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Magnetic phase diagram of the infinite-U Hubbard model with nearest-
and next-nearest-neighbor hoppings
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We study the infinite-U Hubbard model on ladders of two, four, and six legs with nearest- (t ) and next-
nearest- (t ′) neighbor hoppings by means of the density-matrix renormalization group algorithm. In particular,
we analyze the stability of the Nagaoka state for several values of t ′ when we vary the electron density ρ from
half filling to the low-density limit. We build the two-dimensional phase diagram, where the fully spin polarized
and paramagnetic states prevail. We find that the inclusion of a nonfrustrating next-nearest-neighbor hopping
stabilizes the fully spin polarized phase up until |t ′/t | = 0.5. Surprisingly, for this value of t ′, the ground state
is fully spin polarized for almost any electron density 1 � ρ � 0, connecting the Nagaoka state to itinerant
ferromagnetism at low density. Also, we find that the previously found checkerboard insulator phase at t ′ = 0
and ρ = 0.75 is unstable against t ′.
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I. INTRODUCTION

The Hubbard model was first introduced in 1963 to
explain itinerant ferromagnetism in transition metals [1–3].
Even though it was built as the simplest model capable of
describing the behavior of correlated materials [4], it has
been proven useful in the interpretation of a wide variety of
phenomena ranging from metal-insulator transitions [5,6] to
high-temperature superconductivity [7]. In the past years this
model has been brought back into focus due to its applicability
in the description of ultracold atoms in optical lattices [8–10].

Despite being a rather simple model when written down,
most of the progress in the understanding of the Hubbard
model has been made numerically, either by exact diago-
nalization of small clusters, by mean-field approaches, or
by using more sophisticated numerical techniques such as
quantum Monte Carlo or the density-matrix renormalization
group (DMRG). Only a few mathematically rigorous results
regarding this model exist to date [11,12]. Nagaoka’s theorem
[13,14] is one of these few exact results, making it an im-
portant and solid starting point to study the phase diagram
of the Hubbard model. It states that, when the system has
one electron less than half filling, U → ∞, and the lattice
satisfies certain connectivity conditions, the ground state of
the system is a fully spin polarized ferromagnetic state (FSP)
and it is unique apart from the trivial spin degeneracy. These
connectivity conditions require that the smallest loop must
be no longer than four sites and the kinetic energy of the
hole motion around this loop must not be frustrated. In the
years following Nagaoka’s theorem, a lot of effort was put
into trying to widen this isolated point of the phase diagram
by relaxing some of the requirements of this theorem. For
example, very recently, the condition regarding the loop size
was extended to cover larger loops [15], proving that the
two-dimensional honeycomb lattice (loop size = 6) also has
a FSP ground state.

When the accumulated sign of the hoppings along the min-
imum loop is negative, the kinetic energy of the hole motion

is frustrated, and Nagaoka’s theorem is no longer valid. Nev-
ertheless, it was shown that the FSP state can survive in the
presence of small enough values of frustrating hoppings [16].
On the other hand, high frustration can lead to an antiferro-
magnetic Néel order, which happens in the isotropic triangular
lattice with positive hoppings [17]. Surprisingly enough, in
this case, the antiferromagnetic ground state is classical and
has the maximum staggered magnetization possible [16,18].
This kind of classical antiferromagnetic state was also found
in a square lattice with a frustrating next-nearest-neighbor
hopping [18].

Also, it is worth mentioning that Nagaoka’s theorem is
valid only for finite lattices, where the condition of being one
hole away from half filling makes sense. As we get closer to
the thermodynamic limit, clearly, this condition means that
the electron density tends to half filling. Because of this, there
has been a long-standing question regarding the existence
of the FSP phase in the thermodynamic limit at finite hole
doping. The Hubbard model on a square lattice with U → ∞
and varying electron density is the easiest model to study
this problem. Early calculations showed that the FSP phase
was unstable against hole doping beyond Nagaoka’s theorem
conditions [19,20], although more recent ones obtained a crit-
ical hole density in the thermodynamic limit around ρc ≈ 0.8
[21–24]. Nonetheless, there is still much to uncover, as other
recently published results suggest that two holes away from
half filling the existence of the FSP state depends strongly on
the boundary conditions and the sizes of the finite lattices [25].
This shows that the mechanisms responsible for stabilizing the
FSP state away from Nagaoka’s theorem conditions are not
yet fully understood.

