
PHYSICAL REVIEW B 99, 174416 (2019)

Coupling-assisted Landau-Majorana-Stückelberg-Zener transition in a system
of two interacting spin qubits

R. Grimaudo,1,2,* N. V. Vitanov,3 and A. Messina2,4

1Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo, Italy
2INFN, Sezione Catania, I-95123 Catania, Italy

3Department of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Boulevard, 1164 Sofia, Bulgaria
4Dipartimento di Matematica ed Informatica, Università di Palermo, Via Archirafi 34, I-90123 Palermo, Italy

(Received 17 December 2018; revised manuscript received 23 April 2019; published 17 May 2019)

We analyze a system of two interacting spin-qubits subjected to a Landau-Majorana-Stückelberg-Zener
(LMSZ) ramp. We prove that LMSZ transitions of the two spin qubits are possible without an external transverse
static field since its role is played by the coupling between the spin qubits. We show how such a physical
effect could be exploited to estimate the strength of the interaction between the two spin qubits and to generate
entangled states of the system by appropriately setting the slope of the ramp. Moreover, the study of effects of the
coupling parameters on the time behavior of the entanglement is reported. Finally, our symmetry-based approach
allows us to discuss also effects stemming from the presence of a classical noise or non-Hermitian dephasing
terms.
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I. INTRODUCTION

The Landau-Majorana-Stückelberg-Zener (LMSZ) sce-
nario [1] and the Rabi one [2] represent two milestones
among exactly solvable time-dependent semiclassical models
for two-level systems. A common fundamental property of
these two models is the possibility of realizing a full popula-
tion inversion in a two-state quantum system: in the former
case through an adiabatic passage via a level crossing and
in the second case thanks to the application of a resonant π

pulse.
It is important to underline that the LMSZ scenario, differ-

ent from the Rabi case, is an ideal model. The word “ideal”
refers to the fact that it consists of a process characterized
by an infinite time duration, resulting, then, in being prac-
tically unrealizable. This fact leads, indeed, to not physical
properties such as the fact that the energies of the adiabatic
states diverge at initial (−∞) and final (+∞) instants. As a
consequence, both mathematical and physical problems arise
when amplitudes and not only probabilities are necessary, e.g.,
when initial states present coherences [3,4]. In such cases one
can alternatively use either the exact solutions of the finite
LMSZ scenario [5] or the Allen-Eberly-Hioe model [6], the
Demkov-Kunike model [7], or other models [8,9] where no
divergency problems arise and the transition probability is
rather simple.

However, despite this circumstance, it is a matter of fact
that the LMSZ handles peculiar dynamical aspects of a lot
of physical systems [10]. This relevant aspect has increased
the popularity of the LMSZ model, and several efforts have
been made towards its generalization to the case of N-level
quantum systems [3,11,12] and total crossing of bare energies
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[13]. Moreover, its experimental feasibility gave it a basic
role in the area of quantum technology thanks also to several
sophisticated techniques developed for precise local manipu-
lation of the state and the dynamics of a single qubit in a chain
[14–19].

In such an applicative scenario, as we know, several
sources of incoherence can be present [20–23]: incoherent
(mixed) states, relaxation processes (e.g., spontaneous emis-
sion), and interaction with a surrounding environment (e.g.,
nuclear spin bath). They generate incoherent excitation, lead-
ing to a departure from a perfect (ideal) population transfer.
Therefore, more realistic descriptions of quantum systems
subjected to the LMSZ scenario comprising such effects have
been proposed [24–29].

In this respect, the most relevant influence on the dy-
namics of a spin-qubit primarily stems from the coupling
with its nearest neighbors. Recently, attention has been fo-
cused on double interacting spin-qubit systems subjected to
the LMSZ scenario [30–35]. These papers investigated the
coupling effects in the two-spin system dynamics in view
of possible experimental techniques and protocols. Moreover,
such systems, under specific conditions, behave effectively
as a two-level system with relevant applicability in quantum
information and computation sciences [36]. In the references
cited above, indeed, generation of entangled states [30] or the
singlet-triplet transition [15,31,32] in the two-qubit system
under the LMSZ scenario was studied.

