented
with hue indicating the direction of the field and the value represents
its magnitude. The final column shows v × B represented in the
same way, for v = vêz. The color wheel indicates the directions
corresponding to the hues.
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FIG. 2. STEM diffraction patterns on a 23 × 17 grid over a
Fe-centered unit cell within a 10-unit-cell-thick (2.7-nm) sample of
FePt, for a beam with 100-kV acceleration voltage and 25-mrad
convergence angle. Diffraction patterns are shown for a maximum
collection semiangle of 70 mrad.

serve as a reference, to which we can compare the magnetic
contribution from simulated STEM-DPC images.

B. Simulated STEM-DPC images

Overall STEM-DPC images are dominated by the interac-
tion of electron probe with local electric fields and those have
been already analyzed in detail in several works before (see
Refs. [7,19–21]). Therefore, we will keep this section concise
and focus more on the magnetic component of the STEM-
DPC image in the following sections. The Pauli multislice
method described in Sec. II was used here and in the fol-
lowing sections. In Fig. 2 we show a composite image of the
ronchigrams at all calculated beam positions for FePt sample
1.6 nm thick at acceleration voltage 100 kV and convergence
semiangle of 25 mrad. As is expected, instead of simple shifts
of the central CBED disk as we scan across the unit cell,
we observe the redistribution of intensity in the ronchigrams,
leading to nonzero first moments from which one can estimate
the momentum transfer 〈P⊥〉(R).

According to Eq. (9), assuming that magnetic contribu-
tions are much weaker than electric ones, we should obtain
an image corresponding to Ē⊗. Constructing such images
for collection semiangles of 45 mrad, one obtains patterns
shown in Fig. 3, displayed at various acceleration voltages.
In agreement with previous theoretical and experimental work
at atomic resolution, we see a vector field “emanating” from
atom positions. It is wider and more intense for the heavier
Pt atom. As a function of acceleration voltage, an expected
trend can be seen: with increasing voltage the beam diameter
decreases and thus the DPC pattern due to Coulomb fields
becomes sharper.

C. Macroscopic magnetization from STEM-DPC images

As discussed in Ref. [20], in order to detect macroscopic
electric fields that are typically several orders of magnitude

60kV

1000kV300kV200kV

80kV 100kV

FIG. 3. DPC-STEM images of FePt at thickness 2.7 nm
(10 unit cells) and collection semiangle of 45 mrad, shown for
various acceleration voltages. HSV color scheme was used with
hue representing direction of vectors, saturation was set to 1, and
value is proportional to the length of the vector −〈P⊥〉(R), scaled to
optimally use the color range. Each panel shows a projected unit cell

with area 3.7 × 2.7 Å
2
.

smaller than the local electric fields, one needs a very accurate
summation of �〈P⊥〉(R) over the whole unit cell, in order to
achieve cancellation of the local fields. The same is applicable
here, if our goal is to extract the macroscopic magnetization.
Nevertheless, within our proof-of-concept theoretical inves-
tigation, we can achieve perfect cancellation of the electric
field components thanks to the symmetry of the system and
a suitably chosen grid of scan points, which reflects this
symmetry.

Projected electric field vectors within the a-c plane in FePt
have several symmetries: horizontal and vertical mirrors and a
rotation by 180◦ around the center of projected unit cell. Note
that here we speak about symmetries that also correspond-
ingly transform the directions of vectors. If we would consider
separately the x, y components of the electric field, then the x
component is symmetric with respect to the horizontal mirror
and antisymmetric with respect to the vertical mirror. And, for
the y component the situation is reversed. Both components
change sign under a 180◦ rotation.

These symmetries are necessarily also reflected in the re-
sulting COM vector field. Conveniently, under an assumption
that the electric field component of the COM is proportional
to the Ē, this means that summing the COMs over the whole
unit cell should lead to an exact cancellation of the electric
field contribution to the COMs. In context of Ref. [20], a
sufficient condition here is that the unit cell of FePt crystal
has an inversion symmetry, and thus no electric polarization.

