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Mean-field modelling of magnetic nanoparticles: The effect of particle size and
shape on the Curie temperature
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A Heisenberg mean-field model is used to study the effect of size and shape on the Curie temperature of
magnetic nanoparticles. Simple cubic, body-centered cubic, and magnetite nanoparticles are modelled as spheres,
cubes, and needlelike particles. The Curie temperatures of particles of different shape, but with the same crystal
structure and smallest dimension d , are found to differ. The range in the value of the Curie temperature between
particles of different shape, �TC , is found to be ∼20% of the bulk value of TC in particles where d < 10 atoms.
As particle size increases, the value of �TC reduces rapidly and becomes negligible above a threshold size. This
threshold size differs between systems and is controlled predominantly by crystal structure. All systems were fit
to the finite-size scaling equation, with values of the scaling exponent ν found to lie between 0.46 and 0.55, in
good agreement with the expected value of ν = 0.5. No trend in the value of ν due to shape was found.
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I. INTRODUCTION

Interest in magnetic nanoparticles has grown rapidly over
the past two decades across a wide range of scientific disci-
plines: applications in magnetic hyperthermia treatment [1],
improved contrast agents for MRI imaging [2], and heat-
assisted magnetic recording [3] are all actively being pursued.
In the environment, magnetic nanoparticles have been pro-
posed as the source of magnetic anomalies over oil fields [4],
and their presence in the human brain due to inhalation of an-
thropogenic pollution has recently been linked to Alzheimer’s
disease and other neurodegenerative diseases [5]. Despite
this interest there are still several fundamental unanswered
questions surrounding the magnetic behavior of nanoparticles
and other nanoscale structures. Many of these questions arise
from a combination of interacting phenomena, making it no
longer possible to simply use the bulk parameters to describe
the magnetic nanoparticles’ behavior.

In bulk magnetic systems, the spin correlation length di-
verges at the Curie temperature TC , but in nanoscale systems
the growth of the correlation length is limited by the smallest
dimension of the system such that it causes a reduction in TC .
This obeys a finite-size scaling relationship [6],

TC (∞) − TC (d )

TC (∞)
=

(
d0

d

) 1
ν

, (1)

where TC (∞) is the bulk Curie temperature, d0 is a charac-
teristic length scale of the system, ν is the correlation length
scaling exponent, and d is the smallest length scale of the
system. Recent developments in preparation techniques have
lead to several new experimental investigations of finite-sized
scaling in magnetic nanoparticles. However, the results have
been varied in contrast with the good agreement between
theory and experiment found in studies of thin films [7,8].
Studies of hematite and magnetite nanoparticles have found

values for ν in the range of 0.6–0.8 [9,10], close to the
expected value of 0.7043 [11] for the 3D Heisenberg model.
A value of ν = 1.06 was determined from work conducted on
Ni nanoparticles [12], with line dislocations near the surface
of the nanoparticles suggested as the cause of this discrepancy.

Monte Carlo modelling of nanoscale systems has failed
to clarify the situation, with values of ν derived from
finite-size scaling also failing to agree with the accepted
value of the correlation length scaling exponent. An Ising
Monte Carlo simulation of maghemite nanoparticles sug-
gested a value of ν = 0.49 from finite sized scaling [13],
in clear disagreement with the 3D Ising value of 0.6417
calculated from consideration of thermodynamic deriva-
tives [14]. Simulations of L10-FePt using a classical-spin
Heisenberg model determined a value of ν = 1.06 [15],
again disagreeing with the generally accepted value. Long-
range ordering was suggested as a possible source of this
disagreement.

Here we use an atomistic mean-field model based on an
approach previously used for analyzing complex magnetic
structures [16] and apply it to nanoscale systems. The model
was applied to a number of crystal structures; simple synthetic
systems with uniform spin and exchange energies and a model
of magnetite (Fe3O4). The effect of shape on the Curie tem-
perature of magnetic nanoparticles was studied and finite-size
scaling in these systems considered.

