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Strongly interacting bosons that live in a lattice with degeneracy in its lowest-energy band experience
frustration that can prevent the formation of a Bose-Einstein condensate. Such systems form an ideal playground
to investigate spin-liquid behavior. We use the variational principle and the Chern-Simons technique of
fermionization of hard-core bosons on the kagome lattice to find that below lattice filling fraction ν = 1

3 the
system favors a topologically ordered chiral spin-liquid state that is gapped in bulk, spontaneously breaks time-
reversal symmetry, and supports massless chiral bosonic edge mode. We construct the many-body variational
wave function of the state and show that the corresponding energy coincides with the energy of the flat band.
This result proves that the ground state of the system cannot stabilize a Bose condensate below ν = 1

3 . The
fermionization and variational scheme we outline apply to any non-Bravais lattice. We distinguish between
the roles played by the Chern-Simons gauge field in lattices with a flat band and those exhibiting a moatlike
dispersion (which is degenerate along a closed contour in the reciprocal space). We also suggest experimental
probes to differentiate the proposed ground state from a condensate.
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I. INTRODUCTION

A quantum spin liquid is one of the sought after states in a
strongly interacting spin system. A recent neutron scattering
experiment on herbertsmithite [1] reported the first detection
of a spin-liquid phase. While the characterization of this state
has been a matter of debate [2], this experiment indicates
that the detection of the various spin-liquid states is not far
away. Some manifestations of this state include a gapless
Dirac (4-spinor) spin-liquid state coupled to a U(1) gauge
field [3,4], a gapped Z2 spin-liquid state [2,5], a chiral spin
liquid (CSL) [6–13], some of which can also be gapless [14].
Such states exhibit absence of rotational symmetry breaking
and, as such, do not stabilize any long-range magnetic order.
Their collective low-energy excitations support fractionalized
statistics, which can be classified using topological quantum
field theory with various symmetry properties. A variety of
techniques have been used in the literature to identify and
study the properties of such states [15–18] with many of the
early and current attempts focusing on two-dimensional (2D)
triangular and honeycomb lattices [19–23].

Amongst the numerous quantum spin-liquid candidates
[24–27], the spin- 1

2 Heisenberg magnet on a kagome lattice
stands out as a fascinating system that is believed to give
rise to a variety of spin-liquid phases [28,29]. The kagome lat-
tice is known to possess a flat band (quenched dispersion). If
the lattice is sparsely populated by strongly interacting bosons
(also referred to as hard-core bosons which avoid multiple
occupancy of a single site), the state of the system is deter-
mined entirely from minimization of the interactions since the
kinetic energy of the system is fully quenched. Such a system
is equivalent to an XY model with the z-directional magnetic
field term Hmag = ∑

r μSz
r. The field strength μ maps on to the

chemical potential of hard-core bosons. These bosons at low
densities do not condense because of the degeneracy of the

condensate wave functions which arises from the flat band. In
the XY model, the absence of condensation translates to the
absence of magnetic order. One is thus interested in learning
about phases that can be stabilized in such a system.

It is instructive to note that if one replaces hard-core bosons
by spinless fermions, the flat band would be capable accom-
modating fermionic states up to ν = 1

3 , such that fermions
avoid each other and have exactly zero energy (measured
relative to the flat band) just by filling the flat band. This
observation suggests that if there was a way for a system
of hard-core bosons to stabilize low-energy excitations with
fermionic statistics, such a state could be energetically favor-
able. In this paper, we demonstrate the use of a technique that
fermionizes hard-core bosons to find a chiral spin-liquid state
as the energetically favorable candidate for the ground state
of interacting spins on a kagome lattice, which spontaneously
breaks time-reversal symmetry (TRS) and represents an ex-
ample where topological ordering is realized with interacting
bosons.

Current understanding of the system under consideration
is that the hard-core bosons can avoid paying any cost of
interaction energy by forming spatially separated localized
states [30,31] which is possible due to the presence of a flat
band in the kagome lattice. Such a state can persist up to
lattice filling of ν = 1

9 , beyond which the system is faced
with a choice between (a) populating higher-energy bands (see
Fig. 1), and (b) letting the bosons still reside in the flat band
and paying the interaction cost due to overlap. The choice
(a) would result in condensation of bosons [represented by
(blue) dots on E2 in Fig. 1] to the � point of the Brillouin
zone, leading to the supersolid state whose chemical potential
grows as μ ∼ (ν − 1

9 ), up to logarithmic prefactors. Such a
supersolid state has been predicted as a mean field theory
for weakly interacting bosons at lattice fillings above 1

9 in
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FIG. 1. (a) The electronic structure of kagome lattice has three
bands, with the lowest band (E1) being flat. The red and blue dots de-
note the population of E1 and E2 bands. (b) The real-space depiction
of the ν = 1

9 state. The shaded region denotes occupancy by a boson.
The wave functions do not overlap. (c) The real-space depiction of
the ν = 1

3 chiral spin-liquid state obtained from fermionization.

Ref. [31]. The corresponding ground-state energy EGS scales
as EGS ∼ (ν − 1

9 )2.
The choice (b) essentially remains unexplored. We find

within our approach that for strongly interacting bosons in
a flat-band kagome lattice the correlations lead to effective
fermionization of the bosons. To this end, we show that the
system can still save energy (retaining EGS ∼ 0) by continuing
to populate the flat band up to ν = 1

3 . Interestingly enough,
the scaling of the chemical potential of the fermionized sys-
tem with particle density is insensitive to the filling fraction
around 1

9 , which is a critical value for condensed bosons.
This change in the scaling of μ with density will result in
different velocity distribution curves extracted from time-of-
flight experiments on trapped atoms. This suggests that such
an experiment can be used as a tool to distinguish between the
two possible states, (a) and (b), under discussion, above the 1

9
filling.