The symmetry of projected magnetic field components is
lower. While the x component of magnetic field is symmetric
with respect to horizontal and vertical mirrors, the y com-
ponent is antisymmetric with respect to both. Overall, only
the 180◦ rotation remains. This difference will be utilized in
the next subsection for isolating the microscopic magnetic
component of COM field. Here, it is sufficient to realize that
the nonconstant part of the magnetic field Bnc averages to
zero by construction and this property transfers to B̄ and also
B̄⊗. Therefore, when we sum COMs over the whole unit cell,
eventually only the component due to constant macroscopic
magnetization component should remain.
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200kV 300kV 1MV

FIG. 4. Unit-cell average of 1
d 〈P⊥〉(R) (arbitrary units) as a function of collection semiangle in mrad (horizontal axis), thickness in nm

(vertical axis), and voltage (individual panels).

We have checked that such sum is numerically a zero,
when a standard multislice calculation without magnetic fields
is performed. Figure 4 shows how such sum evolves as a
function of acceleration voltage, sample thickness, and collec-
tion semiangle. The picture is qualitatively similar to previous
analyses of the electric signal. The collection semiangle needs
to be larger than the convergence semiangle. The averaged
〈P⊥〉 remains stable above certain collection semiangle. For
ultralow thicknesses, the collection semiangle needs to be ap-
preciably larger than the convergence semiangle, though this
requirement softens with increasing voltage. In addition, even
at large collection angles, as a function of sample thickness
we observe fluctuations of the 1

d 〈P⊥〉 reminiscent of those
reported by Müller et al. for electric fields [7].

From a practical perspective, it is important to have a qual-
itative picture about the signal strengths that one can expect
in experiments. From our simulations, the average relative
strength of the DPC signal component due to the average mag-
netization is of the order of 0.1% at thicknesses below 10 unit
cells. This signal strength increases to approximately 0.5% if
we consider larger sample thicknesses (up to 80 unit cells,
i.e., 21.7 nm). Average relative strength was here estimated
as | ∑i, j DPCy(i, j)|/∑

i, j ||DPC(i, j)||, where (i, j) label the
grid points within a unit cell.

D. Microscopic magnetization from STEM-DPC images

As indicated above, one could use the different symmetries
of the electric and magnetic components of the STEM-DPC
image in order to isolate them. This is of course system
dependent and not always possible, e.g., when dealing with
materials of low symmetry. Nevertheless, it is applicable
for FePt.

An alternative and more general approach is to take a dif-
ference of two calculations, which differ only by changing the
sign of the magnetization, here M = (M, 0, 0) → (−M, 0, 0).
(This approach could also be implemented in actual mea-
surements, see, e.g., holographic experiments reported in
Ref. [35]. Other methods were described by Tonomura [36].)
In general, two separate calculations would be needed. For
FePt thanks to its symmetry this can be achieved simply by

rotating the unit cell by 180◦ together with all momentum
transfer vectors. Then, taking a difference of such two STEM-
DPC images one should obtain the magnetic component of
STEM-DPC image.

We have applied this method to extract the magnetic com-
ponent of the calculated STEM-DPC images. The result of
this procedure is shown in Fig. 5, containing the differences
between STEM ronchigrams in Fig. 2, for inverted beam
positions (R → −R) and ronchigrams (k → −k). Inspecting
this figure, one can observe the expected concentration of
the magnetic signal in the neighborhood of the iron atomic
column.