II. MEAN-FIELD MODELLING OF
MAGNETIC NANOPARTICLES

The mean-field approximation is a well understood method
for analyzing the behavior of magnetic systems, having been
successfully applied across the spectrum of magnetic models
from the Ising model to spin glasses [17,18]. The generalized
mean-field equations for a system of interacting Heisenberg
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spins are given by

mi = BSi

(
Si

∑
j∈Ni

2Ji jS jmj + gμBh

kBT

)
, (2)

where mi is the normalized magnetization of site i, Si is the
spin at site i, BSi is the Brillouin function, Ji j is the isotropic
exchange interaction between sites i and j defined such that
ferromagnetic exchange is positive, g ≈ 2 is the gyromagnetic
ratio, μB is the Bohr magneton, h is an external magnetic
field acting on each site, kB is the Boltzmann constant, and
T is temperature. The sum over j acts over the set of nearest
neighbors of i, where Ni := { j : Ji j �= 0}. Each site i is a spin
in the system being studied and so can represent the unique
atoms in a complex crystal lattice [16], the layers in a thin
film [19], or as in the case being studied here, the atoms in
a magnetic nanoparticle. A full derivation of the mean-field
equations is given in Appendix A.

The mean-field equations in the form of (2) are a system
of N coupled nonlinear equations. Because its solution is not
analytically tractable, a numerical approach must be taken. By
recasting (2) as

fi = BSi

(
Si

∑
j∈Ni

2Ji jS jmj + gμBh

kBT

)
− mi = 0, (3)

the problem is transformed to finding a common zero of
the set of expressions fi. There is normally more than a
single solution to such systems of equations, and so further
conditions must be fulfilled by the desired solution. In the case
of the mean-field equations, the trivial root mi = 0 is not a
valid solution below TC , when it falls at a maximum of free
energy. In addition, mi are normalized magnetic moments;
they all must lie in the range −1 � mi � 1.

The system of equations described by (3) was solved by
a C++ program using the SNES solvers of the Portable,
Extensible Toolkit for Scientific Computation (PETSc) li-
braries [20]. PETSc uses N-dimensional Newton based meth-
ods that require either an analytic expression or a finite-
difference approximation of the Jacobian ( ∂ fi

∂mj
) to iteratively

solve systems of nonlinear equations. In the case of (3), an
analytic expression for the Jacobian can be obtained. For
i = j,

∂ fi

∂mi
= −1. (4)

For j ∈ Ni,

∂ fi

∂mj
= 2Ji jS j

kBT

[(
1

2Si

)2 1

sinh2
(

1
2Si

ξi
)

−
(

2Si + 1

2Si

)2 1

sinh2
( 2Si+1

2Si
ξi

)]
, (5)

where

ξi =
∑

j∈Ni
2Ji j〈S j〉 + gμBh

kBT
. (6)

Otherwise for i �= j and j �∈ Ni,

∂ fi

∂mj
= 0. (7)

FIG. 1. Structure of magnetite showing two octants of the unit
cell. The octants are arranged in a chess board pattern to form the
unit cell.

A. Crystal structures and particle shapes

Particles were modelled using simple cubic, body-centered
cubic, and inverse spinel (magnetite) crystal structures. For
each crystal structure, five different shapes were studied:
cubes, spheres, and three elongated needlelike shapes with
aspect ratios of 2:1:1, 5:1:1, and 10:1:1. Each shape was mod-
elled over a range of sizes (see Table I). Spherical particles
were approximated on the crystal lattice by including an atom
if it lay within d

2 of the center of the particle.
Simple cubic (sc) and body-centred cubic (bcc) particles

were modelled with an isotropic spin of S = 2 applied to each
atom, and a ferromagnetic exchange energy of J = 3.5 kB ≈
0.3 meV between each nearest neighbor.

We also considered magnetite (Fe3O4), as it is an important
and well understood natural mineral, which forms in the
inverse spinel structure (Fig. 1). 32 oxygen (O2−) atoms form
a face centered cubic lattice, with 24 iron atoms occupying
tetrahedral (A) and octahedral (B) interstitial sites. Eight
Fe3+ atoms occupy the A sites, while the 16 B sites are
occupied by an equal number of randomly distributed Fe3+

and Fe2+ ions [21]. The magnetic structure of magnetite is
ferrimagnetic, with the magnetic moments of the A and B sites
aligned in opposing directions. The total theoretical moment
of magnetite is 4 μB per formula weight, in close agreement
with the experimentally determined value of 4.1 μB [22].