DMRG calculations [23] show that, also in the square
lattice, new, interesting phases appear below the critical elec-
tron density, ρc = 0.8. For example, a commensurate checker-
board insulator state emerges at ρ = 0.75 and leads to a phase
separation region between ρ = 0.8 and 0.75; below this point
the system behaves as a paramagnet. Another interesting study
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[26] performed with dynamical mean-field theory (DMFT)
shows that the inclusion of a next-nearest-neighbor hopping,
whenever not frustrating the loop conditions within Nagaoka’s
theorem, can stabilize ferromagnetic phases for smaller values
of ρ (reducing the paramagnetic region).

The weak- to intermediate-coupling regime (i.e., the
infinite-U condition is no longer fulfilled) has been widely
studied [27–32], and it was found that for low densities and
|t ′/t | = 0.5 there is a fully spin polarized phase. The presence
of this low-density ferromagnetism even at relatively small
values of U is due to the strong particle-hole asymmetry and
the Van Hove singularity near the bottom of the band.

In this paper, we study in more detail the problem of
the stability of Nagaoka’s ferromagnetism (FSP state) against
hole doping, combined with the inclusion of a nonfrustrating
next-nearest-neighbor hopping on the square lattice by means
of numerical calculations using DMRG. We also follow the
evolution and stability of the checkerboard insulator previ-
ously mentioned along with the phase separation.

This paper is organized as follows: in Sec. II we introduce
the Hamiltonian and describe the details of the methods
employed in the rest of the paper. In Sec. III we show and
discuss the results for two- to six-leg ladders and build the
two-dimensional (2D) phase diagram. In Sec. IV we present
the conclusions.

II. MODEL AND METHODS

The object of our present study is the Hubbard model,
which we can write as

H = −
∑

i jσ

ti j[ĉ
†
iσ ĉ jσ + H.c.] + U

∑

i

n̂i↑n̂i↓, (1)

where ti j is the hopping integral between sites i and j and U is
the on-site repulsion. We take the repulsion between electrons
U → ∞ to remain within Nagaoka’s theorem conditions; this
means that we can never have two electrons in the same site.
Taking into account only two different hopping terms, we can
write our implementation Hamiltonian as

H = −t
∑

〈i j〉σ
[c̃†

iσ c̃ jσ + H.c.] + t ′ ∑

〈〈i j〉〉σ
[c̃†

iσ c̃ jσ + H.c.], (2)

where t connects the nearest neighbors on a square lattice and
t ′ connects the next-nearest neighbors (see Fig. 1). The pres-
ence of a hopping t ′ 
= 0 makes the lattice no longer bipartite,
breaking the particle-hole symmetry. Given the importance
of the sign of the interaction in the Hamiltonian, it is worth

FIG. 1. A 4 × 6 lattice with open boundary conditions. Shown
by solid black lines t is the nearest-neighbor hopping integral, and
shown by dashed blue lines, t ′ is the next-nearest-neighbor one.

mentioning that we have chosen it to be different for t and t ′
for later convenience. The new operators c̃†

iσ = ĉ†
i,σ (1 − n̂i,σ̄ )

ensure the exclusion of the doubly occupied states imposed
by the infinite-U condition; its new commutation relations
are responsible for the complications in diagonalizing the
Hamiltonian.

Also, to ensure the validity of the Nagaoka’s theorem
connectivity condition we need to check that the accumulated
sign around the smallest loop is positive, meaning that

sgn(t ′)[sgn(−t )]2 = 1, (3)

where we can see that the sign of t is irrelevant. So t ′ has to be
positive to fulfill the connectivity condition, and we will take
t = 1 as the energy unit from now on. Taking t ′ > 0, we can
be sure that the ground state of the system will always be the
FSP state at one electron less than half filling.

