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Dynamical splitting of cubic crystal field levels in rare-earth cage compounds
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The crystalline electric field (CEF) influence is usually described by considering an ideally symmetrical
rare-earth site. In the case of cage compounds, ample excursions of the rare earth inside the cage require an
adapted CEF description. A corrective, position-dependent, CEF term accounts for the deviation from the perfect
symmetry. In the paramagnetic range, a CEF level with orbital degeneracy thus acquires a width reflecting the
rare-earth spatial distribution. In the case, frequent in cubic systems, of an orbitally degenerate CEF ground
state at the center, this width introduces an additional energy scale, influential at low temperature. A spherical
simplification allows to identify the major consequences of a cage-split ground multiplet: a Schottky-type
anomaly appears in the specific heat with associated reduction of the magnetic entropy and alteration of the
magnetic properties. Concomitantly, a centrifugal Jahn-Teller effect develops that expands the distribution of
the magnetic ion and softens the rattling phonons. These effects are confronted with anomalous paramagnetic
properties of rare-earth cage compounds, notably rare-earth-filled skutterudites and hexaborides.
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I. INTRODUCTION

Impulsed by an interest in thermoelectric applications, the
investigation of metallic cage compounds has soared during
the last decade. In these systems, atoms are enclosed in
oversized cages, allowing relatively large excursions from
their average positions. This “rattling” of the guest is sup-
posed to reduce the thermal conductivity, thus improving the
thermoelectric efficiency of these metals. In some crystallo-
graphic structures, the cage can accommodate a rare-earth
ion, giving rise to specific magnetic properties. The most in-
vestigated rare-earth cage compounds are filled skutterudites,
that crystallize according to the LaFe4P12-type structure [1].
These compounds display a variety of intriguing features,
as the heavy fermion and superconductor PrOs4Sb12 [2], or
the metal-insulator transition (MI) in PrRu4P12 [3], the non-
magnetic ordering of PrFe4P12 [4], etc. These unconventional
behaviors echo those of an extensively investigated, but still
elusive, series of rare-earth cage compounds: the rare-earth
hexaborides. Among them, the most enigmatic CeB6 features
a nonconventional ordering [5,6].

To understand the properties of rare-earth compounds,
accounting for the effect of the crystalline electric field (CEF)
is essential. The CEF reflects the anisotropic environment of
the 4 f ion and lifts, at least partly, the orbital degeneracy of
the 4 f shell. As a result, the 2J + 1 degenerate ground-state
multiplet is decomposed to form the CEF scheme, according
to the point symmetries of the rare-earth site: this is a no-
torious and early success in the application of group theory
to quantum mechanics [7]. In the temperature range where
magnetic phenomena occur, this CEF scheme is considered as
a stable feature, used as a starting point for any microscopic
description of the paramagnetic or ordering properties. In
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rare-earth intermetallic compounds, the most effective means,
for the experimental determination of the CEF scheme, is neu-
tron spectroscopy. However, in many instances of rare-earth
cage compounds, difficulties emerge at the stage of the neu-
tron spectroscopy investigation, notably for rare-earth-filled
skutterudites. For instance, the inelastic spectra of PrRu4P12