For the model of magnetite, spins of SA = 2.5 and SB =
2.25 were assigned to the A and B sites. Nearest-neighbor
exchange energies of JAA = −1.56 meV, JAB = −2.38 meV,
and JBB = 0.26 meV were used as the most complete set of
experimental estimations [23].

B. Determining the Curie temperature

Previous studies determined the Curie temperature by lin-
earizing the Brillouin function in Eq. (2) and then solving the
arising matrix equation for the case of a singular matrix [16].
This approach rapidly became too expensive here given the
large number of unique sites even in small particles and so an
alternative approach was used.

The solution of the mean-field equations gives the magne-
tization of each atom in the particle for a given temperature T .
Below TC , this gives a nonzero value of magnetization for each
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TABLE I. Range of smallest length scales, d , for all particles modelled in terms of number of atoms. Not all particle diameters in the range
were calculated. For inverse spinel systems, particle sizes are also listed in nm for the case of magnetite.

Needle

Cube Sphere 2:1:1 5:1:1 10:1:1

Simple cubic 2–45 3–50 2–40 2–24 2–19
Body-centered cubic 3–67 5–67 3–41 3–37 3–29

8–104 8–120 8–76 8–56 8–44
Inverse spinel 0.84–10.92 nm 0.84–12.60 nm 0.84–7.98 nm 0.84–5.88 nm 0.84–4.62 nm

site; for T � TC , magnetization at each site is zero. It is there-
fore possible to determine TC by a bisection algorithm. Two
initial temperatures were chosen, TL = 1 K and TH > TC (∞).
The magnitude of the average magnetization of the particle,
|〈mi〉|, at the midpoint between these two temperatures,

TM = TL + TH

2
, (8)

was calculated. If at this temperature |〈mi〉| was found to
be greater than a threshold value εm = 0.0001, then TM was
assumed to be below the Curie temperature, and TL was
replaced by TM . For |〈mi〉| < εm, TH was replaced by TM .
This process was iterated, until TH − TL < 0.01 K. The Curie
temperature of the particle was then taken as

TC = TL f + THf

2
, (9)

where TL f and THf are the final values of TL and TH , respec-
tively, and the error in TC is

εerr = TL f − THf

2
. (10)

Excellent agreement in the value of TC between the two
methods, typically better than 0.02 K, was found in small
simple cubic systems.

III. RESULTS AND DISCUSSION

A. Properties of nanoparticles

Normalized magnetization curves, m(T ), were calculated
in steps of �T = 0.1 K for bcc and sc particles, and �T =
1 K for magnetite particles. A sharp Curie-temperature phase
transition can be seen for all particles, with the Curie tem-
perature decreasing with decreasing particle size (Fig. 2). In
real systems of this size, identifying the Curie temperature
is more complex; the superparamagnetic nature of many
magnetic nanoparticles requires measurements to be made in
the presence of an external field, which destroys the second-
order phase transition, while samples will inevitably contain a
distribution of grain sizes and morphologies [24].

The very smallest bcc (not shown) and the magnetite parti-
cles have more ‘linear’ m-T curves than larger particles of the
same crystal structure. Their behavior is strongly influenced
by atoms in the corner of the cubes, which have only one or
two nearest neighbors.

Magnetization varies spatially throughout the nanoparti-
cles at all temperatures (Fig. 3). At low temperatures, a
core-shell-like structure is seen, in which a core of atoms
behaves in a bulklike manner, surrounded by a shell of atoms

exhibiting reduced magnetization. As the temperature in-
creases, this boundary softens, and there is a more gradual
change in magnetization throughout the particle. This behav-
ior has previously been observed [25].

B. Effect of varying particle shape

The Curie temperature of small magnetic nanoparticles is
affected by the shape of the particle (Fig. 4). Spherical parti-
cles have the lowest Curie temperature for a given size, d , with
cubic, 2:1:1, 5:1:1, and 10:1:1 particles having successively
higher values of TC .

It should be noted that the number of atoms in a 10:1:1
particle of size d is an order of magnitude higher than a
spherical or cubic particle of the same size. If TC of a 10:1:1
particle is compared to that of a spherical particle containing
the same number of atoms (thus larger d), the sphere has the
highest Curie temperature. This is due to the more compact
shape of a sphere, which leads to both fewer atoms on the
surface and a greater average distance from the surface for
atoms inside the sphere.

