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Detecting spin current noise in quantum magnets with photons
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A minimally invasive technique is proposed for detecting spin current noise across a junction between two
quantum magnets using a high-quality microwave resonator coupled to a transmission line which is impedance
matched to a photon detector downstream. Photons in the microwave resonator couple inductively to the spins in
the spin subsystem, and the noise in the junction spin current imprints itself into the output photons propagating
along the transmission line. The technique is capable of extracting both the dc and finite frequency noise via the
output photon flux and also opens doors to the studies of photon counting statistics and to the possible generation
of nonclassical radiation produced by spin current fluctuations at a quantum magnet junction.
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I. INTRODUCTION

Shot noise in mesoscopic conductors arises as a conse-
quence of the quantized nature of charge transport [1]. Its
utility far exceeds that of the equilibrium (Johnson-Nyquist)
counterpart, as shot noise can be used to extract the charge
[2] and the statistics of relevant charge carriers as well as
to probe quantum many-body effects [3] and entanglement
[4]. In insulators, charge fluctuations are gapped out but
localized electron spins can still generate fluctuations in pure
spin current, or spin current noise. It is then anticipated that
these pure spin currents can reveal nontrivial properties of the
underlying spin system in analogy with the above-mentioned
charge scenario. Indeed, recent theoretical inquiries on pure
spin current noise in insulating magnets have reported its
utility in revealing the quantum uncertainty associated with
magnon eigenstates [5], the nontrivial spin scattering and
heating processes generated at a detector interface [6], and
the effective spin and statistics of the tunneling spin quasi-
particles [7].

Insulating materials present novel concerns. In metallic
systems, spin current noise detection is possible via its ob-
servable effects on simultaneous charge current fluctuations
[8–11]; similar methods are clearly not available for insula-
tors. The prevailing spin current detection method in the latter
has been the inverse spin Hall effect wherein spin current is
detected electrically by coupling a metal with strong spin-
orbit interactions to the active spin system [12]. However, this
spin Hall detection scheme, while reliable for spin current
detection, may be unreliable for the measurement of spin
current noise because spin Hall conversion processes can
result in noise enhancement [13]. Other techniques exist for
detecting spin fluctuations including spin noise spectroscopy
[14], superconducting quantum interference device (SQUID)
based spectroscopy [15], and quantum-impurity relaxometry
[16–18]. However, spin noise spectroscopy does not measure
the current-current correlator, i.e., spin current noise, and nei-
ther the SQUID-based approache nor relaxometry is amenable

to extracting current-current correlations in the spin sector.
Therefore, in connecting theory to experiment, a measurement
technique capable of directly detecting spin current noise is of
unique interest.

In this paper, we show that a microwave resonator circuit
can be used to directly measure nonequilibrium pure spin cur-
rent noise generated in a quantum magnet. Here, we illustrate
this possibility in the context of a one-dimensional quantum
antiferromagnet chain. As shown in Fig. 1, we consider a
situation in which one spin chain (chain 1) is driven out
of equilibrium by spin injection at its open end with the
downstream end weakly exchange coupled to a second spin
chain (chain 2) set near a microwave cavity. The microwave
cavity couples inductively to chain 2, and measurements are
transmitted electrically into a transmission line where the
photon number flux encodes spin current fluctuations across
the coupled spin chain subsystem. We show that by coupling
spins to light it is possible to measure the junction spin current
noise without resorting to the inverse spin Hall effect. The
proposed setup also opens doors to the studies of photon
counting statistics and the possible generation of nonclassical
radiation produced by spin current fluctuations at a quantum
magnet junction.

II. HEURISTIC PICTURE

We first qualitatively illustrate the mode of operation.
Let us consider spin current tunneling between two coupled
quantum antiferromagnet chains with uniaxial spin symmetry
along the z axis (see Fig. 1). Spin injection, facilitated by,
e.g., the spin Hall effect at the upstream end of chain 1,
establishes a nonequilibrium spin bias between the two chains,
and the resulting spin current flowing across the chains can
be absorbed and measured at the right metal reservoir via the
inverse spin Hall effect.