The fermionization of hard-core bosons relies on attaching
a Chern-Simons (CS) phase �{r} to a fermionic many-body
wave function: |�B〉 = ei�{r} |�F 〉 (where {r} denotes the set
of coordinates of the particles, �F denotes the fermionic wave
function, and �B denotes the bosonic wave function). While
this technique was used extensively to describe fractional
quantum Hall (fQH) states [32–35], it has also been applied to
spin-orbit-coupled bosons [36], bosons in honeycomb lattice
[37], and bosons living on a moat [38]. It has been shown
that fermionization can stabilize topological spin ordering
[39,40], high-temperature superconductivity [41], and even
a chiral spin liquid in a moat band [42]. In the latter case,
the role of magnetic frustration is mapped to the degener-
acy of the lowest single-particle states of the fermions (the
moat band). In this paper, we device a scheme to fermionize
bosons in a non-Bravais lattice in general which allows us to
apply the fermionization technique to arbitrary lattices. For
demonstration purposes, we apply our formulation to the case
of the kagome lattice. We find that the trial wave function
we propose, which by construction describes a CSL, is an

eigenstate of the XY model within a flux-smearing mean field
approximation (MFA), and has the lowest many-body ground-
state energy. Our MFA breaks TRS and hence has nonzero flux
per unit cell. The resulting spectrum has fermionic excitations
and flux-flip excitations that can be understood as fraction-
ally charged vortices with fractional self-statistics with angle
θ = π

2 . These are semion excitations (which are examples of
Abelian anyons) of Kalmeyer-Laughlin CSL [15]. Moreover,
the flat band prior to the MFA remains flat, but is now also
gapped from the rest of the excited states. This provides a
posteriori justification for the stability of our MFA. Indeed,
using our trail wave function we explicitly demonstrate that
the flux distribution within the unit cell is such that the
flat band of the kagome lattice is preserved upon the TRS
breaking. This feature is unique to our prescription and un-
like other attempts in literature to tackle a similar problem
[6,11,12]. More explicitly, we set up a trial wave function
in the continuum limit (although this limit is not necessary)
and demonstrate that our state has the lowest energy, up to
ν = 1

3 .
It must be emphasized that the approach discussed in

this paper considers the effect of the CS field after the
flux-smearing MFA (which is consistent with the Gauss law
constraint imposed by the CS terms in the original action).
If one starts from the lattice gauge theory of CS field
prior to the MFA [11,12,33,43], it is not straightforward
to converge to particular flux distribution, and the question
of the TRS breaking remains an interesting open question.
For this work, we wish to emphasize the usefulness of our
variational MFA, in light of the previous results obtained in
Refs. [36,38,39,41,42], which shows that the ground state
can have the lowest possible energy from small occupation
numbers all the way to the 1

3 filling of the lattice. Importantly,
our result rules out the possibility of condensation of inter-
acting bosons [choice (a) discussed above] in the vicinity of
the ν = 1

9 filling fraction of the lattice. One can classify the
possible CSLs based on symmetries, as done in some recent
studies [44,45]. The comprehensive classification of possible
spin-liquid states based on the flux attachment procedure used
in this work is also possible, and is an open important problem
that needs to be investigated in the future.

As indicated above, using fermionization technique, the
CSL behavior has been suggested in systems with moats,
which has a degenerate minima in the single-particle spec-
trum. In this paper we consider kagome lattice which pos-
sesses a flat band. We will discuss the differences arising in
the calculation of many-body ground-state energy in systems
exhibiting moats and flat bands. Finally, we shall present the
interesting avenues of research this approach motivates for
future work.

The rest of the paper is formatted as follows. Section II
reviews the fermionization technique in general and presents
a scheme to carry it out in a non-Bravais lattice (with multiple
atoms per unit cell). In Sec. III we discuss the application
of the scheme to kagome lattice and show that the CSL trial
wave function has the lowest ground-state energy. Finally, in
Sec. IV we summarize the work and present an outlook for
the fermionization technique. An Appendix is included that
presents technical details of some calculations which would
have cluttered the presentation in the main text.
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II. FERMIONIZATION IN A NON-BRAVAIS LATTICE

Let us start by summarizing the concept of fermioniza-
tion. Consider a generic N-body Hamiltonian (on a Bravais
lattice) Ĥ (r1, . . . , rN ) ≡ Ĥ ({r}). Let |�B〉 be the undeter-
mined many-body bosonic wave function (subject to hard-
core constraint for the particles). The many-body ground-state
energy EGS for the hard-core bosons can be written as EGS =
〈�B|Ĥ ({r})|�B〉. The wave function |�B〉, describing hard-
core bosons, can be expressed in a fermionic basis as |�B〉 =
ei�{r} |�F 〉, where �{r} = κ

∑
r′<r θrr′ [θrr′ = arg(r − r′)], κ is

an odd integer. Thus,

EGS = 〈�F |e−i�{r}Ĥ ({r})ei�{r} |�F 〉
= 〈�F |Ĥ ({r}, A{r})|�F 〉, (1)