are inconsistent with the Th symmetry of the Pr site below the
MI transition, displaying more CEF transitions than allowed,
and show a spectacular broadening of these excitations above
[3]. In PrFe4P12, well-defined CEF excitations appear only
in the ordered state [8], while in PrOs4P12, they vanish very
rapidly with increasing the temperature [9]. For some light
rare-earth hexaborides, neutron diffraction and Raman scat-
tering investigations where successfully used for determining
the CEF scheme [10,11]. In CeB6, PrB6, and NdB6, the CEF
ground states are well separated from the first excited ones and
identified as non-Kramers, i.e., carrying an orbital degeneracy
larger than the minimum reachable under an electrostatic
influence. Their respective degeneracies are 4 (�8), 3 (�5),
and 4 (�8). However, in all three cases, the low-temperature
specific-heat measurements yield values of the paramagnetic
entropy much lower than expected from the degeneracy of
these CEF ground states [12–15]. In the case of CeB6, a value
consistent with the �8 quadruplet is reached for temperatures
one order of magnitude higher than the ordering one. This
is possibly related to a Raman scattering observation: at low
temperature, the cubic CEF quadruplet ground state spreads
over an energy range of about 30 K in CeB6 [10,16]. Similar
entropy anomalies are observed as well in rare-earth-filled
skutterudites [17–19]. These recurrent inconsistencies force
to reconsider the effect of the CEF in the cage context. The
group theory approach relies on a system with ideal point
symmetry, whereas physical systems are necessarily imperfect
in this regard, due, at least, to thermal excitations and zero-
point fluctuations. This issue should be most severe in cage
compounds. Indeed, how relevant is an approach based on the
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FIG. 1. Schematic illustrating the effect, inside a high-symmetry
cage, of an off-center position for a rare-earth ion (R3+) with a
non-Kramers CEF ground level. Outside the cage center, the non-
Kramers level is split (energy scale E4 f ). At low temperature, the off-
center position and its altered 4 f electrons distribution (schematized
densities) are statistically favored.

point symmetries at the cage center if the magnetic atom can
substantially deviate from it? Moreover, in the here considered
systems, the point symmetry at the cage center is high. At the
center, the CEF ground state is thus likely to display an excess
of orbital degeneracy. Such orbital degeneracies are known to
cause Jahn-Teller instabilities: at low temperature, the system
tends to spontaneously reduce its symmetry, simultaneously
lifting the orbital degeneracy and reducing the electrostatic
energy. Many instances of Jahn-Teller effect are found in
systems where 3d ions occupy sites of octahedral symmetry,
such as in perovskite and spinel structures, in which they
cause a distortion of the octahedra and, collectively, of the
crystal [20,21]. This cooperative kind of the Jahn-Teller ef-
fect is also found in rare-earth compounds [22], notably in
high-symmetry insulators. These orbitally driven structural
transitions are described considering a balance between the
4 f electrostatic energy and the elastic energy of the lattice.
In crystals where high-symmetry cages accommodate loosely
bound magnetic ions, the symmetry lowering does not require
a distortion of the cage and, even less, of the crystal: it can
be simply achieved with an offset magnetic ion (see Fig. 1).
Accordingly, one can expect a Jahn-Teller effect to develop
more easily in rare-earth cage systems than in conventional
crystallographic structures. The work presented here attempts
at answering these questions related to the specific CEF
situation of cubic cage systems. The analysis is based on
consideration of the lowest-order correction to the CEF cubic
Hamiltonian for an offset ion. This results in a width for
non-Kramers energy levels and in a specific, temperature-
dependent, 4 f electronic term in the cage potential well.

II. MODEL FOR AN ENCAGED 4 f ION

A. Definition of a cage system

As a preliminary, an objective definition of the concept of
rare-earth cage compound is required. In these systems, the

crystal structure is supposed to leave some latitude for the
displacement of the guest ion inside the cage. One should
then expect large-amplitude vibrational modes (the so-called
rattling), weakly coupled with the rest of the crystal. In
order to identify a system as relevant to a cage-compound
approach, beyond an analysis based on comparisons involving
ionic radii and interatomic distances, one can define tangible
experimental criteria: the Debye-Waller factor, the phonon
dispersion curves, which are below examined.