By calculating the COM of the data in Fig. 5, one obtains
vector fields such as those in Fig. 6. The images are in
qualitative agreement with the vêz × B̄⊗ shown in Fig. 1. One
can observe how the pattern blurs with decreasing acceler-
ation voltage due to increasing diameter of the illuminating
electron probe. Note also the yellow “background fog” due to

FIG. 5. Magnetic component of the STEM ronchigrams in Fig. 2,
as obtained from the symmetry arguments described in the text. Blue
and red regions correspond to opposite sign contributions and the
magnitudes are approximately 10−3 of those in Fig. 2.
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60kV

1000kV300kV200kV

80kV 100kV

FIG. 6. Magnetic component of STEM-DPC images of FePt at
thickness 2.7 nm (10 unit cells) and collection semiangle of 30 mrad,
shown for various acceleration voltages. HSV color scheme was used
with hue representing direction of vectors, saturation was set to 1,
and value is proportional to the length of the vector −〈P⊥〉(R), scaled
to optimally use the color range. Each panel shows a projected unit

cell with area 3.7 × 2.7 Å
2
.

the constant macroscopic magnetization component in the y
direction.

At a closer inspection, one can spot that the vêz × B̄⊗ is
not well represented by the magnetic component of COM,
especially at lower voltages. In the region where Fe atomic
column is located, vectors of the reconstructed image actually
point in opposite direction than the microscopic magnetic
field would dictate. This can be assigned to the fragility of
phase grating approximation in the atomic-resolution regime,
especially when looking on a weak component of the total
STEM-DPC pattern. This view is supported by observing that
the distortion decreases with increasing acceleration voltage.
As the acceleration voltage is increasing, the scattering cross
section decreases, weakening thus the dynamical diffraction
effects distorting the electron probe wave function. Further-
more, at a sample thickness of only 6 unit cells the magnetic
DPC patterns (not shown) qualitatively agree with the pro-
jected magnetic fields, even at lower acceleration voltages.

We have checked that this method of extraction of magnetic
signal leads to numerical zeros, when applied to a nonmag-
netic multislice calculation. If we assume the linear regime,
then the availability of nonmagnetic calculation offers an
alternative way of extraction of magnetic signal component:
by a subtraction of the nonmagnetic STEM-DPC pattern from
the magnetic one. We have performed this test at 100 kV and
the result (not shown) is visually indistinguishable from what
is shown in Fig. 6.

Figure 7 shows how the extracted magnetic STEM-DPC
pattern depends on the collection angle and sample thickness.
A strong sensitivity to both parameters is observed. Especially
at higher sample thicknesses (above 8 nm) there is a clear
change of the pattern, once the collection semiangle becomes
larger than the convergence semiangle. In that region, the
STEM-DPC pattern is dominated by yellow color represent-
ing magnetization in the y direction. Nevertheless, representa-
tion of the microscopic fields in that region is not satisfactory.
Those are best reproduced at low sample thicknesses below
4 nm and collection angles not far from 30 mrad. At larger
collection angles, with exception of the very lowest thick-
nesses, the STEM-DPC pattern develops a ringlike feature at

2.7nm

5.4nm

8.1nm

10.8nm

13.6nm

3mrad 60mrad30mrad 45mrad15mrad

FIG. 7. Magnetic component of the STEM-DPC signal as a
function of sample thickness (arranged vertically) and collection
semiangle (arranged horizontally) for an acceleration voltage 300 kV.

the Fe atomic column with a minimum in the center, which
does not correspond to the distribution of vêz × B̄⊗, although
other features are reproduced qualitatively well.

Finally, we comment on the average relative strength of
the magnetic signal. This time we use the following metric∑

i, j ||MAGDPC(i, j)||/∑
i, j ||DPC(i, j)||, which collapses

to the definition used above when the magnetic component of
DPC pattern would be constant and point in the y direction.
Intuitively, one would expect that this can lead to signifi-
cantly larger percentages than the average relative strength
of the macroscopic magnetization components because the
local magnetic fields are substantially larger in magnitude.
However, there are two effects that counteract this intuition.
First, there is a rather strong cancellation of the local magnetic
fields when evaluating the z averaged B̄. Second, the local
magnetic fields are appreciably strong only in a relatively
small part of the unit cell, nearby the iron atomic column.
Both combined lead to an observation that the average rel-
ative strength of the magnetic component, as defined above,
remains below 1%, although, if we restrict the summation to
a closer neighborhood of iron magnetic column, strengths of
above 1% can be observed at higher thicknesses.