Having guaranteed this starting point, it is up to us to study
in further detail the effect of the inclusion of next-nearest-
neighbor hopping terms t ′ over the existence and stability of
the FSP state upon further hole doping. To do so, we use the
density-matrix renormalization group algorithm [33] based
on the matrix product state representation [34] contained in
the ALPS libraries [35,36]. We solve ladders with fully open
boundary conditions for Ly = 2, 4, 6 (legs) and several Lx

(rungs) when possible. We vary t ′ and the electron density ρ

to map the phase diagram, using between m = 2000 and 9000
DMRG states to ensure the convergence of our results.

The first of our aims is to determine the critical value of
ρc up to which the FSP state survives. In order to accomplish
this task, we need a reliable signature to help us determine
whether this state is or is not the ground state of the system
for a given hopping t ′ and electron density ρ. There are
two complementary methods we can use that will also help
us characterize the rest of the phase diagram. One is to
determine the magnetization of the system through the spin
structure factor

S(k) = 1

N

∑

i j

〈SiS j〉e−ik(ri−r j ), (4)

where we can take k as a continuous variable given the open
boundary condition. Obtaining the spin structure factor of
the system provides more information about the magnetic
ordering, but it relies on the calculation of the spin correla-
tions, which are considerably less accurate than the energy
calculations. The other alternative depends on calculating
the ferromagnetic magnetization of a system solely through
energy calculations. This allows us to calculate the total
spin of the ground state by exploiting the degeneracy of a
ferromagnetic ground state. To do so, we calculate the lowest
energy for all subspaces with different quantum number Sz

and find Smax
z such that E (Sz = 0) = · · · = E (Sz = Smax

z ) <

E (Sz = Smax
z + 1). Then, the normalized ferromagnetic mag-

netization value for a given electron density can be calculated
as M = 2Smax

z /Ne. In the case of the FSP state, this magne-
tization gives M = 1, and in the case of the paramagnetic
state, it gives M = 0. This method is expected to be more
accurate but more time-consuming as we have to compute the
minimum-energy state for several subspaces. Nevertheless,
there is an issue with the given M formula: when there is
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an odd number of electrons in the system, the minimum
value of the spin projection Sz is 0.5 (and not 0), meaning
that the minimum value of M is not zero. To solve this, in
these cases we subtract one half from Smax

z and one electron
from Ne to be able to represent the FSP and paramagnetic
limits, M = 1 and M = 0. The corresponding formula of the
magnetization for the odd number of electrons then results in
M = (2Smax

z − 1)/(Ne − 1).

III. RESULTS

A. Two-leg ladders

We start by studying the simpler two-leg ladder systems as
we expect that the main characteristics of the phase diagram
do not change much upon adding more legs. To cover the
phase diagram we use 2 × 20 and 2 × 30 ladders and take t ′
from 0.0 to 0.5 at 0.1 intervals. Also, we briefly comment on
results for t ′ > 0.5 up to t ′ = 1.0. For each chosen value of t ′
we calculate the ground-state energy within all Sz subspaces
for all electron densities below half filling. This allows us to
compute the magnetization curves for all our t ′ values as a
function of the electron density ρ.

In the square ladder (t ′ = 0.0), the FSP state is present at
high densities and survives up to ρc = 0.8, as can be seen by
the classical magnetization M = 1 region in Fig. 2. This value
was previously obtained in two-leg ladder systems [22,23] and
in the 2D limit [21,23], proving that it does not scale with
the number of legs. Below this critical value of the electron
density, the magnetization M is lowered until ρ = 0.75, where
it reaches M = 0. At ρ = 0.75 lies the checkerboard insulator;
this phase consists of plaquettes of four sites and three elec-
trons (each plaquette has the same electronic density as the
lattice) in a FSP state but an antiferromagnetic order between

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

M

ρ

t =0.0
=0.3
=0.5

FIG. 2. Magnetization value in 2 × 20 ladders with open bound-
ary conditions for three different values of t ′. M = 1 is the fully
spin polarized state, and M = 0 is the paramagnetic state. The purple
squares show the limit t ′ = 0 (square lattice), blue circles show an
intermediate case, t ′ = 0.3, and green triangles illustrate the limit
case of t ′ = 0.5.