With the same objective in mind, that is, to characterize
physical effects stemming from the coupling between two
spin qubits subjected to a LMSZ scenario, in this paper we
study a two-spin-1/2 system described by a C2-symmetry
Hamiltonian model. We consider coupling terms compatible
with the symmetry of the Hamiltonian, namely, isotropic
and anisotropic exchange interaction. The two spins 1/2 are,
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moreover, subjected only to a LMSZ ramp with no transverse
static field. We show that LMSZ transitions for the two
spin-qubits are still possible thanks to the presence of the
coupling playing the role of an effective transverse field. Such
an effect, which we call coupling-assisted LMSZ transition,
deserves particular attention for two reasons. First, it can be
exploited to estimate the presence and the relative weight
of different coupling parameters determining the symmetry
of the Hamiltonian and then the dynamics of the two spins.
Second, through such an estimation, it is possible to set the
slope of the field ramp in such a way to generate asymptotic
entangled states of the two qubits.

This paper is organized as follows. In Sec. II we intro-
duce the model and its symmetry properties on which the
dynamical reduction is based. In Sec. III the application of the
LMSZ scenario to both the subdynamics (that is, the two-qubit
dynamics restricted to the invariant subspaces) is performed.
Moreover, physical effects stemming from the (an)isotropy
of the exchange interaction are brought to light. In Sec. IV,
we emphasize the possibility of estimating the values of the
coupling parameters. The generation of asymptotic entangled
states of the two spins through coupling-based LMSZ transi-
tions is reported in Sec. V. Some effects of a possible inter-
action with a surrounding environment, providing for either a
classical noisy field component or non-Hermitian terms in the
Hamiltonian model, are taken into account in Sec. VI. Finally,
some conclusive comments and further remarks can be found
in Sec. VII.

II. THE MODEL

Let us consider the following model describing two inter-
acting spin qubits:

H = h̄ω1(t )σ̂ z
1 + h̄ω2(t )σ̂ z

2 + γxσ̂
x
1 σ̂ x

2 + γyσ̂
y
1 σ̂

y
2 + γzσ̂

z
1 σ̂ z

2 ,

(1)

where σ̂ x
i , σ̂

y
i , and σ̂ z

i (i = 1, 2) are the Pauli matrices and
all the parameters may be thought of as time dependent. The
matrices are represented in the following ordered two-spin
basis: {|++〉, |+−〉, |−+〉, |−−〉} (σ̂ z|±〉 = ±|±〉).

The C2 symmetry with respect to the z direction, possessed
by the Hamiltonian, causes the existence of two dynamically
invariant Hilbert subspaces related to the two eigenvalues of
the constant of motion σ̂ z

1 σ̂ z
2 [37]. Based on such a symmetry,

the time evolution operator, the solution of the Schrödinger
equation ih̄U̇ = HU , may be formally put in the following
form [37]:

U =

⎛
⎜⎝

a+(t ) 0 0 b+(t )
0 a−(t ) b−(t ) 0
0 −b∗

−(t ) a∗
−(t ) 0

−b∗
+(t ) 0 0 a∗

+(t )

⎞
⎟⎠. (2)

The condition U (0) = 1 is satisfied by setting a±(0) = 1 and
b±(0) = 0. It is worth noticing that a±(t ) and b±(t ) are the
time-dependent parameters of the two evolution operators,

U± = e∓iγzt/h̄

(
a±(t ) b±(t )

−b∗
±(t ) a∗

±(t )

)
, (3)

the solutions of two independent dynamical problems of a
fictitious single spin 1/2, namely, ih̄U̇± = H±U±, U±(0) =

1±, with

H± =
(

h̄�±(t ) γ±
γ± −h̄�±(t )

)
± γz1±

= h̄�±(t )σ̂ z + γ±σ̂ x ± γz1±, (4)

where

�±(t ) = [ω1(t ) ± ω2(t )], γ± = (γx ∓ γy), (5)

and 1± represent the identity operators within the two-
dimensional subspaces. Thus, the solution of the dynamical
problem of the two interacting spins 1/2 is traced back to the
solution of two independent problems, each one of a single
(fictitious) spin 1/2 [37].