V. DISCUSSION

Inspecting the paraxial Pauli equation (1) allows to ana-
lyze qualitatively how magnetism influences the illuminating
electron probe wave function. We will focus here on the
microscopic magnetization B̄nc.

Magnetic induction B appears only in the last term, mul-
tiplied by a vector composed of Pauli spin matrices. For an
unpolarized illuminating electron probe, as is common in
transmission electron microscopes, this term does not allow
for an extraction of local magnetic fields. Changing the sign
of the magnetic moment has the same effect as inverting
the spin moment of electrons. When operating a microscope
with spin-polarized electron probes, this term would open
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FIG. 8. z component of the projected magnetic vector potential
Āp (left) and its derivatives with respect to x (center) and y (right; all
in arbitrary units). Platinum atomic columns are in the corners and
iron atomic column is in the center of each panel. Each panel shows

a projected unit cell with area 3.7 × 2.7 Å
2
.

for an interesting opportunity to map local magnetic fields
by changing the spin polarization. We have not pursued this
option in this paper, being focused on standard STEM-DPC
imaging, nevertheless, this will be addressed in a future work.

On the other hand, magnetic vector potential A appears in
several terms in Eq. (1). First, Az appears in the denominator.
Quantitatively, however, relative magnitude of eAz compared
to h̄k is less than 10−5 in our simulations. Thus, it is only a
very weak effect. Next, the x, y components of vector potential
A appear in a term with the gradient of the electron probe
wave function. For our system, evaluation of the Āp shows that
its x, y components are zero. Therefore, in the linear regime,
when the momentum transfer is proportional to the projected
fields, this term does not contribute to microscopic magnetic
signal either. This leaves the last option, the term h̄keAz.

Indeed, the z component of Āp remains nonzero and mod-
ifies the electron probe wave function. However, its spatial
distribution (see Fig. 8) reminds neither the distribution of the
in-plane components of magnetic induction B̄nc nor vêz × B̄nc

(see Fig. 1). Nevertheless, it is the term h̄keAz alone, which
allows detection of projected microscopic magnetic fields.
We will backtrack how this happens. The average mechanical
momentum transfer in the x direction is evaluated by 〈ψ | p̂x −
eAx|ψ〉. In the linear regime, we expect that the electron probe
wave function change due to the presence of nonzero Az term
will be |ψ0〉 → |ψ0〉 − i ed

h̄ Āz|ψ0〉. Associated change of the
momentum transfer is

δ〈ψ | p̂x + eAx|ψ〉 = −i
ed

h̄
〈ψ0| p̂xĀz − Āz p̂x|ψ0〉

= −ed〈ψ0|∂Āz

∂x
|ψ0〉

= −ed
∫

∂Āz

∂x
I (r⊥ − R)dr⊥, (15)

where we neglected the quadratic terms in Az. Analogic
relation can be derived for the y component. That shows
that the Az term influences the momentum transfers via its
spatial derivatives. Now, if one compares the x, y derivatives
of Āp,z shown in Fig. 8 to minus y and plus x components
of B̄nc, there is a close correspondence. Note that this is well
reflected by Eq. (13) derived above. In addition, this analysis
demonstrates from another angle of view that as V is the scalar
potential potential for electric fields, vĀp,z plays the role of
scalar potential of vêz × B̄nc.

Let us briefly discuss the experimental challenges involved
in detecting the magnetic signal. The average magnetic signal

component has typically a strength well below 1% of the
average of the electric signal component of the DPC pattern.
Its isolation requires to take a difference of two separately
measured pixels of data, either from a different region of the
unit cell or from the same region, but after the magnetization
has been inverted. Thus, sample drift could cause substantial
challenges. Fortunately, DPC as an integral technique uses a
majority of scattered electrons in evaluation of the momentum
transfer. Thus, it is very efficient per unit of beam current. Yet,
we expect that mapping of magnetic fields will require longer
dwell times, which could make the measurement more sus-
ceptible to sample drifts. Future experiments should attempt
to optimize the signal-to-noise ratios so that the momentum
transfers can be measured with a precision substantially better
than 1%, preferably though in the 0.1% range, in order to
allow extraction of the magnetic component. This might be
achievable via multiframe recording [37] and/or averaging the
signals over a larger number of unit cells with a careful control
over the scan noise.