1. Debye-Waller factor

As regards the displacement latitude, one direct informa-
tion comes from the isotropic mean-square displacement of
the rare earth Uiso, involved in the Debye-Waller factor. This
information can be derived from neutron or x-ray diffraction.
Some data can be found in the literature for the RB6 [23,24]
and filled skutterudites from the antimonide series: RFe4Sb12

[25] and ROs4Sb12 [26,27]. At room temperature, Uiso is

about 0.005 Å
2

in light rare-earth hexaborides and between

0.02 and 0.04 Å
2

in the filled skutterudites, which yields a
room-temperature root-mean-square (rms) amplitude of the
displacement σ of about 0.07 Å in the RB6 and ranging
between 0.1 and 0.2 Å for the filled skutterudites. In both
series, the values Uiso for the rare-earth guest are typically one
order of magnitude larger than the mean-square displacements
for atoms from the cage. This gives a quantitative credit to the
rattling picture in these series.

2. Phonon dispersion

In case of strictly local modes of the guests inside their
cages, a flat, low-energy branch should appear when inves-
tigating the phonon dispersion. Actually, a large moving and
coupled mass, as that of the rare earth, cannot leave unaffected
the cage and lattice. The consequences of its movement can
be easily derived using a classical, harmonic model: a linear
chain of springs and masses [28]. In the upper part of Fig. 2,
a variant of linear chain model is detailed where, in addition
to the springs linking the guest (mass m) to the cage (stiffness
k0), and the cage to its neighbors (stiffness K0), a spring of
stiffness K1 links the two halves (masses M/2) of the cage.
This allows to account for the elasticity of the cages in the
description of a dispersion curve. The detail of the derivation
of the dispersion relations is reported in Appendix A. In
the graphs of Fig. 2, this model is confronted with inelastic
neutron scattering data showing the fourfold axis longitudinal
modes of LaB6 [29]. Large values for the stiffness K1, with
respect to K0, are required to reproduce the physiognomy of
the experimental data, which is well described in the limit of
infinitely rigid cages (K1 → ∞ fit in Fig. 2). Note that the only
adjusted parameters are the two frequencies ω0 = √

2k0/m
and �0 = √

4K0/m, the mass ratio m/M being fixed from
the atomic masses of La and 99% 11B enriched boron. It
is thus shown that, for describing the two lowest dispersion
curves of LaB6, one can safely consider rigid cages. This
should generalize to the hole series of the hexaborides as,
for instance, the experimental data [30] for CeB6 are very
similar to those for LaB6. These dispersion curves can be
interpreted as the anticrossing between the low-energy, flat
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FIG. 2. Upper part, a classical chain of springs (stiffnesses k0,
K0) and masses (m for the guest and M for the cage) for describing
longitudinal modes in cage systems, including a cage stiffness K1.
Lower part, the inelastic neutron scattering data for LaB6, from
Ref. [29], confronted with computed dispersions curves (full lines)
in the limit of perfectly rigid cages (see Appendix A). The dashed
lines represent the underlying flat local mode of the guest, at fre-
quency ω0, and acoustic branch for empty cages with maximum
frequency �0.

branch of the guest vibration at frequency ω0 and the acoustic
branch for a stiff lattice of empty cages with top frequency
�0 (dotted lines in Fig. 2). The gap that opens has a width
directly related to the ratio m/M between the guest and cage
masses. For the light boron cages in the hexaborides, this ratio
is large as is the gap [29], whereas for filled skutterudites, the
much heavier cages result in a smaller separation [31]. The
experimental data for filled skutterudites are scarce, by lack
of large single crystals, but for those available (see curves in
Ref. [31]), the lowest branches reproduce the pattern observed
for the hexaborides: an anticrossing between a low-energy
“rattling” branch and the acoustic branch for a lattice of rigid
cages. Using the harmonic approximation for an individual
oscillator, the amplitude of the guest movement within the
vibrational ground state is directly related to the level sepa-
ration �EV = h̄ω0. Along a given axis, the low-temperature
rms deviation of the guest reads as σ = h̄/

√
2m�EV . As

shown in Fig. 2, a value for �EV can be obtained by looking
at the flattened end of the acoustic dispersion branch. In
filled skutterudites, this energy ranges between 4 and 9 meV