≈ 〈�c|
∑
{r}

ĤMFA(r, Ar )|�c〉. (2)

Here, the nonlocal vector potential A{r} ≡ ∂r�{r} enters into
the Hamiltonian via covariant derivative −i∂r → −i∂r + A{r}.
This amounts to a magnetic field of B(r) ≡ ∇ × A{r} =∑

i 2πκδ(r − ri ). While, the wave function |�F 〉 in Eq. (1)
is still undetermined, Eq. (2) presents a way to estimate EGS

and needs further explanation. To go from Ĥ ({r}, A{r}) to
ĤMFA(r, Ar ), we perform a flux-smearing MFA. The essence
of this approximation is that B(r) = ∑

i 2πκδ(r − ri ) →
2πκ〈n̂(r)〉 = 2πκν. That is, the field that was pinned to every
particle, is smeared and treated as uniform. This MFA is
consistent with the Gauss law constraint (B = 2πκν) imposed
by the CS field prior to performing the MFA.

An important distinction is to be made here. In the contin-
uum limit, at large enough length scales such that |r| ∼ l 	
1/

√
density, the Gauss law constraint can be accounted for by

introducing a local Ar such that ∇ × Ar = B. For the lattice
version of this approximation, we require the constraint to be
implemented at the level of “flux per unit cell” (hence, B is
related directly to ν in the above formulas and not the density).
For the case of 1 atom per unit cell with nearest-neighbor
hoppings, the flux configuration of the CS field is no different
from the usual Maxwell field. The wave functions |�c〉 in
Eq. (2) is then formed from the Slater determinant of the
single-particle states of Ĥ (r, Ar ).

For a non-Bravais lattice, neither the nature of flux-
smearing MFA nor the construction of a variational many-
body state is straightforward. When there are two (or more)
atoms per unit cell, had we carried out the flux-smearing
approximation as for a Bravias lattice, there would be no
distinction between the Maxwell-type field and CS field. We
realize that small enough length scales |r| ∼ lattice constant,
the flux distribution within a unit cell must depend on the
relative locations of atoms within the unit cell. Thus, it is
possible to implement the Gauss-law constraint at the level
of unit cell and still be left with a degree of freedom in dis-
tributing the flux internally in the unit cell. To implement this
feature, we propose that this can be implemented by requiring
that all the hops that form loops internal to the unit cell (not
more that one sharing edge), must not enclose any flux. This is
based on the observation that in the absence of charge density
wave (CDW) ordering, the homogeneous CS flux attachment
preserves the fact that if there is a triangle composed of two

FIG. 2. (a) A unit cell of the kagome lattice. (b) The unit cell
redrawn with a shift. This explicitly shows that the cell area includes
three atoms. The dashed lines are the internal bonds chosen to not
include any atoms in the triangular loop. All the particles, and hence
the flux, is contained within the hexagon. (c) Flux attachment within
the unit cell of the kagome lattice. Ai denotes the phase accumulated
by A(r) while traversing the direction ai such that A1 = A2 + A3.

nearest-neighboring and one next-nearest-neighboring sites,
then there must be such triangle within the unit cell where two
subsequent hops along the links of nearest-neighboring sites
are equivalent to a single hop along the next-nearest-neighbor
link (see approaches in Refs. [36,38,39,42,46]).

Note that if we have only one atom per unit cell (Bravais
lattice), then there are no internal loops possible and thus
the CS flux is the same as Maxwell flux. However, when we
consider a non-Bravais lattice which contains loops of hops
internal to the unit cell, there can be parts of the unit cell with
zero net flux [37,38]. This is seen by redrawing the unit cell
as in Fig. 2(b). The flux-smearing field that confirms with the
Gauss law can be accounted for by Ar which introduces a flux
φT per triangular region of the kagome lattice. To account for
the zero-flux regions, one must introduce an intraunit cell flux
φC = φT as in Figs. 2(c) and 3. This introduction is lattice
dependent and will be demonstrated later for the kagome
lattice.

Having demonstrated the nontriviality in the flux-smearing
MFA, we now address the subtlety in constructing the many-
body wave function. The Hamiltonian matrix in a non-Bravais
lattice has a rank n, that is the number of atoms in the
basis of the lattice. An N-body wave function can be denoted
as �

{a}
{n} ({r}) ≡ �a1,a2,...,aN

n1,n2,...,nN
(r1, r2, . . . , rN ), where a given co-

ordinate ri can describe the wave-function component ai ∈
{1, 2, . . . , n} in quantum state ni. Correspondingly, the N-
body Hamiltonian acquires the form Ĥ{ab}({r}) ≡

Ĥa1b1,...,aN bN (r1, . . . , rN ) =
N∑

i=1

Ĥaibi (ri )
N∏
j �=i

δa j b j . (3)

FIG. 3. Extended scheme for the flux attachment. Note that φT

grows to account for the area law, where as φC is the same in every
unit cell. The flux through the hexagon and the unit cell is 8φT and
through any triangle is φT − φC . In our MFA φT = φC .
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The presence of a basis in a non-Bravais lattice introduces a
degree of freedom in implementing the antisymmetrization:
if the single-particle states are given by ψa

n (r), where n
denotes the band and a denotes the component of the wave
function, the most general construction of a fermionic N-body
state is

�{s}({r}) = Ms1s2...sN
{s}

1√
N!