The explicit expressions of a±(t ) and b±(t ) depend on
the specific time dependences of ω1(t ) and ω2(t ). It is well
known that it is not possible to find the analytical solution
of the Schrödinger equation for a spin 1/2 subjected to a
generic time-dependent field. Therefore, specific exactly solv-
able time-dependent scenarios for a single spin 1/2 might be
of great help to investigate the dynamics of the two interacting
spin systems under scrutiny [37].

III. COUPLING-BASED LMSZ TRANSITION

In this section we investigate the case in which a LMSZ
ramp is applied on either just one or both the spins. Our fol-
lowing theoretical analysis is based on the possibility of exper-
imentally addressing at will the spin systems exploiting, for
example, scanning tunneling microscopy (STM). It appears
hence appropriate to furnish a sketch of such a technique.

STM proved to be an excellent experimental technique for
controlling the dynamics of spin-qudit systems for two main
reasons: (1) the possibility of building, atom by atom, atomic-
scale structures [38], such as spin chains and nanomagnets
[39], and (2) the possibility of controlling the whole system
by addressing a single element (qudit) while it interacts with
the others [39–41], succeeding in realizing, for example, logic
operations [38]. The manipulation of a single-qudit dynamics
is performed through the exchange interaction between the
atom on the tip of the scanning tunneling microscope and
the target atom in the chain. It is possible to show that such
an interaction is equivalent to a magnetic field applied to the
atom we want to manipulate [18,39]. In this way, it is easy to
guess that a time-dependent distance between the tip and the
target atom generates a time-dependent exchange coupling,
giving rise, in turn, to a time-dependent effective magnetic
field on the atom of the chain, as analyzed in Ref. [18]. Based
on such an observation, in Ref. [19] the authors studied the
spin dynamics and entanglement generation in a spin chain
of Co atoms on a surface of Cu3N/Cu(110). Precisely, they
considered a LMSZ ramp along the z direction produced in
a time window of 20 ps and a short Gaussian pulse in the x
direction (half width of 10 ps).

A. Collective LMSZ dynamics

In light of the STM experimental scenario, we take into
account first the case of a LMSZ ramp applied to the first spin
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such that

h̄ω1(t ) = αt/2, h̄ω2(t ) = 0, t ∈ (−∞,∞), (6)

where α is related to the velocity of variation of the field, Ḃz ∝
α, and it is considered a positive real number without loss of
generality. Let us consider, moreover, the two spins initialized
in the state |−−〉. In this instance, the subdynamics gov-
erned by H+ is characterized by a LMSZ scenario where the
longitudinal (z) magnetic field produces the standard LMSZ
ramp h̄�+(t ) = h̄ω1(t ) = αt/2 and the transverse effective
magnetic field along the x direction is given by γ−. It is well
known that the dynamical problem for such a time-dependent
scenario can be analytically solved. The transition probability
of finding the two-spin system in the state |++〉 coincides
with the probability of finding the fictitious spin 1/2 subjected
to H+ in its state |+〉 starting from |−〉 and reads [1]

P+ = |〈+ + |U+(∞)| − −〉|2 = 1 − exp{−2πγ 2
+/h̄α}. (7)

If we now, instead, consider the two spins initially prepared
in |−+〉, the probability for each spin 1/2 of undergoing a
LMSZ transition, that is, the probability of finding the two-
spin system in the state |+−〉, results:

P− = |〈+ − |U−(∞)| − +〉|2 = 1 − exp{−2πγ 2
−/h̄α}. (8)

This time the transition probability is governed by the fic-
titious magnetic field given by γ−. The effective longitudi-
nal magnetic field, instead, is the same, namely, h̄�−(t ) =
h̄ω1(t ) = αt/2. We see that in both cases, although a constant
transverse magnetic field is absent, the LMSZ transition of
both spins is possible thanks to the presence of the coupling
between them. It is important to stress that, for the cases
considered before, if γx = γy (as often happens experimen-
tally), we cannot have a transition in the first case, that is, in
the subdynamics involving |++〉 and |−−〉. In this instance,
indeed, P+ happens to be zero at any time.