A rectangular wire loop with inductance L is placed a
distance δ away from chain 2, and is oriented so that it lies

2469-9950/2019/99(17)/174422(5) 174422-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.174422&domain=pdf&date_stamp=2019-05-22
https://doi.org/10.1103/PhysRevB.99.174422


AFTERGOOD, TRIF, AND TAKEI PHYSICAL REVIEW B 99, 174422 (2019)

spin chain 1

L
C

z

δξc

xt

spin chain 2sp
in

in
je

ct
or spin 

sink

I, S

w lumped 
resonator

TL

x

xt = 0

x = x1 x = x2

spin

FIG. 1. A depiction of the proposed system. A microwave res-
onator, composed of a loop of inductance L and a capacitor of
capacitance C, is set in the xy plane a distance δ from spin chain
2, which is coupled with strength ξc to spin chain 1.

in the xy plane and its bottom edge stretches from x = x1

to x2. In this geometry, the magnetic flux through the wire
loop sharply increases by one unit when a single z-polarized
spin-1 quasiparticle enters the “influence region” defined by
x1 < x < x2 on chain 2. The magnitude of that unit depends
on the distance δ and the width w of the loop. Considering the
spin-1 quasiparticle as a magnetic dipole m = −γ h̄ẑ located
at position x on chain 2 (γ being the gyromagnetic ratio), the
flux through the loop reads

�(x) = −μ0mz

4π

∫ s

0

∫ w

0
[(x′ − x)2 + (y + δ)2]−3/2dx′dy,(1)

where s = x2 − x1 is the influence region. Figure 2 shows a
sharp increase in the flux as the quasiparticle tunnels into
the influence region for various δ. We find that the flux is
essentially independent of the quasiparticle position in the
influence region and that the dipolar fields from spins located
outside of the influence region are effectively irrelevant to the
total flux through the loop.

Imagine now that the x = x1 edge of the wire loop is
located at site i1 on chain 2 and the x = x2 edge at site i2. Then
the term in the Hamiltonian modeling the tunneling of spin-1
quasiparticles from site i1 to i1 + 1 on chain 2 (allowed by
the intrachain exchange interaction) is of the form S−

2,i1
S+

2,i1+1

(S+
2,i1

S−
2,i1+1), where S±

ν,i denotes the usual spin raising (low-
ering) operator on chain ν at site i. However, the fact that
every tunneling process is accompanied by a flux change �

in the loop requires that the tunneling operator is modified
to S+

2,i1
S−

2,i1+1ei�q0/h̄ + H.c., where q0 is an operator obeying
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FIG. 2. A plot depicting magnetic flux through the loop as spins
enter spin chain 2. The sharp dropoffs indicate that spins outside
of the “influence region” x1 < x < x2 are effectively ignored by the
microwave resonator.

[q0, φ0] = ih̄ and translates the influence flux φ0 through the
loop by �, i.e.,

e±i�q0/h̄φ0e∓i�q0/h̄ = φ0 ∓ �. (2)

In this configuration, q0 is the charge on the capacitor C
(see Fig. 1), and φ0 and q0 form a conjugate variable pair.
The spin tunneling operator endowed by the flux translation
operator indicates that the spin tunneling process involves
interactions with the electromagnetic environment formed
by the loop-capacitor subsystem. In a similar fashion, the
spin tunneling term at the x = x2 edge is also modified to
S+

2,i2
S−

2,i2+1e−i�q0/h̄ + H.c.
Energetic considerations show that the wire loop in prin-

ciple affects spin transport in chain 2. That is, for every unit
of flux � tunneling into the influence region, the energy of
the inductive system increases by E� = �2/2L, where L is
the inductance of the resonator. As a result, two regimes
emerge: what we call the noninvasive and invasive regimes.
In the noninvasive regime, E� is much smaller than the
nonequilibrium bias μ, the temperature T , and the photon
frequency 	, i.e., E� � μ, kBT, h̄	 (note that we will define
the photon frequency later). In this regime, we may focus
exclusively on the effect of nonequilibrium spin transport on
the electromagnetic environment and neglect the backaction
of the environment on the spin subsystem. A fluctuating spin
current at the junction leads to a fluctuating magnetic flux
through the wire loop and thus to a fluctuating electromotive
force inside the resonator by Faraday’s law of induction.
As mentioned previously, this fluctuating electrical signal is
ultimately detected in the transmission line via an output
photon number flux containing a direct imprint of the spin
current noise.

In the invasive regime, the environmental effect is not
negligible and the spin transport in chain 2 should deviate
from their unperturbed values. For E� much greater than the
nonequilibrium spin bias μ and temperature T , i.e., μ, kBT �
E�, tunneling events become increasingly unfavorable ener-
getically due to the resistive electromotive force emerging
from Lenz’s law and lead to a suppression in the spin trans-
mission through the chain. We refer to this phenomenon as
inductive blockade, which may be thought of as the mag-
netic analog of the well-known Coulomb blockade studied
extensively in quantum conductors [19,20]. If the junction
resistance is strong enough to suppress elastic scattering be-
tween the nodes, tunneling quasiparticles must have sufficient
energy to excite environmental modes and proceed inelas-
tically. However, the regime may be challenging to realize
in practice due to the weakness of the spin-light interaction.
In the remainder of the paper, we focus on the noninvasive
regime and present the technical calculations to establish the
above heuristic results.