Det
[
ψ s1,s2,...,sn

n1,n2,...,nN
(r1, r2, . . . , rN )

]
,

(4)

where s, si ∈ {1, 2, . . . , N}, the repeated indices are summed
over, and the Slater determinant is formed out of the indices
ni and ri. The tensor M superposes the antisymmetrized Slater
determinants for various combinations of {si}. The constraints
on M are enforced by requiring the many-body wave function
be normalized to unity, and that the permutation properties
of M must respect antisymmetrization. This formally sets up
a variational problem where the choice of the M tensor is
variational. The problem of such a huge variational space can
be overcome by resorting to another technique to guess a trial
wave function, which we discuss next.

Trial wave function by projection to a band

We note that a single-particle state is indexed as ψa
n,k(r).

Indices a and n are necessary to account for the non-Bravais
nature of the lattice. Index k reflects the crystal translational
symmetry which is independent of the non-Bravais nature and
allows us to write (see Appendix C)

ψa
n,k(r) =

∫
r′

Ra
n(r − r′)φk(r′), (5)

where φk(r) is a solution to the characteristic equation of
Ĥab(r), and Ra

n(r) is the Fourier transform of the eigenvec-
tors of Hab(k). The normalization condition is enforced by
requiring

∫
r1,r2,r

∑
a φ∗

k (r2)Ra∗
n (r − r1)Ra

n(r − r2)φk(r2) = 1.
The many-body wave function can then be constructed as

�
{a}
{n,k}({r}) =

∫
{r′}

Ra1
n1

(r1 − r′
1) . . . RaN

nN
(rN − r′

N )φ{k}({r′}).

(6)
Here, φ{k}({r}) denotes the N-body wave function formed
out of the quantum states {k} and coordinates {r}. The en-
ergy expectation value of band n and quantum states {k} is
given by

En({k}) =
∑

{a},{b}

∫
{r}

�
{a}∗
{n,k}({r})Ĥ{ab}({r})�{b}

{n,k}({r}). (7)

Using Eq. (3), together with the normalization condition, we
can show that

En{k} =
∫

{r′}{r′′}
φ∗

{k}({r′})En({r′}, {r′′})φ{k}({r′′}), (8)

where we introduced a notation

En({r′}, {r′′}) =
∑
{a}{b}

∫
{r}

∏
i

R∗ai
n (r′

i − ri )

× Ĥ{ab}({r})
∏

j

R
bj
n (r j − r′′

j ). (9)

We have thus devised a way to remove the index dependence
of Ĥab(r) and map it to a single-component energy function
En(r′, r′′) with single-component wave function φk(r). The
advantage of doing this is that we can readily use Eqs. (1)
and (2) without resorting to multicomponent nature of H ,
which may lead to introduction of a non-Abelian CS field.
The many-body state φ{k}({r}) has to be bosonic. But, it can
be fermionized as

φ{k}({r}) = ei�{r}ψ{k}({r}), (10)

where ψ{k}({r}) is a Slater determinant. Thus, the fermionized
version of Eq. (8) can be achieved by promoting

φ{k}({r}) → ψ{k}({r}), and

En({r′}, {r′′}) → e−i�{r′ }En({r′}, {r′′})ei�{r′′ } . (11)

We note that while Ĥ ({r}) is entirely the property of the
underlying lattice, the construction of En and the choice of ψ

is a variational knob available to us. Thus, we have traded the
M-tensor-based variational space with the choice of En(r, r′).
In what follows, we demonstrate that a trial wave function for
hard-core bosons on kagome lattice, derived from the above
scheme, describes a CSL with spontaneously broken TRS and
has the lowest possible EGS.

III. KAGOME LATTICE AND THE MANY-BODY TRIAL
WAVE FUNCTION

In general, the problem of hard-core bosons on a lattice
can be studied by looking at the spin- 1

2 XY model with
Hamiltonian

H =
∑

m

Jm

∑
r,n

S+
r S−

r+rmn
+ H.c. (12)

Here, S± = Sx ± iSy are the spin- 1
2 operators; the index n

scans all the neighbors at distance m; rm,n is the vector to the
(m, n)th nearest neighbor. The choice of lattice is reflected in
the choice various rmn. One choice of the phase attachment (in
second-quantized notation) that accomplishes the CS transfor-
mation is [32–34]

S+
r = c†

rei�r , S−
r = e−i�r cr, (13)

where c†
r is a fermionic creation operator, and

�r ≡ κ
∑
r �=r′

θrr′c†
r′cr′ . (14)

This transforms the Hamiltonian to a fermionic basis:

H =
∑

m

Jm

∑
r,n

c†
rei�r,r+rmn cr+rmn + H.c., (15)

where �r1,r2 ≡ �r1 − �r2 evaluated along the line joining r1

and r2. It is the analog of the accumulated phase
∫ r2

r1
A · dl

in a lattice. Geometrically, �r1,r2 is the sum of the angles
subtended by the vector r1 − r2 at every other site (located at
r′), weighted by the occupation probability of all sites along
the path r1 → r2.