VI. CONCLUSIONS

We have presented a quantum mechanical theory of dif-
ferential phase contrast imaging at atomic resolution for mag-
netic materials. We found that even in the presence of in-plane
magnetic fields, the expected momentum transfers remain curl
free. This has consequences on integrated differential phase
contrast imaging in that the extracted scalar potential is not
only the electrostatic potential, but also contains a magnetic
contribution proportional to the z component of periodic part
of the vector potential Ap. Detailed simulations show that
the differential phase contrast imaging contains information
about projected microscopic magnetic fields. The average
strength of the magnetic signal is typically well below 1%
when compared to the electric signal component. An approach
for its extraction has been described. Successful experimental
extraction of projected magnetic fields would allow atomic or
nanoscale magnetic imaging of antiferromagnets, frustrated
magnets, spin spirals, skyrmions, spin ices, and other mag-
netic structures.

ACKNOWLEDGMENTS

We acknowledge Swedish Research Council for finan-
cial support. The simulations were performed on resources
provided by the Swedish National Infrastructure for Com-
puting (SNIC) at the NSC center (computer clusters Tri-
olith and Tetralith). A.L. acknowledges funding from the
German Research Foundation (Grants No. SPP 2137 and
No. LU 2261/2-1).

APPENDIX: PROOF THAT DPC PATTERN REMAINS
CONSERVATIVE EVEN IN PRESENCE

OF MAGNETIC FIELD

In the text below, we assume that the thickness is constant,
motivated by atomic size of illuminating electron probes
and assuming a small lateral extent of studied region of the
sample. To prove the conservative nature, we show that the
curl of the DPC pattern vanishes. Taking the curl of the center
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of mass of the diffraction patterns for different STEM-probe
positions reads as

∇R × Ē⊗ = ∇R ×
∫

Ē(r⊥)I0(r⊥ − R)d2r⊥

=
∫

∇R × [Ē(r⊥)I0(r⊥ − R)]d2r⊥

= −
∫

Ē(r⊥) × ∇RI0(r⊥ − R)d2r⊥

=
∫

Ē(r⊥) × ∇r⊥I0(r⊥ − R)d2r⊥

= −
∫

∇r⊥ × (Ē(r⊥)I0(r⊥ − R))d2r⊥ = 0,

where it was used that ∇ × (a(r) f (r)) = −a(r) × ∇ f (r)
for a curl free a(r) (holding for static electric fields).
The last integral over d2r⊥ is zero for any suffi-
ciently quickly decaying wave function due to Stokes
theorem.

Similarly, one can deal with curl of the magnetic terms in
Eq. (9). We first observe that

∇R × ed (−B̄⊗
y , B̄⊗

x ) = ed∇R · B̄⊗ (A1)

and then analogically we show that

∇R · B̂⊗ =
∫

B̄(r⊥) · ∇r⊥ I0(r⊥ − R)d2r⊥ = 0 (A2)

because

∇r⊥ · (B̄(r)I0(r − R)) = I0(r − R)∇r⊥ · B̄(r)

+ (∇r⊥ I0(r − R)) · B̄(r),

where integral of the left-hand side over dr⊥ is zero due to
two-dimensional divergence theorem and the quick decay of
I0 for large |r⊥|. Maxwell equation ∇ · B = 0 in combination
with periodicity of B implies that the integral containing ∇r⊥ ·
B̄(r) is zero as well. This concludes the proof that the physical
atomic-resolution STEM-DPC pattern remains curl free (i.e.,
conservative) even in the presence of magnetic fields.
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