The normalized difference in the Curie temperature be-
tween spherical and 10:1:1 particles is defined as

�TC (d ) = TC10:1:1 (d ) − TCsph (d )

TC (∞)
(11)

and is used as a measure of the strength of the influence of
shape on TC . In the smallest particles, �TC is found to be

z
z

FIG. 2. Magnetization curves of cubic magnetite particles of a
number of different sizes. The bulk mean-field magnetization curve
is included for reference. Particle sizes are given in nm.
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FIG. 3. Variation of magnetization in a cube of 25 × 25 × 25 atoms arranged in a simple cubic lattice. A slice through the middle of the
particle at z = 13 is shown at three different normalized temperatures: (a) t = 0.36, (b) t = 0.87, (c) t = 0.99, where t = T

TC (d ) .

15–25% of TC (∞) before it falls off rapidly as particle size
increases [Fig. 5(a)]. The size at which �TC become negligi-
ble (taken as �TC < 0.02) varies between crystal structures.
In simple cubic and bcc particles this occurs as a size of 10
and 20 atoms, respectively. For magnetite, our results suggest
that shape is only an important factor in particles smaller than
5 nm (≈50 atoms) in size.

The sensitivity of �TC with respect to the relative magni-
tudes of exchange energy was tested in magnetite [Fig. 5(c)].
Two additional sets of calculations were made, one using esti-
mations of exchange energies from ab initio calculations [26]
and another using uniform values of J = 3.5kB. The latter
choice creates an artificial ferromagnetic system, with the
value of J selected to match the other systems modelled in
this work. For all particle sizes, except for the smallest size
d = 0.8 nm, the value of �TC does not change appreciably
as exchange energies differ. When d = 0.8 nm, a small dif-
ference in the value of �TC of 0.05 was seen between the
ferromagnetic and two ferrimagnetic systems. This suggests
that the relative magnitudes of exchange energies have little
bearing on the value of �TC and that the size below which

FIG. 4. Normalized Curie temperature of bcc nanoparticles. Data
for five shapes is shown: spherical, cubic, 2:1:1, 5:1:1, and 10:1:1
particles.

shape begins to have an impact on the Curie temperature is
controlled predominantly by crystal structure.

(b)

(a)

FIG. 5. �TC as a function of d . (a) Illustrates the effect of
variation due to crystal structure. (b) Illustrates the effect of changes
to exchange energy in magnetite between experiment [23], ab initio
modelling [26], and an artificial ferromagnetic system.
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FIG. 6. Example fits to determine the value of the scaling expo-
nent ν for cubic sc and magnetite 2:1:1 particles. The dashed lines
show the best fits to Eq. (1) where the error in ν is minimized.

C. Finite-size scaling

Values for the scaling exponent ν were calculated by non-
linear least squares regression to Eq. (1) using the Levenberg-
Marquardt algorithm [27]. The error in ν was taken as the 95%
confidence interval of the best fit value. Particles of different
materials and shapes were considered separately. Fitting was
undertaken initially on all sizes of particles from a particular
system and then successively removing the smallest particle
from the fit. The final value of ν was taken as the one with
the smallest error, in order to account for any deviation from
scaling behavior seen at small sizes.

The chosen fits describe much of the data well, with
deviation away from scaling behavior for diameters smaller
than d ≈ 10 atoms for simple cubic systems, d ≈ 15 atoms
for bcc systems, and d ≈ 20 atoms for magnetite systems
(examples of fitting shown in Fig. 6). Values of ν are close
to the analytical mean-field result of ν = 0.5 [28] in all cases,
lying in the range 0.46–0.55 (Fig. 7). No trend in the value

FIG. 7. Calculated values of ν for simple cubic, bcc, and mag-
netite systems. Errors donate 95% confidence interval of the fit. Solid
line highlights the analytical mean-field value of ν = 0.5.