B. Isotropy effects: Local LMSZ transition by
nonlocal control and state transfer

The symmetry-based dynamical decomposition and the
application of the STM LMSZ scenario in each subdynamics
allow us to bring to light peculiar evolutions of physical
interest. For example, if we consider γx 	= γy and the initial
condition

|+〉 ⊗ |+〉 + |−〉√
2

, (9)

the two states |++〉 and |−−〉 evolve independently, and
applying the LMSZ ramp, we have the probability P = P+P−
to find asymptotically the two-spin system in the state

|−〉 ⊗ |+〉 + |−〉√
2

. (10)

We see that such a dynamics leaves unaffected the second
spin, while it produces a LMSZ transition only in the first spin.
The dynamical evolution of the symmetric initial condition

|+〉 + |−〉√
2

⊗ |+〉 (11)

is also relevant. This time, we get the same probability, P =
P+P−, of finding asymptotically the two-spin system in

|+〉 + |−〉√
2

⊗ |−〉. (12)

This case results less intuitive, even though we are reproduc-
ing the same dynamics but with interchanged roles of the two
spins. In this instance, in fact, we generate a LMSZ transition
only in the second spin by locally applying the field to the first
one. This shows that the coupling between the two spins plays
a key role in achieving nonlocal control of the second spin by
locally manipulating the first ancilla qubit.

If we consider, instead, γx = γy = γ /2, we know that the
transition |−−〉 ↔ |++〉 is suppressed. This means that if we
consider as initial conditions the states in Eqs. (9) and (11),
we get asymptotically, this time, the states

|+〉 + |−〉√
2

⊗ |+〉, (13a)

|+〉 ⊗ |+〉 + |−〉√
2

, (13b)

respectively, with probability P = 1 − exp{−2πγ 2/h̄α}. We
see that the isotropic properties of the exchange interaction
consistently change the dynamics of the system. When the
exchange interaction is isotropic, indeed, the asymptotic states
reached by the initial conditions (9) and (11) radically change.
In these cases, the resulting physical effect is a state transfer
or a state exchange between the two spin qubits. Therefore,
the different state transitions from state (9) [(11)] to state (10)
or (13a) [(12) or (13b)] can reveal the level of isotropy of the
exchange interaction.

IV. COUPLING PARAMETER ESTIMATION

It is interesting to notice that the coupling-based LMSZ
transition could be used to estimate the coupling parameters.
By measuring P+ and P− [Eqs. (7) and (8), respectively] in
a physical scenario describable by the Hamiltonian model
(1), we get an estimation of γ+ and γ− and then of the two
coupling parameters γx and γy. Supposing we know P+ and
P−, we have indeed

γx = 1

2

√
h̄α

2π

[√
ln

(
1

1 − P−

)
+

√
ln

(
1

1 − P+

)]
,

γy = 1

2

√
h̄α

2π

[√
ln

(
1

1 − P−

)
−

√
ln

(
1

1 − P+

)]
. (14)

We wish to emphasize that we may estimate the coupling
parameters also through the Rabi oscillations occurring in the
two subspaces. Applying, indeed, a constant field ω1 on the
first spin, the two probabilities P+ and P− become

P+ = γ 2
+

h̄2ω2
1 + γ 2+

sin2
(√

ω2
1 + γ 2+/h̄2 t

)
,

P− = γ 2
−

h̄2ω2
1 + γ 2−

sin2
(√

ω2
1 + γ 2−/h̄2 t

)
. (15)
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FIG. 1. (a) The two curves of the concurrence in Eq. (16a) (solid
blue line) and Eq. (16b) (red dashed line) for β−/2 = β+ = β.
(b) Time behavior of concurrence for the initial condition |−−〉 and
β+ = 0.1 plotted against the dimensionless time τ = √

α/h̄ t .

So, by measuring the frequency and the amplitude of the
oscillations in the two cases, we may get information about
the relative weights of the coupling parameters.

V. ENTANGLEMENT

A precise estimation of the coupling parameters is useful
also to generate entangled states of the two spins. Through
knowledge of them, indeed, we may set the parameter α in
order to get asymptotically P± = 1/2, generating an entan-
gled state. Indeed, if the two spins start from state |−−〉
or |−+〉, they reach asymptotically the pure state (|++〉 +
eiφ |−−〉)/

√
2 in the first case and (|+−〉 + eiφ|−+〉)/

√
2

in the second case, which are maximally entangled states.
The asymptotic curves of the concurrence (the entanglement
measure for two spins 1/2 introduced in Ref. [42]), when
the two-spin system is initialized in |−−〉 or |−+〉, read,
respectively,