III. MICROSCOPIC THEORY

We consider two identical semi-infinite xxz quantum anti-
ferromagnet chains coupled together at their finite ends, one
additionally coupled inductively to a microwave resonator and
the resonator itself placed in series with a transmission line
on which measurements are performed. The spin chains are
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modeled by the usual xxz Hamiltonian

Hν = J
∞∑
j=0

[
1
2 S+

ν, jS
−
ν, j+1(δ j,i1 ei�q0/h̄ + δ j,i2 e−i�q0/h̄)δν,2

+ H.c. + 
Sz
ν, jS

z
ν, j+1

]
, (3)

where Sν, j is the spin-1/2 operator on chain ν at site j, J is
the intrachain exchange scale, and δi, j is the Kronecker delta.
The exponential factors encode the coupling of spin chain 2
to the electromagnetic environment, as discussed previously.
We assume throughout that the spin chains are in the so-called
gapless phase, i.e., |
| < 1, where it can be suitably described
using the Luttinger liquid formalism [21].

We model the transmission line as an infinite array of
parallel LC resonators with capacitance per unit length c,
inductance per unit length l , and characteristic impedance
z = √

l/c. Its Hamiltonian reads

HT L =
∫ ∞

0
dxt

{
φ2(xt )

2l
+ [∂xt q(xt )]2

2c

}
, (4)

where xt labels the position along the transmission line, q(xt )
and φ(xt ) denote the local charge and flux, respectively,
and [q(xt ), φ(x′

t )] = ih̄δ(xt − x′
t ). Located at the end of the

transmission line, i.e., at xt = 0 (see Fig. 1), is the lumped
series LC resonator with capacitance C and inductance L, and
governed by the Hamiltonian

Hr = φ2
0

2L
+ q2

0

2C
, (5)

where q0 ≡ q(xt = 0) and φ0 ≡ φ(xt = 0). The total Hamilto-
nian for the full system then reads H = ∑

ν Hν + Hr + HT L +
V (t ), where

V (t ) = − 1
2 Jc(S+

1,0S−
2,0eiμt/h̄ + H.c.) (6)

describes the tunneling of spin-1 quasiparticles across the spin
chains allowed by the weak interchain exchange interaction
Jc. The oscillatory factor eiμt/h̄ captures the fact that the spin
chemical potential in chain 1 has been raised to μ > 0 via
spin injection at its upstream end.

The standard input-output approach [22] proceeds by first
expanding the local charge q(xt , t ) in Fourier series

q(xt , t ) =
∫ ∞

0

dω

2π

√
h̄

2ωz
[ao(ω)eiω(xt /v−t )

+ ai(ω)e−iω(xt /v+t ) + H.c.], (7)

where v = (lc)−1/2 and ai,o are the incoming and outgoing
photon fields on the transmission line. Noting that the Heisen-
berg equations of motion evaluated at the lumped resonator
xt = 0 give

φ0(t ) = Lq̇0(t ), (8)

φ̇0 = ∂xq(xt → 0, t )

c
− q0(t )

C
− �

h̄
[Ĩ+

i1
(t ) − Ĩ−

i2
(t )], (9)

and one can solve the output photon field in terms of the
known input photons:

ao(ω) = −∗(ω)

(ω)
ai(ω) + �

h̄L

√
2zω

h̄

Ĩ+
i1

(ω) − Ĩ−
i2

(ω)

(ω)
. (10)

Here,

Ĩ±
i (t ) = i(J/2)S+

i S−
i+1e±i�q0/h̄ + H.c. (11)

is the operator for the bulk spin current in chain 2 flowing to
the right at site i (the exponential factor encoding the effect of
the electromagnetic environment), (ω) = ω2 − 	2 + iκω,
κ = z/L is the rate at which photons decay into the transmis-
sion line, and 	 = (LC)−1/2 is the resonance frequency.