From here on we specialize to the kagome lattice with the
first-neighbor hoppings. This is achieved by setting m = 1,
and letting n scan from 1 through 4 (4 nearest neighbors) for
each of the three atoms in the unit cell. The MFA leads to
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FIG. 4. Comparison of the kagome energy spectrum in a CS
field for two different flux distributions (a) and (b). The flat band
is preserved in (b) where the flux through the triangle is zero. In this
case, the spectrum is unique only up to ν = 1

3 .

c†
rcr → 〈c†

rcr〉 = nr = ν (the filling fraction in the lattice) in
the definition of �r. Let the lattice now be populated by hard-
core bosons at every site with filling fraction ν. Within our
MFA, this provides nonzero flux at each site, spontaneously
breaking TRS. The flux distribution is such that all the flux
(3 × 2πνκ) is concentrated through the hexagon (Fig. 3). To
achieve this, one has to introduce two fluxes φT (to account
for the Maxwellian field Ar), and φC (to account for the the
intra-unit-cell flux modulation). In the absence of any external
field, the CS field requires φC = φT = 3πνκ/4.

We take note of the fact that the single-particle “Hofs-
tadter”’ spectrum of this system is sensitive to the flux distri-
bution within the unit cell. Figures 4(a) and 4(b) demonstrate
that different flux distributions lead to different spectra. The
property of the CS flux distribution seems to be that (i) the
spectrum is unique up to ν = 1

3 at which point the flux through
the unit cell is 2π ; (ii) the lowest-energy band is still flat! We
thus observe that a CS-flux distribution in the kagome unit cell
leads to an isolated flat band.

We now resort to calculating EGS where we will need
the many-body trial wave function. To be explicit, we shall
demonstrate this in the continuum limit. We iterate that to
calculate EGS for the original Hamiltonian, we make an es-
timate using a trial wave function which is bosonic, but con-
structed out of a (fermionic) Slater determinant by attaching
a CS phase. The single-particle states needed to construct
this Slater determinant are the eigenstates of the Hamiltonian
obtained after the flux-smearing approximation. Further, since
the original Hamiltonian has three bands, we focus on forming
the Slater determinant from the single-particle states of the
band in which the chemical potential is expected to lie. Since
we will be addressing the low-density regime, we expect
the chemical potential to lie in the lowest band. Using the
projection technique introduced above, we can express EGS

in terms of En(r, r′), where n corresponds to the lowest flat
band [see Eqs. (8)–(11)].

We choose Ra
n and ψ to be the eigenstates of the

ĤMFA(r, Ar ). This estimate for EGS is expected to account for
the nonlocal nature of A({r}) and provide corrections to the

FIG. 5. Ground-state energy of noninteracting fermions in
kagome lattice subject to the CS flux at mean field level. Energy
begins to rise after ν = 1

3 filling.

many-body energy computed within MFA (Fig. 5). We shall
explicitly demonstrate this in the continuum limit where the
Hamiltonian in Eq. (12) after flux smearing can be written as

ĤMFA(r) = J1

⎛
⎝ 0 H2 H1

H∗
2 0 H3

H∗
1 H∗

3 0

⎞
⎠, (16)

where Hi ≡ (eip·ai/2 + e−ip·ai/2), i ∈ {1, 3}; H2 ≡ (eip·a2/2

+ e−ip·a2/2)eiφC ; p ≡ −i∂r + Ar, pi ≡ ai · p; and a1 =
a(1, 0); a2 = a(1,

√
3)/2; a3 = a1 − a2 are the translation

vectors. It is understood that the Hamiltonian is to be
expanded to O(p2). The resulting characteristic equation is

E

J1

(
E

J1
+ 2

)[(
E

J1
+ 2

)(
E

J1
− 4

)
+ 3

2
p2

]
ψ (r) = 0.

(17)
It can be shown that E = 0 is a trivial solution.
The eigenvalues are thus E1 = −2J1, E2/3 = J1(1 ∓√

9 − 3Ba2(m + 1/2)), m ∈ {0, 1, 2, . . .}, and B = ∇ × Ar.
Note that the flat band E1 is gapped from the rest of the
dispersing bands (E2,3) by 3J1(1 −

√
1 − Ba2/6). From

Eq. (16), we note that the wave-function components
ψ i ≡ ∫

Riψ (i ∈ a, b, c) for E1 satisfy[ − p2
2

]
ψa + [p2 p3 − i(φT − φC )]ψc = 0,

[p3 p2 + i(φT − φC )]ψa + [ − p2
3

]
ψc = 0, (18)

where φT ≡
√

3
16 Ba2 (measured counterclockwise). In the ab-

sence of any external magnetic field, the CS flux constraint
requires φT = φC . Up to O(p2), we can also show that the
wave function corresponding to E1 and in quantum state i is
(see Appendix D for calculation of N )

ψi(r) = 1

N

⎛
⎝ p3

−p1

p2

⎞
⎠ fi(r), (19)

where N is a normalization constant and fi(r) can be any
function that decays stronger than 1/r2 (for normalizability).
Similar to the Landau problem for free electrons, flat-band
wave functions in the presence of CS field are also inherently
localized. To impose analyticity of the wave function, we
postulate fi(r) = e−(r−Ri )2/2l2

CS , where Ri is the center of the
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localized state, and lCS is an undermined localization length
scale in the theory.

Ground-state energy beyond single-particle spectrum

The energy profile with respect to the filling fraction at
the single-particle level is provided in Fig. 5. Having found
the wave function of a gapped isolated flat band, we can use
Eqs. (8)–(11) with n = 1 for low enough density. We observe
that because of the nondispersing nature of the isolated flat
band, the effect of the nonlocal A{r} drops out and the many-
body ground-state energy is still the same (EGS = −2J1) as
computed within the single-particle picture. In other words,
there is no statistical correction to the EGS estimated from
the single-particle spectrum. This is, however, only true up
to ν = 1/3κ . This is special case of flat bands and is not true
for other cases of fermionization [36], e.g., when there is a
moat band. In the case of a moat, the statistical correction
to EGS from the flux-attachment procedure leads to a scaling
[36] μ ∼ ν2 ln2 ν of the chemical potential, μ = ∂EGS/∂N ,
which is still lower than other proposals for the corresponding
ground state without fermionization.