C = 2|c++c−−| = 2
√

P+(1 − P+)

= 2
√

(1 − e−2πβ+ )e−2πβ+ , (16a)

C = 2|c+−c−+| = 2
√

P−(1 − P−)

= 2
√

(1 − e−2πβ− )e−2πβ− , (16b)

and they exhibit a maximum for β+ = β− = ln(2)/2π ≈
0.11. In the above expressions we set β+ = γ 2

+/h̄α and β− =
γ 2

−/h̄α, while c++ and c−− (c+− and c−+) are the asymp-
totic amplitudes of the states |++〉 and |−−〉 (|+−〉 and
|−+〉), respectively. Therefore, ln(2)/2π is exactly the value
the LMSZ parameters β+ and β− must have to realize the
generation of the entangle states (|++〉 + eiφ|−−〉)/

√
2 and

(|+−〉 + eiφ |−+〉)/
√

2 when the two spins start from |−−〉
and |−+〉, respectively. Figure 1(a) reports the two curves for
β−/2 = β+ = β.

We may verify this fact by investigating the behavior of
the concurrence in time. To this end, the exact solutions of
the two time-dependent parameters determining the two time
evolution operators U+ and U− in Eq. (3), related to each
subdynamics, are necessary, and they read [5]

a± = � f (1 − iβ±)√
2π

× [Diβ± (
√

2e−iπ/4τ ) D−1+iβ± (
√

2ei3π/4τi )
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C

(b)

FIG. 2. Time behavior of the concurrence against the dimension-
less parameter τ = √

α/h̄ t during a LMSZ process when the system
starts from the state |−−〉 for (a) β+ = 1/2 and (b) β+ = 2. The
upper straight curve corresponds to C(τ ) = 1.

+ Diβ± (
√

2ei3π/4τ ) D−1+iβ± (
√

2e−iπ/4τi )],

b± = � f (1 − iβ±)√
2πβ±

eiπ/4

× [−Diβ± (
√

2e−iπ/4τ ) D−1+iβ± (
√

2ei3π/4τi )

+ Diβ± (
√

2ei3π/4τ ) D−1+iβ± (
√

2e−iπ/4τi )]. (17)

� f is the gamma function, while Dν (z) are the parabolic cylin-
der functions [43] and τ = √

α/h̄ t is a time dimensionless
parameter; τi identify the initial time instant. If the system
starts, e.g., from the state |−−〉, the amplitudes are

c++ = b+, c−− = a∗
+, c+− = c−+ = 0, (18)

and the related time behavior of the concurrence C =
2|b+||a+| for β+ = 0.1 is reported in Fig. 1(b). We see, as
expected, that such a choice of the LMSZ parameter generates
a maximally entangled state of the two spin qubits. It is
important to point out that, on the basis of Eqs. (17), the
parameter β+ determines not only the asymptotic value of the
concurrence but also its time behavior. This fact is confirmed
and can be seen in Figs. 2(a) and 2(b), which report the
concurrence against the dimensionless parameter τ for β+ =
1/2 and β+ = 2, respectively. The physical meaning of the
asymptotic vanishing of C in Fig. 2(b) is that for the specific
value of β+ the system evolves quite adiabatically towards
the factorized states |−−〉. On the contrary, in Fig. 2(a) the
slope of the ramp induces a nonadiabatic evolution towards a
coherent, not factorizable superposition of |++〉 and |−−〉.

We would get analogous results by studying the LMSZ
process when the two spin qubits start from the state |−+〉. In
this case, only states |−+〉 and |+−〉 would be involved, and
the LMSZ parameter determining the different concurrence
regimes would be β−. For such initial conditions, then, the
ratio β+/β−, which imposes precise relationships between the
coupling parameters γx and γy, does not matter.

Such a ratio, conversely, plays a decisive role for the
time evolution from different initial conditions, e.g., the one
considered in Eq. (10). In this case the amplitudes read

c++ = a+, c−− = −b∗
+, c+− = a−, c−+ = −b∗

−.