FIG. 3. Nearest- and next-nearest-neighbor correlations in the
central part of the 2 × 20 lattice for several values of t ′. The thickness
of the lines varies as the third power of the bond density Bi j =∑

σ 〈[c̃†
iσ c̃ jσ + H.c.]〉, while the color indicates the sign of the total

spin correlations. The size of the arrows indicates the magnitude of
the local value of Sz

i .

plaquettes (see Fig. 3). This exotic state can be seen through
the spin structure factor as a set of two broad peaks centered
at ±π

2 (shown in the next section for larger ladders). Between
this phase and the FSP there is a phase separation region that
arises as a combination of the FSP state with ρ = 0.8 and the
checkerboard insulator. This phase separation region can be
seen in the spin structure factor as a combination of the peaks
that belong to each of the phases, lowered and broadened by
the mixture (also shown in the next section for larger ladders).
This phase can also be characterized by the uneven charge
distribution [23], where a certain part of the system has the
same density n = 0.75 and order as the checkerboard insulator
and the rest of the system has ferromagnetic order with n =
0.8. Between ρ = 0.75 and ρ = 0.6 there are intermediate
phases with nonzero magnetization which disappear in wider
ladders. Below ρ = 0.6 the ground state is paramagnetic, and
it is signaled by the null ferromagnetic magnetization. These
results, obtained for 2 × 20 and 2 × 30 lattices, are in com-
plete agreement with the previous DMRG study by Liu et al.
[23]; they provide us a good benchmark to start analyzing the
effect of introducing the next-nearest-neighbor hopping t ′.

When t ′ is turned on, we find that the FSP state region
starts growing and ρc is lowered, as can be seen in Fig. 2.
For example, when t ′ increases to 0.30, the critical value of
the electron density for which the FSP can be found moves
down to ρc = 0.62. This enhancement of the stability of the
FSP phase when including t ′ was also found using DMFT in
2D in [26], which reported that at t ′ = 0.1 the critical value of
the density is ρc = 0.705. For the same value of t ′, we obtain
ρc = 0.775. The difference in our results may be a signal
that ρc depends on the number of legs when approaching
the 2D limit for t ′ 
= 0 (unlike what happens for t ′ = 0.0).
To understand why t ′ stabilizes the FSP state, Park et al.
[26] solved the four-site plaquette with three electrons. They
showed that the existence of t ′ lowers the FSP state energy
more than the low-spin state energy because of the quantum
interference of different hole paths. As a consequence, the gap
between these two states increases with t ′.

It is noteworthy that, if the value of the next-nearest-
neighbor hopping is half of the hopping on the square lattice,
t ′ = 0.5, the FSP state survives for every value of electron
density; that is, ρc → 0 (see green triangles in Fig. 2). This
is a remarkable result because it connects the Nagaoka fer-
romagnetic phase (an exact result near half filling from the
infinite-U limit) with the FSP state found at low density with
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FIG. 4. Magnetization value at t ′ = 0.2 (top panel) and t ′ = 0.4
(bottom panel) as a function of ρ for several lattice sizes: 2 × 20
(purple squares), 2 × 30 (yellow diamonds), 4 × 10 (blue circles),
4 × 12 (green upward triangles), and 6 × 8 (orange downward
triangles).

relatively small U . The latter phase was studied by Taniguchi
et al. [31], among others, and they found this ferromagnetic
phase for a rather small U in the low-density limit around
t ′ � 0.5, where the Fermi energy is close to the Van Hove
singularity. They also showed that with increasing U (until
U = 5) the FSP phase is the ground state of the system for a
wider regime of values of t ′ and ρ.