FIG. 8. Comparison of the finite-size scaling law (1), and the
modified scaling law (12) in cubic bcc and simple cubic 10:1:1
particles. The solid lines show the analytical results from (12). The
dashed lines show the best fit to Eq. (1) where the error in ν is
minimized.

of the scaling exponent with respect to particle shape can be
seen. This consistency of results close to the accepted value
of the scaling exponent contrasts with the range of values of ν

found in other studies [9,10,12,15].
An analytical expression for the Curie temperature of some

types of nanoparticle has been derived from Ginzberg-Landau
(G-L) theory [25]. This approach has been applied to cubic
and long needle particles of simple cubic, body centered
cubic, and face centered cubic structure. A modified scaling
law is predicted in which

TC (∞) − TC (d )

TC (∞)
= κ

(
π

d + 2

)2

, (12)

where κ depends upon the shape and crystal structure of
the particle. For a simple cubic structure, κ = 1

2 for a cubic
particle and κ = 1

3 for a long needle. For a body centered
cubic structure, κ = 3

2 for a cubic particle and κ = 1 for a
long needle.

The difference in Curie temperature between 5:1:1 and
10:1:1 particles in the mean-field model is very small (Fig. 4),
suggesting that the 10:1:1 particle is a good approximation
to a long needle. We can therefore directly compare the
analytical result above with the results from the mean-field
model. The G-L theory clearly captures the deviation away
from finite-size scaling seen in the mean-field approach at
very small length scales (Fig. 8). However, the quantitative
agreement between the two models varies. For cubic bcc
particles, the two models agree very closely, but for simple
cubic 10:1:1 particles a larger difference in predictions can be
seen; G-L theory predicts a value of TC approximately half of
the value of mean-field theory for the smallest systems.

The qualitative accuracy of the modified scaling law was
tested by fitting the mean-field data to a law of the general
form of (12),

TC (∞) − TC (d )

TC (∞)
=

(
d0

d + 2

) 1
ν

. (13)
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FIG. 9. Example fits to the general modified scaling law (13) for
bcc 2:1:1, cubic magnetite, and sc 5:1:1 particles. The dashed lines
show the best fits to Eq. (13) where all particles are included in the
fit.

In contrast to the fitting procedure for finding ν used earlier,
only a single fit of all data points was made in order to
test (13) across all length scales. The results for simple cubic
and bcc particles show that the general form of the modified
law describes the scaling behavior at small length scales well
(Fig. 9). However, for magnetite particles, Eq. (13) does not
describe the scaling behavior at small length scales, with
deviation away from this law clearly seen. We suggest this
is due to the complex crystal structure of magnetite which
involves interactions over many layers of the unit cell. This is
in contrast to the simpler sc, bcc, and fcc ordering, which only
interact with neighbors in adjacent layers, for which Eq. (12)
is derived.

D. Coordination number

In the bulk mean-field Heisenberg model the Curie temper-
ature, TC (∞), is described to a good linear approximation by

TC (∞) = (S + 1)

3S

2zJS2

kB
, (14)

where S is the isotropic spin, z is the number of nearest
neighbors, and J is the isotropic exchange energy. In the
bulk case, the Curie temperature is linearly dependent on
the number of nearest neighbors in the system, assuming all
other variables are held constant. In view of the relationship
between TC and z in (14), it may seem reasonable to assume
that TC (d ) can be described to a good approximation by the
average coordination number 〈z〉,

TC (d ) = (S + 1)

3S

2〈z〉JS2

kB
. (15)

By considering the left hand side of the scaling Eq. (1), and
substituting in Eqs. (14) and (15), an expression for scaling as
a function of average coordination number is then obtained,

t = TC (∞) − TC (d )

TC (∞)
= 1 − 〈z〉

z
. (16)

FIG. 10. Plot of reduced Curie temperature against average co-
ordination number for bcc nanoparticles. The solid line shows the
linear relationship suggested in (15). No agreement between this
relationship and the numerical results can be seen.

Analytic expressions for 〈z〉 in cubic sc and bcc particles
can be found and are given by

〈zsc〉 = 6 − 6

d
(17)

and

〈zbcc〉 = 4(2d3 − 6d2 + 6d + 8)

d (d2 + 3)
. (18)

By further substituting in the expressions for 〈zsc〉 and 〈zbcc〉
into (16) expressions for tsc and tbcc in terms of d are obtained.
For a simple cubic system, where z = 6,

TC (∞) − TC (d )

TC (∞)
= 1 −

(
6 − 6

d

6

)
= 1

d
, (19)

which is a power law of the form in Eq. (1) where ν = 1 and
d0 = 1. For a bcc system, where z = 8,