(19)

In Figs. 3(a)–3(f) we may see the influence of both the ratio
β−/β+ and the free parameter β+; the former influences only
qualitatively the behavior of the concurrence, while the latter
influences it both qualitatively and quantitatively. This time,
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FIG. 3. Time behavior of the concurrence against the dimen-
sionless parameter τ = √

α/h̄ t during a LMSZ process when the
system starts from the state (|++〉 + |+−〉)/

√
2 for β−/β+ = 1/2

and (a) β+ = 1/2 and (b) β+ = 2, for β−/β+ = 2 and (c) β+ = 0.5
and (d) β+ = 2, and for β−/β+ = 2 and (e) β+ = 0.1 and (f) β+ =
10. The upper straight curve corresponds to C(τ ) = 1.

too, the concurrence vanishes for high values of β+, showing
an asymptotic factorized state. For small values of β+, instead,
positive values of entanglement even for large times indicate
a superposition of the four standard basis states.

To conclude this section, we underline that in Ref. [30] the
authors considered a system of two spins 1/2 interacting only
through the term σ̂ z

1 σ̂ z
2 and subjected to the same magnetic

field consisting of a Gaussian pulse uniformly rotating in
the x-y plane and a LMSZ ramp in the z direction. They
showed that the coupling between the two spins enhances
significantly the probability to drive adiabatically the two-spin
system from the separate state |−−〉 to the entangled state
(|+−〉 + |−+〉)/

√
2. In this case the procedure to generate

an entangled state is different from the scenario considered
here because of the different symmetries of the Hamiltonians
ruling the two-spin dynamics. Indeed, in Ref. [30] the Hamil-
tonian commutes with Ŝ2, and consequently, two dynamically
invariant Hilbert subspaces exist: one of three dimensions and
the other of one dimension. The three-dimensional subspace
is spanned by the states |++〉, (|+−〉 + |−+〉)

√
2, and |−−〉,

making possible the preparation of the entangled state of the
two spins 1/2 by an adiabatic passage when they start from the
separate state |−−〉. In our case, instead, Ŝ2 is not constant,
while the integral of motion is σ̂ z

1 σ̂ z
2 . The symmetries of the

Hamiltonian thus generate two two-dimensional dynamically
invariant Hilbert subspaces: one spanned by |++〉 and |−−〉

and the other spanned by |+−〉 and |−+〉. Then, in our case,
the transition between the states considered in the other work
is impossible since such states belong to different invariant
subspaces.

VI. EFFECTS OF CLASSICAL NOISE

In experimental physical contexts involving atoms, ions,
and molecules investigated and manipulated by the applica-
tion of lasers and fields, the presence of noise in the system
stemming from the coupling with a surrounding environment
is unavoidable. Although a lot of technological progress has
been made and experimental expedients have been developed,
it is necessary to introduce such decoherence effects in theo-
retical models for a better understanding and closer descrip-
tion of the experimental scenarios. Different approaches exist
to treat the influence of a thermal bath; one is to consider the
presence of classical noisy fields [26,44] stemming, e.g., from
the presence and the influence of a surrounding nuclear spin
bath [26].

In Ref. [26] the authors studied a noisy LMSZ scenario for
an N-level system. They took into account a time-dependent
magnetic field η(t ) only in the z direction characterized by
the time correlation function 〈η(t )η(t ′)〉 = 2Gδ(t − t ′). The
authors showed that the LMSZ transition probability P+

− for a
spin 1/2 to be found in the state |+〉 starting from |−〉, in the
case of large values of G, changes as

P+
− = 1 − exp{−2πg2/h̄α}

2
, (20)

where g is the energy contribution due to the coupling of the
spin 1/2 with the constant transverse magnetic field and α

is the ramp of the longitudinal magnetic field. We see that
the value of G, provided that it is large, does not influence
the transition probability. The unique effect of the noisy
component is the loss of coherence. The field, indeed, being
in the same direction of the quantization axis, cannot generate
transitions between the two diabatic states. In this way the
transition probability is reasonably hindered by the presence
of the noise since, for g2/α � 1, the system reaches at most
the maximally mixed state.