When increasing t ′ above 0.5, the FSP state region starts
going back, giving in to the paramagnetic phase. This is a
consequence of the magnetic behavior of the system when
t ′ → ∞; in this case the ladder splits into two independent
chains where the ground state is a paramagnet [37]. Also,
for every value of t ′ 
= 0 we find intermediate phases with
interpolating ferromagnetic magnetization between the FSP
and paramagnetic regions, but we expect them to shrink and
disappear when more legs are added and closer to the 2D limit.
An important difference from the t ′ = 0.0 case is that there is
no checkerboard insulator from t ′ = 0.1 on. This also means
that there is no phase separation.

Given that the checkerboard insulator phase is absent even
at t ′ = 0.1, we decided to follow its evolution more closely.
Taking a fixed electron density ρ = 0.75, we made runs
varying t ′ at 0.01 intervals. In Fig. 3 we plot the results for
t ′ = 0.00, 0.05, and 0.06. Clearly, the four-plaquette structure
can be seen up until t ′

c = 0.05, but as soon as t ′ is increased,
this structure disappears, and the ferromagnetic magnetization
rises.

Regarding the validity of these results for longer ladders,
Fig. 4 shows that the results do not change upon adding more
rungs. The 2 × 20 lattice is already a good representation of
the two-leg thermodynamic limit for every value of t ′. The
previous discussion of the magnetization can be summarized
into the phase diagram shown in Fig. 5. The FSP phase is
shaded in green, with the green squares being the last points
for which we find this kind of state, coming down from the
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0.0 0.1 0.2 0.3 0.4 0.5
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0.8
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0.0 0.1 0.2 0.3 0.4 0.5
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FIG. 5. Phase diagram for the 2 × 20 lattice with open boundary
conditions as a function of the next-nearest-neighbor hopping t ′ and
electron density ρ. Green squares show the boundary of the fully spin
polarized ferromagnetic state, and blue circles indicate the boundary
of the paramagnetic state. The dark blue triangles represent the points
where the checkerboard insulator is found. Points are connected by
smooth spline fits.

condition of one electron less than half filling in Nagaoka’s
theorem. In blue we show the paramagnetic phase, with the
blue circles being the last points for which we find a para-
magnetic phase, with M = 0, when increasing the electron
density from zero. In both of these cases it is usually easy
to determine, by studying the dependence of the energy on
the value of Sz, if the ground state lies only on the Sz = 0
subspace or if it can be found in all subspaces up to Smax

z .
The blue triangles in line at ρ = 0.75 represent the points
of the phase diagram for which we find the checkerboard
insulator phase. In the middle of this phase and the FSP, we
shaded the area in which the phase separation exists. The
yellow region corresponds to the intermediate phases with
intermediate ferromagnetic magnetization. Closer to the FSP
they present clear ferromagnetic peaks in the spin structure
factor that evolve quickly into the paramagnetic state. Here,
the tendencies of the energy as a function of Sz make it more
complicated to identify the exact value of Smax

z and therefore
to analyze the properties of the ground state in this region.
As mentioned above, increasing t ′ above 0.5 causes the FSP
region to shrink again (and the paramagnetic one to grow).

With respect to the charge distribution, we find that both
the paramagnetic and the fully spin polarized ferromagnetic
phases show an almost homogeneous distribution. On the
other hand, the intermediate phases show a minor variation
of the charge distribution along the ladder which, however,
does not resemble that of a separation of phases where only
two very distinctive densities appear.

B. Four- and six-leg ladders

To shed some light on the 2D behavior of the system
we extended our calculations to four- and six-leg ladders.
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Leaning on our results for the two-leg ladders, we calculate
the magnetization value in 4 × 10, 4 × 12, and 6 × 8 lattices
around the transition points for all the same values of t ′ as
in the two-leg case to see how they scale. Also, we calculate
the spin structure factor and other correlations. Away from
the transition points the convergence of the results behaves
very well even for the bigger lattices. But close to transition,
the computational effort increases, and it becomes difficult to
determine precisely Smax

z of the ground state of the system.
This is the main reason why we had to limit the number of
rungs and legs used in our lattices. Previous studies already
showed that, even at t ′ = 0.0, the number of DMRG states
needed to obtain accurate results in big lattices is huge [23].