TC (∞) − TC (d )

TC (∞)
= 1 −

(
2 − 6

d + 6
d2 + 8

d3

)
2 + 6

d2

. (20)

The d−2 and d−3 terms quickly become small compared to
the d−1 term, and so,

TC (∞) − TC (d )

TC (∞)
→ 1 −

(
2 − 6

d

2

)
= 3

d
, (21)

which again recovers a power law where ν = 1 (and d0 = 3).
This result is in clear contrast to the mean-field value of
ν = 0.5 and shows that the assumption made in (15) does
not hold in the mean-field approximation (also shown in
Fig. 10). A previous study of magnetic nanoparticles using
the free-energy variational principle found that the expression
in (16) was true to a first approximation in that model [29].
The value for the scaling exponent obtained by the varia-
tional method for both bcc and fcc lattices was found to be
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ν = 1.0001 ± 0.0001, in agreement with the result obtained
above.

IV. CONCLUSIONS

This study has used the mean-field approximation applied
to finite systems of Heisenberg spins to investigate the par-
ticle size and shape dependence on the Curie temperature of
magnetic nanoparticles. A numerical model was developed to
solve the generalized mean-field equations for a number of
particle shapes and crystal structures.

TC was found to vary between different shapes of particle,
with spheres, cubes, 2:1:1, 5:1:1, and 10:1:1 particles having
successively higher values of Curie temperature for the same
smallest dimension. �TC , the difference in Curie temperature
between 10:1:1 and spherical particles, was found to be 15–
25% of the value of TC (∞) in particles a few atoms across and
rapidly decreased as particle size increased. The size at which
�TC became negligible was found to differ between crystal
structures. For magnetite this was found to be 5 nm. �TC was
also found to be insensitive to changes in the exchange energy
between neighboring atoms, showing that crystal structure is
the primary driver of the differences in TC due to shape.

All systems were fit to the finite-size scaling law and a
good fit was found in all cases. Very small particles, typically
d < 10–20 atoms, showed deviation away from finite-size
scaling behavior. Values of ν were found to lie in the range
0.46–0.55, which compare well to the analytical mean-field
value of 0.5. No trend in the value of ν with relation to
particle shape was found. A modified scaling law, derived
from Ginzberg-Landau theory, accounted for the observed
deviation from finite-size scaling in simple cubic and bcc
particles, but was not successful when applied to magnetite.
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APPENDIX: DERIVATION OF MEAN-FIELD EQUATIONS

The derivation presented here applies the mean-field ap-
proximation to finite systems of spins in three spatial dimen-
sions; it is closely related to work conducted previously [16]
but restricts the spin orientations and the applied field to lie in
one direction. However, the final set of equations here features
a factor of Si inside the Brillouin function which is not present
in the former work. This discrepancy arises between (A16)
and (A20), which is treated as a single step in the previous
work, and so a full treatment is given here for clarity.

The Heisenberg Hamiltonian for a system of N magnetic
spins considering exchange and external field h is given
by [28]

H = −2
∑
〈i j〉

Ji jSiS j − gμBh
N∑

i=1

Si, (A1)

where Si is the spin of site i, Ji j is the isotropic exchange
energy (Ji j = Jji) between sites i and j, g ≈ 2 is the gyro-
magnetic ratio, μB is the Bohr magneton, and h is an external
field acting on each site. The sum over 〈i j〉 is over nearest
neighbor pairs. The definition of the Heisenberg Hamiltonian
here gives a positive value to ferromagnetic and a negative
value to antiferromagnetic exchange energies. The sum of the
first term is taken over each nearest neighbor pair of sites and
may be rewritten as

H = −
N∑

i=1

∑
j∈Ni

Ji jSiS j − gμBh
N∑

i=1

Si, (A2)

where Ni is the set of nearest neighbor spins of site i.
The temporal fluctuation δi of the ith spin is defined as [18]

δi = Si − 〈Si〉, (A3)

where 〈Si〉 is the average value or magnetization of spin i. The
Hamiltonian in terms of δi may be written as

H = −
N∑

i=1

∑
j∈Ni

Ji j (δiδ j + δi〈S j〉 + 〈Si〉δ j

+ 〈Si〉〈S j〉) − gμBh
N∑

i=1

Si. (A4)