The first term in Eq. (10) then corresponds to the reflection
of incoming photons while the second term describes the
emission or absorption of additional photons caused by the
tunneling of spin-1 quasiparticles into and out of the influence
region. The incoming photons are assumed to be equilibrated
at resonator temperature Tt , which may be distinct from
temperature T of the spin chains, and obey

〈a†
i (ω)ai(ω

′)〉0 = 2πnB(ω)δ(ω − ω′), (12)

where nB(ω) = (eh̄ω/kBTt − 1)−1 is the Bose-Einstein distribu-
tion describing the thermal photons in the transmission line.

As discussed previously, noninvasive detection of the spin
current noise is conducted in the limit where spin-photon
coupling strength quantified by � remains sufficiently small
so as to leave the spin chain subsystem approximately un-
perturbed while the coupling of the resonator to chain 2 is
simultaneously kept strong enough for detection. Solving for
the output photon flux using Eq. (10) is difficult, in principle,
because the photon field itself enters the spin current operator
Ĩ±
i (t ) through q0(t ) and this calls for self-consistency. How-

ever, since the correction to the output photon flux arising
from the spin subsystem is anticipated to be suppressed by
an overall multiplicative factor proportional to �2 [see the
second term in Eq. (10)], the noninvasive assumption allows
us to set the spin-photon coupling to zero, i.e., � = 0, when
computing spin transport quantities, thus effectively lifting the
self-consistency requirement.

With this in mind, let us now examine the output photon
flux spectrum 〈a†

o(ω)ao(ω′)〉 by inserting Eq. (10) into the ex-
pectation value while invoking the noninvasive approximation
mentioned above. The output photon flux spectrum then reads

〈a†
o(ω)ao(ω)〉 = nB(ω, Tt ) + 2E�κ h̄ω

h̄4|(ω)|2
×{[1 + nB(ω, Tt )][Si1 (ω,μ, T ) + Si2 (ω,μ, T )]

− nB(ω, Tt )[Si1 (−ω,μ, T ) + Si2 (−ω,μ, T )]}, (13)

where Si(ω,μ, T ) = ∫
dte−iωt 〈Ii(t )Ii(0)〉 denotes the spin

current noise at site i on chain 2; we remind the reader that
the transmission line (detector) temperature Tt is distinguished
from the spin temperature T . Here, the local spin current
operator Ii(t ) ≡ Ĩ±

i (t,� = 0) is now defined in the absence of
the electromagnetic environment and the expectation values
are taken by setting � = 0 in H2 [see Eq. (3)]. In obtaining
Eq. (13), we also ignored cross correlations between spin
current fluctuations at x1 and x2. This should be a good ap-
proximation because nonlocal spin correlations are expected
to decay exponentially with distance at finite temperature [23].
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In the gapless phase |
| < 1, each semi-infinite spin chain
can be described as a chiral Luttinger liquid [7,21]:

Hν = h̄u

4πK

∫ ∞

−∞
dx [∂xϕν (x)]2, (14)

where the chiral boson field ϕν (x) obeys

[ϕν (x), ϕν (x′)] = iπK sgn(x − x′), (15)

the boson speed and the Luttinger parameter, respectively
[24], are given by

u = πJa
√

1 − 
2

2h̄ cos−1 

, (16)

K = 1

2 − (2/π ) cos−1 

, (17)

and a is the lattice constant. In this case, spin current inside
chain 2 is essentially carried by (ballistic) noninteracting
bosonic modes so the spin current fluctuations produced at the
junction remain unmodified as they propagate downstream to
sites i1 and i2 [7,25]. Therefore, the local spin current noise
at any point in the bulk of chain 2, i.e., Si(ω,μ), is given by
the background Johnson-Nyquist noise S0(T ) plus the noise
generated at the tunnel junction between the two spin chains
dS(ω,μ, T ). The total spin current noise at any site i is then
given by Si(ω,μ, T ) = S0(T ) + dS(ω,μ, T ), where [7]

dS(ω,μ, T ) = 2ξ 2
c

∫ ∞

−∞
dt cos

(
μt

h̄

)
D(t, T ) e−iωt , (18)

with

D(t, T ) =
{

πkBT η

uh̄

sin
[

πkBT
uh̄ (iut + η)

]
}2/K

, (19)

ξc = Jca/2πη, η ∼ k−1
F is the short-distance cutoff of the

theory, and kF is the Fermi wave vector [26].