The reason for the statistical correction to exist for the moat
and not for the flat band can be attributed to the fact that a
moat is degenerate along a one-dimensional (1D) manifold.
This means that any finite μ requires populating energy levels
away from the moat levels (which have the minimum energy).
In an isolated flat band, this scenario does not arise. Residual
interactions between bosons (or the corresponding fermions)
will lead to energy corrections, but the details depend on
modeling the interaction matrix element and is beyond the
scope of this work.

Returning back to the lattice problem, we may ask up to
what filling does the statistical correction remain zero? This
can be answered by noting that attaching a flux of p/q to a
unit cell causes the BZ to fold over q times. We have proven
that a CS flux distribution (p �= 0) retains the flat band of the
system at p = 0. A remarkable consequence of this is that for
any q the degeneracy of the flat band is always the same as
the system with no flux attachment. This can only be split by
residual interactions. For a kagome lattice with N unit cells
(3N atoms), N states correspond to the flat band. Even though
the flux attachment changes with ν, we can now conclude that
the flat band can remain occupied up to ν = 1

3 (for κ = 1).
This state is depicted in Fig. 1(c). Thus, we can rigorously
state that the statistical correction is absent up to ν = 1

3 .
In the absence of residual interactions, the contribution

to the many-body ground state only comes from the low-
est energy of the single-particle spectrum. Since we have
demonstrated that, up to ν = 1

3 (for κ = 1), the statistical
correction (which has to be positive definite when there are
no residual interactions) is zero, this has to be the minimum
energy ground state.

We take note of the fact that the spinless fermionic de-
scription, where no spatial symmetry is broken, naturally
implies lack of any spin ordering in the language of hard-core
bosons. Thus, fermionization is a natural tool that can be
used to describe a spin-liquid state in strongly interacting
bosons. Since our MFA breaks TRS, we expect the spin-liquid
state to be chiral. At this stage, we are able to conclude that

strongly interacting bosons in a kagome lattice favor a chiral
spin-liquid state that spontaneously breaks TRS.

Further, the flux modulation in Figs. 3 and 4(b) actually
corresponds to a Chern insulator with staggered flux φC =
3πκ/4 threading corner equilateral triangles of the unit cell,
with −2φC threading the hexagon, superposed with a uniform
external flux of 8φT = 6πνκ per unit cell. Any finite φC

opens a gap at the band-touching points and defines Chern
numbers for each of the three bands. The lowest band, in
this case, will have a Chern number C = 1, which cannot be
altered unless the system undergoes a phase transition with the
closing of the gap. Thus, the field theory of chiral spin liquid
outlined above can be regarded as a theory topologically
nontrivial Chern insulator coupled to the fluctuating Chern-
Simons gauge field. Because of the topological nature of the
Chern insulator, fermion fluctuations here will give rise to
an additional Chern-Simons term in the low-energy effective
action giving a Chern-Simons theory defined by a “K matrix”
with K = 2 [47]. This implies that the vortex excitations in
this system have fractional statistics [48] with statistical angle
θ = π/2 corresponding to semions.

IV. SUMMARY AND OUTLOOK

We prescribed a general scheme to construct the N-body
wave function and compute the ground-state energy of hard-
core bosons in a non-Bravais lattice using fermionization.
Using the example of the kagome lattice, we showed that a
CS-type flux attachment can retain the massive degeneracy of
system’s original electronic structure. Our trial wave function
suggests that the ground state of hard-core bosons on a
kagome lattice is a spontaneously TRS broken chiral spin-
liquid state. We proved that our trial wave function has zero
statistical correction to the ground-state energy due to a two-
dimensional degeneracy of the flat band in a kagome lattice.
It is thus a lowest-energy state that implies absence of con-
densation of hard-core bosons below 1

3 filling (including the
vicinity of the ν = 1

9 lattice filling fraction discussed above).
While within our analysis it is not possible to determine the
uniqueness of this spin-liquid ground state, corroboration with
other numerical techniques (e.g., DMRG) can help confirm
this state.

The lattice itself can be realized using a cold-atom setup
as in Ref. [49]. In this reference, to ensure that the flat band is
the lowest of the three, one can tune the lattice to the frustrated
hopping regime with the help of artificial gauge fields attach-
ing π phases to all links resulting in the flipped sign of the
matrix element. Other verifiable properties are bosonic edge
states (can be detected using sudden decoupling technique
[50]); and fractional excitations (time-of-flight experiments
and Bragg spectroscopy [51–53]).
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APPENDIX A: MOMENTUM-SPACE TO REAL-SPACE
WAVE FUNCTIONS

Prior to implementing the MFA, we quickly review the
kagome Hamiltonian at the single-particle level and find the
wave functions of the flat band in the continuum limit. This
will set us up to tackle the scenario with the CS flux distribu-
tion. The lattice Hamiltonian from Eq. (15) without � can be
written in k space as

H =
∑

k

�̄
†
kH̄k�̄k, (A1)

where �̄
†
k = (c̄†

a,k, c̄†
b,k, c̄†

c,k ). The annihilation operators are
given by

c̄x,r =
∑

k

c̄x,keik·r,

such that x ∈ {a, b, c}. The vector r only runs over lattice
translations and not internal bonds. Lastly,

H̄k = J1

⎛
⎝ 0 (1 + eik·a2 ) (1 + eik·a1 )

(1 + e−ik·a2 ) 0 (1 + eik·a3 )
(1 + e−ik·a1 ) (1 + e−ik·a3 ) 0

⎞
⎠,

(A2)

where

a1 = a(1, 0); a2 = a

(
1

2
,

√
3

2

)
; a3 = a

(
1

2
,−

√
3

2

)
.