[31–33], while it is found slightly above 10 meV in rare-earth
hexaborides (≈13 meV in LaB6 and CeB6 [29,30], ≈11 meV
in PrB6 [34]). For these energies and an average lanthanide
mass, the rms amplitude σ ranges between 0.04 and 0.07 Å.
Unsurprisingly, the low-temperature values are smaller than
the room-temperature estimates derived from the diffraction
data. Apart from this temperature effect, the spectroscopic and
Debye-Waller investigations point to the same order of magni-
tude for the displacement inside the cages of skutterudites and
hexaborides, of about 1

10 Å. This analysis shows that the rare-
earth hexaborides and filled skutterudites share specific traits
that define them as magnetic cage materials: large excursions
of the guest inside the cage, with an amplitude of about 1

10 Å,
materializing in low-frequency vibrations of the rare earth. a
close crystallographic environment of the rare earth, the cage,
that can be viewed as essentially rigid when dealing with
low-energy phenomena.

B. Cage crystalline electric field

The above analysis allows to consider the guest as mobile
inside a rigid cage, with an excursion magnitude of a about
1

10 Å. This is smaller than a rare-earth radius, which is in
excess of 1 Å, but of the same magnitude as a typical 4 f
shell radius. In relative terms, the movement of the 4 f shell
with respect to its cage environment is substantial: a priori,
the CEF difference between a centered and offset position of
the 4 f shell cannot be neglected.

1. Off-center crystal field

In conventional compounds, the CEF is formalized by
considering the point symmetry at the average position of
the rare earth, that here identifies with the cage center. The
cage center has the symmetries of a cubic point group:
Th in case of a filled skutterudite and Oh for a rare-earth
hexaboride. The expression for the center CEF Hamiltonian
HCEF0 , describing the action of the CEF on the rare-earth
ground-state J multiplet strictly reflects the point symmetry
of the rare-earth site [35,36]. In these high symmetries, only
fourth- and sixth-order electric multipoles develop on the
4 f shell, but no quadrupoles: a degeneracy, larger than the
Kramers minimum, is preserved for some of the CEF levels
(Fig. 1, left side). The rare-earth ion being mobile, out of
the cage center the symmetry of its environment is drastically
reduced (right side of Fig. 1). The CEF acquires a dynamic
character that, in the here considered rigid cage environment,
is entirely due to the rare-earth movement. Considering the
five orders of magnitude difference between the electron and
rare-earth masses, it is the case to use a Born-Oppenheimer
approximation, wherein the electronic 4 f wave functions
continuously adapt to the position of the slowly moving rare-
earth ion. Local CEF stationary 4 f states, associated with a
corrected Hamiltonian, are then a good approximation. This
is accounted for by writing a position-dependent, static, CEF
Hamiltonian HCEF(r), where, in addition to the main central
term HCEF0 , a corrective off-center HCEFd is introduced:

HCEF(r) = HCEF0 + HCEFd (r). (1)
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The continuous symmetry lowering, associated with the
change in the position r of the rare earth, is reminiscent
of the treatment of magnetoelastic phenomena in rare-earth
cubic compounds [37]: here, instead of being modulated by
a strain, the corrective terms in the CEF Hamiltonian have
to reflect the excursion out of the cage center. In both cases,
the main correction is the interference in the Hamiltonian of
second-order multipolar terms. This implies the emergence
4 f electric quadrupoles and the splitting of the non-Kramers
CEF levels. The corrective HCEFd term has to develop with
the distance r to the cage center. Restricting to the lowest
order, the correction is quadratic both in the coordinates of
the ion and in those, relative, of the 4 f electrons. It represents
an energy term that has to be invariant under the symmetries
of the rare-earth site. This imposes to couple a particular
quadrupolar component with a combination of the r coordi-
nates that has identical transformation properties. Moreover,
for each quadrupolar irreducible representation, an individual
coupling constant has to be introduced. According to these
principles, in the case of a cubic symmetry at the cage center,
the crystal field correction has necessarily the form