This result is of particular interest in our case since the
addition of the noisy component η(t ) leaves completely un-
affected the symmetry-based Hamiltonian transformation and
the validity of the dynamics-decoupling procedure. Thus, also
in this case, the dynamical problem of the two-qubit system
may be converted into two independent spin-1/2 problems
affected by a random fluctuating z field. Thus, we may easily
write the transition probabilities when the two spins are sub-
jected to a unique homogeneous field influenced by the noisy
component considered before. We have precisely

P+ = 1 − exp{−2πγ 2
+/h̄α}

2
,

ω1(t ) = ω2(t ) = [αt + η(t )]/4. (21)

We underline that the transition probability P− vanishes in the
case of a unique homogeneous magnetic field. In the related
subdynamics, indeed, the effective field ruling the two-spin
dynamics is zero, namely, �−(t ) = 0. Moreover, for γx = γy
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we would have no physical effects since, in such a case, P+
would also be zero.

Another way to face the problem of open quantum systems
is to use non-Hermitian Hamiltonians, effectively incorporat-
ing the fact that the system they describe is interacting with
a surrounding environment [45–50]. We may suppose, for
example, that the spontaneous emission from the up state to
the down one is negligible and that some mechanism makes
the up state |+〉 irreversibly decay out of the system with rates
ξ and ξ ′ for the first and second spins 1/2, respectively. It is
well known that we can phenomenologically describe such
a scenario by introducing the non-Hermitian terms iξ σ̂ z

1/2
and iξ ′σ̂ z

2/2 in our Hamiltonian model. Analogous to the case
of a noisy field component, the introduction of these terms
does not alter the symmetry of the Hamiltonian model. The
symmetry-based transformation leads us to two independent
non-Hermitian two-level models. In the same way we may
exploit the results received for a single qubit with a decaying
state subjected to the LMSZ scenario [24,25,27] and reread
them in terms of the two-spin-1/2 language. We know that the
decay rate affects only the time history of the transition proba-
bility but not, surprisingly, its asymptotic value [24]. However,
this result is valid for the ideal LMSZ scenario; considering
the more realistic case with a limited time window, it has been
demonstrated, indeed, that a decay rate dependence for the
population of the up state arises [25].

VII. CONCLUDING REMARKS

In this work we considered a physical system of two inter-
acting spins 1/2 whose coupling comprises the terms stem-
ming from the anisotropic exchange interaction. Moreover,
each of them was subjected to a local field linearly varying
over time. The C2 symmetry (with respect to the quantization
axis ẑ) possessed by the Hamiltonian allowed us to identify
two independent single spin-1/2 subproblems nested in the
quantum dynamics of the two spin qubits. This fact gave us the
possibility of decomposing the dynamical problem of the two
spins 1/2 into two independent problems of a single spin 1/2.
In this way, our two-spin-qubit system may be regarded as a
four-level system presenting an avoided crossing for each pair
of instantaneous eigenenergies related to the two dynamically
invariant subspaces. This aspect turned out to be the key to
solve easily and exactly the dynamical problem, bringing to
light several physically relevant aspects.

In the case of time-dependent Hamiltonian models, such
a symmetry-based approach and the reduction to indepen-
dent problems of a single spin 1/2 were also used in other
cases [37,51–53]. This fact permits a deep understanding of
the quantum dynamics of the spin systems with consequent
potential applications in quantum information and computa-
tion. We underline, in addition, that the dynamical reduction
exposed in Sec. II is independent of the time dependence of
the fields. Thus, we may consider different exactly solvable
time-dependent scenarios [54–60] for the two subdynamics,
resulting, of course, in different two-spin dynamics and phys-
ical effects.

In this paper, we showed that, despite the absence of a
transverse chirp [30] or constant field, LMSZ transitions are
still possible, precisely from |−−〉 to |++〉 and from |−+〉 to

|+−〉 (the two couples of states spanning the two dynamically
invariant Hilbert spaces related to the symmetry Hamiltonian).
Such transitions occur thanks to the presence of the coupling
between the spins, which acts as an effective static transverse
field in each subdynamics.

It is worth noticing that, in our model, the two LMSZ
subdynamics are ruled either by different combinations of the
externally applied fields (when the local fields are different)
or by the same field (under the STM scenario, that is, when
one local field is applied on just one spin). In the latter case
we showed the possibility of (1) a nonlocal control, that is,
manipulating the dynamics of one spin by applying the field
on the other one, and (2) a state exchange/transfer between
the two spins. We brought to light how such effects are two
different responses of the system depending on the isotropic
properties of the exchange interaction.