Note that in addition to the lattice translation vectors a1 and
a2, we have introduced a3 = a1 − a2. It will be useful to
perform a gauge transformation Hk = M†H̄kM and �k =
M†�̄k where M† = diag(1, e−ik·a2/2, e−ik·a1/2) such that

Hk = J1

⎛
⎝ 0 H2 H1

H2 0 H3

H1 H3 0

⎞
⎠, (A3)

and Hi ≡ (eik·ai/2 + e−ik·ai/2). The resulting characteristic
equation to find the eigenvalues is(

E

J1

)3

− E

J1

(
H2

1 + H2
1 + H2

3

) − 2H1H2H3 = 0. (A4)

The eigenvalues are E1 = −2J1 and E2/3 = J1(−1 ∓√
1 + H1H2H3). Note that E1 is independent of any

parameters in the Hamiltonian and hence dispersionless.
The wave function corresponding to this flat band is

�1
k = 1

N1

⎛
⎜⎝

ei(k·a1+k·a2 )/2 sin k·a3
2

−ei(k·a1−k·a2 )/2 sin k·a1
2

e−i(k·a1−k·a2 )/2 sin k·a2
2

⎞
⎟⎠, (A5)

where N2
1 = 4[sin2(k·a1/2)]+ sin2(k·a2/2)+ sin2(k · a3/2).

The continuum limit can be obtained by studying the
Hamiltonian around the � point. We shall restrict the terms
in the Hamiltonian to O(k2). This will result in Hi = 2 − k2

i ,
where ki ≡ k · ai. The resulting characteristic equation is

E

J1

(
E

J1
+ 2

)[(
E

J1
+ 2

)(
E

J1
− 4

)
+ 3

2
k2

]
= 0. (A6)

FIG. 6. (a) The kagome lattice has three atoms per unit cell
marked a, b, c. For each atom, we consider the first-neighbor hop-
pings (J1) shown by the dashed lines. a1,2 are the lattice translation
vectors. (b) One possible choice of the unit cell. All atoms and bonds
wholly belong to the chosen unit cell. The dashed lines are the bonds
that extended to the neighboring unit cells and the solid lines are the
bonds within this unit cell.

It can be shown that E = 0 is not nontrivial solution. The
eigenvalues are thus E1 = −2J1, E2/3 = J1(1 ∓ 3

√
1 − k2/6).

And the flat-band wave function [up to O(k2)] is

�1
k =

√
2

3k2

⎛
⎝ k3

−k1

k2

⎞
⎠ =

√
2

3

⎛
⎝cos

(
θk + π

3

)
cos(θk + π )
cos

(
θk − π

3

)
⎞
⎠. (A7)

Note that the flat-band wave function has the property that
a rotation of π/3 causes the weights on the sublattice to
rotate as a → b → c → a and causes the wave function to
acquire a phase of π . The kagome lattice in invariant under
a → b → c → a, but the wave function acquires a negative
sign under a C6 rotation (see Fig. 6). Thus, the fermionic
ground state possesses an f -wave symmetry. This property
is also obeyed by the localized state discussed in Ref. [30].
Since this property is maintained by any k state, it suggests
that any fermionic state with a filling fraction ν < 1

3 also has
this character.

Real-space wave functions

The Bloch solution allows us to write the solution in real
space as

ψa
k (r) = k̂3φk(r),

ψb
k (r) = −k̂1φk(r),

ψc
k(r) = k̂2φk(r), (A8)

where k̂i ≡ −iai · ∂r, and φk(r) is a function that solves the
characteristic equation of the kagome Hamiltonian. Because
of the structure of Eq. (A6), we see that φk(r) = eik·r.

APPENDIX B: CHERN-SIMONS FLUX AND THE
COVARIANT MOMENTUM

As introduced in the main text, our MFA introduces two
fluxes φC and φT (which are eventually set equal). While
φC is simply imposed onto the model, φT originates from a
vector potential A(r) and grows with area (Maxwell type).
We remind the reader that A(r) is the one that is to be
used in creating the covariant momentum p = −i∂r + A(r).
The corresponding translation operators have the following
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properties:

p1 = p2 + p3,

e−ip2 e−ip3 eip1 = e−iφT = e−ip1 eip2 eip3 ,

e−ip3 e−ip2 eip1 = eiφT = e−ip1 eip3 eip2 ,

e−ip3 eip1 eip3 e−ip1 = e−2iφT ,

e−2ip3 e2ip1 e2ip3 e−2ip1 = e−8iφT (area of unit cell),

eip3 eip1 eip2 = e3iφT e2ip1 ,

eip2 eip1 eip3 = e−3iφT e2ip1 ,

eip3 eip1 eip2 e−ip3 e−ip1 e−ip2 = e6iφT (area of the hexagon).