We show in Fig. 4 the magnetization value M for two ar-
bitrary values of next-nearest-neighbor hoppings t ′ = 0.2 (top
panel) and t ′ = 0.4 (bottom panel) and several lattice sizes.
From these results we can see the qualitative behavior remains
the same for all the lattices. For example, in the top panel
we can see that the critical value ρc seems to move a little
in comparison with the two-leg lattice, but we have roughly
the same critical density for the four- and six-leg lattices.
Also, it seems that the region corresponding to intermediate
phases shrinks as the FSP phase region grows, making the
transition to the paramagnetic phase more abrupt, also seen
in the bottom panel. We have observed that this behavior,
shown for the t ′ = 0.2 and t ′ = 0.4 cases, holds for almost
every hopping value below t ′ = 0.5, with t ′ = 0.0 being a
special case. At t ′ = 0.0, the checkerboard insulator prevails
and prevents the FSP state from taking over, and instead, the
intermediate phases become paramagnetic. On the other hand,
when t ′ = 0.5, there is already no place to move the critical
electron density down, so the ground state remains FSP for
all values of the electron densities below half filling. For
t ′ = 0.1, we find ρc = (0.715 ± 0.015), much closer to the
value ρc = 0.705 obtained with DMFT [26]. For t ′ = 0.0 both
methods also agree, as ρc = 0.8 in DMRG and ρc = 0.815
in DMFT. These similarities between our DMRG results and
DMFT seem to indicate that, around the phase transition,
the nonlocal physics are unimportant. Nonetheless, this could
be a mere coincidence, and more research is needed to eluci-
date the source of this agreement. We can then conclude that
the four- and six-leg lattices provide us enough information
about the scaling of the transition points to build the 2D phase
diagram of the system until t ′ = 0.5, at least up to a certain
small error.

Above t ′ = 0.5 the picture is completely different. We
found a more pronounced scaling of the critical densities
and intermediate phases that made it impossible for us to
extract valuable information. One possible reason for this to
happen has to do with the large-t ′ limit. While in the two-leg
ladders the t ′ → ∞ limit results in two isolated chains, in a 2D
system it results in two sets of independent square lattices. The
difference in these limits may be responsible for the behavior
above t ′ = 0.5. A more detailed study in wider ladders is
needed, and this is why we restrain our results to the region
below t ′ = 0.5.

In Fig. 6 we show, for the 4 × 10 lattice, several calcula-
tions of the spin structure factors obtained at t ′ = 0.0. In the
top left panel we can see the last density for which the ground
state of the system is FSP, ρ = 0.8. This phase is signaled by a

FIG. 6. Spin structure factor of the 4 × 10 lattice for t ′ = 0.0 and
several electron densities ρ: 0.8 (top left), 0.775 (top right), 0.75
(bottom left), and 0.725 (bottom right). The white square represents
the first Brillouin zone, and kx and ky are in units of π .

large peak centered at k = 0 with certain asymmetry given by
the lattice. In the bottom left panel we can see the signature of
the checkerboard insulator, ρ = 0.75. The structure factor is
composed of four peaks situated at k = (±π

2 ,±π
2 ) that arise

from the antiferromagnetic alternation of the plaquettes. Note
that, in this case, the ferromagnetic magnetization is zero and
S(k = 0) = 0 because the ground state exists only at Sz = 0.
In the top right panel we can see the phase separation at
ρ = 0.775, signaled by a combination of the surrounding spin
structure factors. It shows a low ferromagnetic peak and the
checkerboard insulator weakened four-peak structure. Finally,
in the bottom right panel we show the paramagnetic phase at
ρ = 0.725, where no clear peak can be seen. It is important
to be aware that, for this lattice size, all these states are one
electron away from each other. The density step is 1