HCEFd (r) = −Dγ
[
(3z2 − r2)O0

2 + 3(x2 − y2)O2
2

]
− Dε[(xy)Pxy + (yz)Pyz + (zx)Pzx], (2)

where x, y, and z are the components, along the cubic axes,
of the displacement r of the rare-earth nucleus from the center
of the cage. {O0

2, O2
2} and {Pxy, Pyz, Pzx} are the quadrupolar

operators transforming, respectively, as the γ (�3) and ε (�5)
cubic irreducible representations [38]. In the J manifold of
the 4 f ion, they are conveniently written in terms of Stevens
equivalents [39]. Dγ and Dε are constants that, within a
representation, define the magnitude of the coupling of the 4 f
quadrupoles with the environment. In case of a displacement
along a fourfold axis, only Dγ is active, whereas along a
threefold axis, it is Dε.

2. Broadening of the non-Kramers levels

Inside the cage, as formalized by Eq. (2), the CEF scheme
is no longer a stable feature of the rare earth, but depends on
its position. The usual CEF scheme picture, with infinitely
sharp energy levels, has to be abandoned: the non-Kramers
cubic levels are broadened inside the cage, with an energy
distribution that depends on the spatial distribution of the rare
earth. At low temperature, this distribution is characteristic
of the cage oscillator ground state and, as the temperature is
increased, thermally excited vibrations should further spread
it. In systems with large displacement coupling constants
(Dγ , Dε ) and small CEF splitting at the cage center, this
broadening of the CEF levels might be competitive with their
separation. This could explain anomalies reported in the neu-
tron spectroscopy investigation of some filled skutterudites,
where CEF excitations are absent [40], even at low tem-
perature, or vanish rapidly while increasing the temperature
[3,8,9]. The thermal broadening of non-Kramers levels is cer-
tainly not exclusive to rare-earth cage compounds. However,
in rare-earth systems with more common crystallographic
structures, a substantial deviation from the high symmetry
of the rare-earth site requires short wave distortions of its
environment. This would involve high-energy acoustic or

optical phonons that are influential at temperatures typically
competitive with the CEF levels spacing, above 100 K. At
these temperatures, CEF effects are drastically reduced and
there would be no point in considering the CEF scheme broad-
ening. Reciprocally, at lower temperatures, the broadening is
negligible and it is usually legitimate to consider the ideal
symmetry of the rare-earth site.

3. Effect of a non-Kramers ground state
on the paramagnetic properties

For temperatures lower than the maximum splitting of the
ground state inside the cage, which defines a characteristic
energy scale, the properties will reflect the uneven population
of the local CEF states. As the temperature is reduced, the
state with lowest energy of the split multiplet is favored
and the average magnetic entropy accordingly reduced, with
consequences on the specific heat and the magnetic response
(susceptibility). In this temperature range, an analysis based
on the central CEF scheme is inappropriate for describing
the experimental value of the magnetic entropy, magnetic
susceptibility, and other CEF determined properties.

4. Jahn-Teller mechanism

According to Eq. (2), in case of a non-Kramers ground
state, a splitting of this CEF multiplet develops quadratically
with the distance r to the center. This means that a lower-
energy electrostatic configuration can be achieved by moving
away from the center. To be effective, this energy reduction
also requires temperatures that reduce the statistical weight of
the configurations with higher electrostatic energy: the energy
scale associated with the cage splitting of the CEF ground
state is also at play. This is the mechanism illustrated in
Fig. 1: as the temperature is decreased, a centrifugal kind of
Jahn-Teller effect can be expected to develop in systems with
a central non-Kramers CEF ground state.