IV. NOISE DETECTION

Equation (13) shows that a single mode electromagnetic
environment can imprint transport quantities generated at a
junction coupling two quantum magnets on the number of
total output photons propagating along an attached transmis-
sion line. Reference [27] provides an example of a single
microwave photon detector based on a superconducting flux
qubit capable of detecting individual photons propagating
through a transmission line with a refresh rate of ∼400 ns, a
narrow bandwidth, a well-characterized efficiency of ∼0.66 ±
0.06, and a low dark count rate of ∼0.01. If such a detector
with bandwidth B is attached at the end of the transmission
line in Fig. 1 and is designed to count propagating microwave
photons with a central frequency 	, Eq. (13) gives the ex-
pected rate of photons arriving at the detector as

N (	) = nB(	, Tt )B + E�

h̄	

�(	,μ)

h̄2 , (20)

where

�(	,μ) ≡ [1 + nB(	, Tt )]dS(	,μ, T )

− nB(	, Tt )dS(−	,μ, T ). (21)

kBTt/hΩ

N
(Ω

)
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FIG. 3. A plot of N (	) as a function of transmission line tem-
perature Tt . Here, we use 	/2π = 1 GHz and spin temperature
T = 4 K, to remain in the dc spin transport regime, and spin bias
μ = 0.03J . The plateau in the limit of small Tt (shaded in blue) is the
dc spin current noise. N (	) exhibits the same qualitative behavior for
essentially all spin biases μ, thus allowing one to quantify the noise
using this extraction method for various values of μ.

Here, we have assumed a high-quality resonator obeying
κ � B � 	. The first term in N (	) is the number of back-
ground thermal photons while the second term represents
photon emission and absorption during interchain tunneling.
In the limit of low transmission line/detector temperatures
kBTt � h̄	, we have nB(	, Tt ) � 1 and thus obtain

N (	) ≈ E�

h̄	

dS(	,μ, T )

h̄2 . (22)

This is a central result of this paper, i.e., the output photon
flux gives a direct measurement of the ac spin current noise
generated at the quantum magnet junction.

If the spin temperature is held higher than the resonance
frequency, i.e., h̄	 � kBT , the output photon flux directly
measures the dc component of the spin current noise, i.e.,

N ≈ E�

h̄	

dS(	 = 0, μ, T )

h̄2 . (23)

Since the spin current I across the junction can be measured
directly using inverse spin Hall effect at the right metallic
reservoir (see Fig. 1), the proposed system allows one to
extract a quantity directly proportional to the dc spin Fano
factor, defined as the noise normalized by the current:

F = dS(	 = 0, μ, T )

h̄I
, (24)

recently studied in Refs. [5–7].
Figure 3 shows a plot of photon flux N (	), Eq. (20),

as a function of the detector temperature Tt . It exhibits the
same qualitative behavior for essentially all spin biases μ,
thus allowing one to quantify the noise using this proposed
extraction method for various values of μ. The plot in the
figure is generated for a spin tunnel junction with cou-
pling strength ξc ∼ 0.01J and spin bias μ = 0.03J , intrachain
exchange scale of J/kB ∼ 103 K [28], spin temperature of
T = 4 K, and an inductor loop of inductance L ∼ 1 nH with
dimensions x2 − x1 = w = 10 μm placed δ ∼ 1 nm from spin
chain 2. Under these conditions, we estimate E� ≈ 10−11 K ≈
2 Hz. For these parameters and at resonance frequency
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	/2π = 1 GHz [29], we expect the chain-to-cavity interac-
tion to produce approximately 26 photons per second in the
low-temperature regime (shaded in blue), where the photon
flux converges to the quantity in Eq. (22). We believe the
detection of this number of output photons is within the
reported capabilities of a single microwave photon detector
impedance matched to a transmission line [27].

V. CONCLUSION

We have shown that by placing a high-quality microwave
resonator circuit in close proximity to a pair of exchange-
coupled spin chains it is possible to directly measure spin
transport quantities at a junction between the two spin sys-
tems. When the electromagnetic environment interacts weakly
with the spin system, the setup allows measurement of both
finite frequency and dc spin current fluctuations by examining
the total number of output photons produced by interac-
tions with the environment. This paper opens doors to the
possibilities of exploring the photodetection statistics of radia-

tion produced at a junction between two quantum magnets and
the generation of antibunched photons by exploiting the sim-
ilarity between the current spin subsystem and a tunnel junc-
tion between two quantum conductors [30]. Our theory can
also be extended to describe spin transport between tunnel-
coupled gapped spin systems (e.g., quantum Ising chains)
that may mimic the dynamical Coulomb blockade physics
of superconducting Josephson junctions coupled to electro-
magnetic environments [20]. A final intriguing possibility
would be to recast the detection methodology proposed here
in terms of a generalized full counting statistics formalism as
expressed in, e.g., Ref. [31].
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