The mean-field approximation is taken, in which correla-
tions between fluctuations are neglected (i.e., δiδ j = 0) [18].
This gives the mean-field Hamiltonian,

HMF = −
N∑

i=1

∑
j∈Ni

Ji j (δi〈S j〉 + 〈Si〉δ j

+ 〈Si〉〈S j〉) − gμBh
N∑

i=1

Si. (A5)

Substitution of Eq. (A3) and summation over all sites
allows simplification to

HMF =
N∑

i=1

∑
j∈Ni

Ji j (〈Si〉〈S j〉 − 2Si〈S j〉) − gμBh
N∑

i=1

Si. (A6)

In order to find the equilibrium state of the system, the
minimum of the free energy must be found. The free energy F
is given in terms of the well known equation F = −kBT ln Z
where Z is the partition function. The partition function is
given by the expression

Z =
∑
{Si}

exp

(−H
kBT

)
, (A7)

where {Si} is the sum over all possible states of the system
defined by H. Substitution of (A6) and the quantization of
angular momentum yields the following expression for the
partition function,

Z = exp

⎛
⎝−

N∑
i=1

∑
j∈Ni

Ji j〈Si〉〈S j〉
kBT

⎞
⎠ N∏

i=1

Si∑
σ=−Si

exp (ξiσ ),

(A8)
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where

ξi =
∑

j∈Ni
2Ji j〈S j〉 + gμBh

kBT
. (A9)

Noting the geometric series summation, a final expression
for Z is given by

Z = exp

⎛
⎝−

N∑
i=1

∑
j∈Ni

Ji j〈Si〉〈S j〉
kBT

⎞
⎠ N∏

i=1

sinh
( 2Si+1

2 ξi
)

sinh
(

1
2ξi

) .

(A10)

The free energy can be calculated by direct substitution,

F =
N∑

i=1

∑
j∈Ni

Ji j〈Si〉〈S j〉

− kBT
N∑

i=1

ln
sinh

( 2Si+1
2 ξi

)
sinh

(
1
2ξi

) = F1 − F2. (A11)

The equilibrium state of the system occurs when the deriva-
tive of free energy with respect to each magnetization, ∂F

∂〈Si〉 =
0. The two terms of the free energy are considered separately,

F1 =
N∑

i=1

∑
j∈Ni

Ji j〈Si〉〈S j〉, (A12)

and

F2 = kBT
N∑

i=1

ln
sinh

( 2Si+1
2 ξi

)
sinh

(
1
2ξi

) . (A13)

The partial derivative of F1 yields

∂F1

∂〈Si〉 =
∑
j∈Ni

2Ji j〈S j〉, (A14)

where the factor of two arises from the sum over all sites.
The case of F2 requires a little more manipulation but finally

obtains the expression

∂F2

∂〈Si〉 =
∑
j∈Ni

2Ji j

[
2S j + 1

2
coth

(
2S j + 1

2
ξ j

)

−1

2
coth

(
1

2
ξ j

)]
, (A15)

which is related to the Brillouin function by

∂F2

∂〈Si〉 =
∑
j∈Ni

2Ji jS jBSj

(
S j ξ j

)
, (A16)

or equivalently

∂F2

∂〈Si〉 =
∑
j∈Ni

2Ji jS jBSj

(
S j

∑
k∈Nj

2Jjk〈Sk〉 + gμBh

kBT

)
. (A17)

The sum over j is a summation over the nearest neighbors
of site i, while the sum over k is a sum over the nearest
neighbors of site j. A minimum of free energy is therefore
found when

∂F

∂〈Si〉 =
∑
j∈Ni

2Ji j
[〈S j〉 − S jBSj (S jξ j )

] = 0. (A18)

Each term in the sum must equal zero to prevent solutions
featuring the self interaction of spins, and so the solution
to (A18) reduces to N coupled equations,

〈Si〉 = SiBSi

(
Si

∑
j∈Ni

2Ji j〈S j〉 + gμBh

kBT

)
. (A19)

By defining the site normalized magnetization mi = 〈Si〉
Si

, the
final form of (A19) is

mi = BSi

(
Si

∑
j∈Ni

2Ji jS jmj + gμBh

kBT

)
. (A20)
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