Here, pi = p · ai. We further have the following commutation
relations for i, j ∈ {1, 2, 3}:

[ki, k j] = 0, [p1, p2] = −2iφT ,

[p2, p3] = 2iφT , [p3, p1] = −2iφT . (B1)

The flux φC is introduced to account for the internal
modulation and is incorporated directly in the Hamiltonian as
shown in Eq. (9) of the main text. This is necessary because
the continuum limit is obtained from the Bloch solution. The
flux φC , a property of the unit cell itself, cannot be accounted
for by introducing a position-dependent gauge field like A(r).

The translational operator on a lattice taking a fermion
from r1 to r2 is Tr2r1 ≡ c†

r2
cr1 . For a triangular loop LT :

a → b → c, it follows that T (LT ) ≡ Trarc TrcrbTrbra is the same
as T (L′

T ) ≡ TrarbTrbrc Trcra . If we couple the fermions to a
Maxwell-type gauge field where the flux grows with the area,
then Tr2r1 → ei�M

r2r1 c†
r2

cr1 and

T M (LT ) = eiφT T (LT ), T M (L′
T ) = e−iφT T (LT ),

φT = �M
rarc

+ �M
rcrb

+ �M
rbra

=
∫

A · dl. (B2)

Similarly, we may consider the hexagonal loop which yields
T M (LH ) = ei6φT T (LH ).

On implementing the CS flux as shown in Figs. 2(c) and 3
of the main text, we see that

T CS(LT ) = ei(φT −φC )T (LT ) = T (LT ),

T CS(LH ) = ei(6φT +2φC )T (LT ) = e8iφT T (LT ). (B3)

The last equality is obtained by setting φT = φC . Equating the
total flux through the unit cell 8φT to 6πν, we arrive at the
relation

φT = φC = 3πν/4. (B4)

APPENDIX C: FLAT-BAND WAVE FUNCTION IN A
KAGOME LATTICE WITH CS FLUX

Before deriving the case with the CS flux, we explicitly
derive Eq. (A8). This is informative and the derivation with
the CS flux follows similar lines. Plugging the flat-band
eigenvalue to the Hamiltonian, we see that the flat-band wave-
function components ψa satisfy

k2(k2ψ
a − k3ψ

c) = 0, k3(k3ψ
b + k1ψ

a) = 0,

k1(k1ψ
c + k2ψ

b) = 0. (C1)

It is useful note that other equations can be generated
using a → b → c → a; {H1, H∗

1 } → {H∗
2 , H2}, {H2, H∗

2 } →

{H3, H∗
3 }, {H3, H∗

3 } → {H∗
1 , H1}; and k1 → k2, k2 → −k3,

k3 → k1. This implies that k1(ψa + ψb + ψc) = const. Since
k → −i∂r, normalizability over the whole space not only
requires const = 0, but ψa + ψb + ψc = 0. The only combi-
nation that satisfies the Hamiltonian is then given by Eq. (A8).

It is not always convenient to have the components of the
wave functions expressed as operators. To remedy this, the
action of the operator R̂r can be implemented by convoluting
with the Greens’ function of the operator R(r − r′). Thus,

R̂r f (r) ≡
∫

r′
R(r − r′) f (r′). (C2)

If R̂r = −i∂r, then R(r − r′) = −i∂rδ(r − r′) = i∂r′δ(r − r′).
When a similar analysis is carried out for ĤMFA with the

CS flux attached, we end up with Eq. (C1) but with k →
p ≡ −i∂r + A(r) (only for φT = φC). The cyclic interchange
also works the same way with k → p, and with an addition of
φC → −φC . Just like before, normalizability will enforce that
ψa + ψb + ψc = 0. This result is independent of the choice
of gauge for writing A(r). Thus, the flat-band wave function
can be written as

ψa
k (r) = p̂3φi(r), ψb

k (r) = −p̂1φi(r),

ψc
k(r) = p̂2φi(r), (C3)

where i is some index denoting the quantum state (which is no
longer the momentum). It is worth noting that when this wave
function is substituted back into the Hamiltonian equations for
E = −2J1, we get

0 = 2ψa + H2eiφC ψb + H1ψ
c + O(p3)

= 2p3 + (
2 − p2

2

)
(1 + iφC )(−p1) + (

2 − p2
1

)
p2 + O(p3)

= 2(p3 + p2 − p1) − 2ip1φC + p2
2 p1 − p2

1 p2 + O(p3)

= −2ip1(φC − φT ) + O(p3)

= 0 + O(p3). (C4)

Note that since our equations are derived correct to O(p2), we
conclude that the wave-function guess in Eq. (C3) is correct
to O(p2).

APPENDIX D: NORMALIZATION OF THE FLAT-BAND
WAVE FUNCTION

We require
∫

r �†(r)�(r) = 1. From Eq. (12) of the main
text and using the form of f (r), we see that

N 2 =
∫

r

[∑
i

{p∗
i f (r)}{pi f (r)}

]

=
∫

r

[∑
i

{ki f (r)}2 + {Ai f (r)}2

]

= 3

2

∫
r
[{∂x f (r)}2 + {∂y f (r)}2 + A2 f 2(r)]

= 3

4

[
1 + gB2l4

CS

]
, (D1)

where g is a gauge-dependent constant factor. If A is chosen
in Landau gauge, g = 1

2 . If A is chosen in symmetric gauge,
g = 1

4 .
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