Concerning the interaction terms, each subdynamics is
characterized by different combinations of the coupling pa-
rameters. This aspect has relevant physical consequences
since, as shown, by studying the LMSZ transition probability
in the two subspaces, it is possible both to evaluate the
presence of different interaction terms and to estimate their
weights in ruling the dynamics of the two-spin system. We
brought to light how the estimation of the coupling parameters
could be of relevant interest since, through this knowledge,
we may set the slope of variation of the LMSZ ramp to
generate asymptotically entangled states of the two spins 1/2.
Moreover, we reported the exact time behavior of the entan-
glement for different initial conditions, and we analyzed how
the coupling parameters can determine different entanglement
regimes and asymptotic values.

Finally, we emphasized how our symmetry-based analysis
has proved to be useful to get exact results when a clas-
sical random field component or non-Hermitian terms are
considered to take into account the presence of a surround-
ing environment interacting with the system. In this case,
the dynamics decomposition is unaffected by the presence
of the noise or the dephasing terms, and then we may apply
the results previously reported for a two-level system [24–26]
and reread them in terms of the two spins 1/2.

We wish to underline, in addition, that our results are valid
not only within the STM scenario; they are also applicable
to other physical platforms. Indeed, the local LMSZ model
for a spin qubit interacting with another neighboring spin
qubit may be reproduced also in laser-driven cold atoms in
optical lattices where highly selective individual addressing
has been experimentally demonstrated [61]. Another promi-
nent example is laser-driven ions in a Paul trap where spatial
individual addressing of single ions in an ion chain has been
routinely used for many years [62,63]. Yet another example
is microwave-driven trapped ions in a magnetic-field gradient
where individual addressing with extremely small cross talk
has been achieved in frequency space [64,65].

We point out that the results obtained in this paper are
deeply different from the ones reported in Refs. [15,31,32],
where systems of two spins 1/2 in a LMSZ framework were
investigated on the basis of an approximate treatment. In
those papers, indeed, the two spin qubits are not directly
coupled, but they interact through a common nuclear spin
bath which they are coupled to. Such a composite system
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behaves as a two-level system under several assumptions, and
deriving the effective single spin-1/2 Hamiltonian requires
several approximations. In Ref. [32], in particular, the ef-
fective Hamiltonian describes the coupling between the two-
level system and a longitudinal time-dependent field which is
not a pure LMSZ ramp, presenting a complicated functional
dependence on the original Hamiltonian parameters. There is,
in addition, a time-dependent effective interaction between the
two states possessing a complicated functional dependence on
the confinement energy as well as the tunneling and Coulomb
energies. Although such an effective Hamiltonian goes be-
yond the standard LMSZ scenario, it may be considered to
be similar to the LMSZ one since both Hamiltonians describe
an adiabatic passage through an anticrossing.

In our case, instead, the two spins 1/2 are directly coupled
in addition to being subjected to a random field stemming
from the presence of a spin bath. Furthermore, the effective
two-state Hamiltonians governing the two-qubit dynamics in
the two invariant subspaces are easily determined without
involving any assumption and/or approximation. The two
two-level Hamiltonians, indeed, are derived only on the basis
of a transparent mathematical mapping between the two-qubit
states in each subspace and the states of a fictitious spin
1/2. Moreover, they describe exactly a LMSZ scenario with a
standard avoided crossing where the transverse constant field
is effectively reproduced by the coupling existing between the

two qubits. The treatment at the basis of this work remarkably
enables us to explore peculiar dynamical aspects of the system
described by Eq. (1), leading, for example, to the exact
evolution of the entanglement established between the two
spins.

We underline, moreover, that our study is not a special
case of the one considered in Ref. [34], where a Lipkin-
Meskow-Glick (LMG) interaction model for N spin qubits
subjected to a LMSZ ramp was considered. The numerical
results reported in Ref. [34] were, indeed, based on the mean-
field approximation. In addition, there is no possibility of
considering in the LMG model effects stemming from the
anisotropy between x and y interaction terms.

Finally, two challenging problems naturally extending the
investigation here reported are (1) considering the interaction
of two qutrits [66] in place of two qubits and (2) taking into
account the coupling of the two spins with a quantum bath
[67] in place of the interaction with a classical random field.
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