40 = 0.025.
With all this gathered information, now we can compute

the full phase diagram (shown in Fig. 7) and compare it with
the two-leg case. We have decided to take the transition points
as the average of the ones in four- and six-leg ladders, with
error equal to the difference in these results. As we expected
before, the 2D phase diagram resembles the two-leg ladders
one, but with less area left for intermediate phases, especially
around t ′ = 0.1, and a certain growth of the FSP phase. In
contrast to t ′ = 0, the intermediate phases shrink, but they do
not disappear in the four- and six-leg ladders. For these lad-
ders, the intermediate phase is ordered ferromagnetically [the
peak in the structure factor at S(k = 0)], but its magnetization
is not saturated. The checkerboard insulator, even though we
clearly find it in the four-leg lattices (as can be seen in Fig. 6),
was much harder to find in the 6 × 8 lattice. We had to use
m = 9000 DMRG states and a small Zeeman field applied
to pin this order and check that the arising checkerboard
insulator is not an excited state. Given that in the four- and
six-leg lattices we observed that this phase vanishes when
t ′ ∼ 0.02 (much smaller than in the two-leg case), we conjec-
ture that the phase boundaries for the checkerboard insulator
phase in the 2D limit should be rather small (t ′

c ∼ 0.02 at
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FIG. 7. Two-dimensional phase diagram of the system based
upon results for four- and six-leg ladders. In green we show the FSP
phase, in blue we give the paramagnetic one, and in yellow we show
the intermediate region. The green squares and blue circles signal the
end points of the FSP and paramagnetic phases, respectively. Points
are connected by smooth spline fits.

most). This is in agreement with the small spin gap of the
checkerboard phase at t ′ = 0, about 10−3 t .

IV. CONCLUSIONS

We have used the density-matrix renormalization group to
study the phase diagram of the infinite-U Hubbard model
on square ladders with nearest- and next-nearest-neighbor
hopping amplitudes t and t ′, respectively, always in the ab-
sence of kinetic frustration. We have found that, for all ladder
sizes, the presence of a nonfrustrating next-nearest-neighbor
hopping amplitude stabilizes the fully spin polarized phase.
With increasing t ′, the fully spin polarized phase region grows
in the phase diagram until t ′ reaches a value of one half the

nearest-neighbor hopping amplitude. For this particular value
(t ′ = 0.5) the ground state of the system is always a fully
spin polarized state, regardless of the electron density chosen
below half filling. We have connected in the infinite-U limit
the fully spin polarized state from Nagaoka’s theorem (valid
for one hole over half filling) with the low-density ferromag-
net (also FSP) that arises due to the Van Hove singularity in
the bottom of the band. It would be interesting to further in-
vestigate the behavior of the single-particle spectral densities
in different phases, in particular for t ′ = 0.5 in the case of
Nagaoka’s theorem and in the low-density regime, to unwrap
the transition between different types of ferromagnetism. For
t ′ > 0.5 we need to explore wider ladders to uncover the
2D behavior, but our results indicate that beyond this point,
the fully spin polarized phase region starts to shrink as t ′
increases.

With regards to the intermediate phases, we conjecture that
the previously found checkerboard insulator phase survives
only for small values of t ′ in the thermodynamic limit. This
may be a consequence of the proximity to the fully spin po-
larized state. The checkerboard insulator phase can exist only
at ρ = 0.75, where one hole lives in each four-site plaquette.
But ρc quickly goes below 0.75 when t ′ is included, and
the fully spin polarized state prevails over the checkerboard
insulator. Moving away from the t ′ = 0 case, the intermediate
phases are less interesting and have generally a ferromagnetic
behavior which seems to continuously connect the FSP phase
with the paramagnetic phase. In this region it is more diffi-
cult to analyze the spin and charge behaviors, so we cannot
ensure the size of this region or characterize the nature of the
transition in the thermodynamic limit.

Also, we expect these results to be of interest and to
contribute to the ongoing research in optical lattices, which
is where these models with large repulsions within particles
can be experimentally realized.
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