C. Cage potential

It appears that the distribution of the rare earth inside
the cage is of critical influence on the CEF related prop-
erties, particularly in case of a non-Kramers, center ground
state. The phonon dispersion analysis of Sec. II A 2 shows
that one can consider the rare earth as exclusively coupled
with a rigid cage, via the springs k0 in Fig. 2. This means
that the interaction between the cage and its guest can be
treated separately, ignoring the rest of the crystal. In quantum
mechanics, such an interaction is described by introducing
a time-independent cage potential for the guest. Solving the
Schrödinger equation for this potential well yields the sought
after rare-earth distribution.

1. Nonmagnetic potential well

The confinement of the rare earth in the cage is not of mag-
netic origin. It is here formalized by introducing a potential
well V0(r), where r refers to the displacement of the rare-
earth nucleus from the cage center. The systems of interest
are metals, where the cage framework is built from strongly
bound atoms. Those, in contrast with the rare-earth ion, have
small motion latitude, the cage being considered here as
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perfectly rigid (see discussion in Sec. II A 2). As the rare-earth
ion moves out of the center, its outer electrons reach those
of the cage atoms: strongly repulsive forces develop, here
simplified by considering an infinite barrier at the limits of the
cage. This is not less realistic than a harmonic approximation
and is of great practical interest when solving numerically
the Schrödinger equation (see Appendix B). The actual shape
of the barrier shares, at minimum, the symmetry elements of
the center point group and may be rather complex. As only a
few, low-energy vibration levels will be considered, a faithful
description of the barrier is unnecessary. Instead, various
degrees of approximation can be used, the most tractable ones
being the cube and the sphere. Inside the cage, the bottom
of the potential well cannot be flat, due to the electrostatic
interaction between the rare-earth ion and charges from the
neighboring atoms, bonds, and conduction electrons. These
competing contributions may result in a complex shape for the
bottom potential. However, in the cage systems we consider,
the maximum deviation of the guest from the center is about
one tenth of a rare-earth ionic radius. This is not large with
respect to the crystallographic distances and a lowest-order
description in the distance r from the origin might be suf-
ficient. Considering the central cubic point symmetry, this
lowest order is necessarily isotropic, consisting in a simple
quadratic term. To complement the infinite barrier, inside the
cage the nonmagnetic potential is described as V0(r) = α r2,
where α is a constant, a priori positive in a metal, accounting
for the different electrostatic contributions. The V0(r) term
should have negligible temperature dependence in the tem-
perature range of interest, below 100 K. In the following, it is
considered as independent from the temperature.

2. CEF contribution to the potential well

Due to the degeneracy of a non-Kramers CEF ground
state, the 4 f electronic distribution can adjust to changes in
its electrostatic environment. Here, the change is the conse-
quence of the movement of the ion inside the cage and will
contribute to the cage potential well with a specific 4 f term.
This is formalized by the Hamiltonian term of Eq. (2), that
has to be translated into an extra mean-field potential term
V4 f (r, T ). In the original Born-Oppenheimer approximation,
this question is treated adiabatically, considering only the
lowest electronic energy level as the potential term. In the
cage context, this lowest energy is not well separated from
the excited electronic levels: due to the degenerate center CEF
ground state, the energy separation goes to zero at the origin,
thus realizing a conical intersection. One has then to face
the difficulties of a nonadiabatic approach. One simplification
comes from the fact that the rare-earth ion and its cage are
not an isolated molecule, but belong to a crystal, moreover a
metallic one. Then, even if the movement of the rare earth is
so slow that the dynamic mixing of the local CEF states can
be neglected, one has to consider the perturbing effect of the
environment. In particular, frequent collisions should occur
with conduction electrons, inducing transitions between the
local CEF states. As a result, the electrostatic forces exerted
on the rare-earth ion and associated potential term will rapidly
fluctuate. The fast electronic fluctuations will have no effect
on the massive rare earth which will be sensitive to an average

that represents the V4 f (r, T ) mean field. For an extremely slow
rare-earth movement, the statistics of the local 4 f states will
approach a Boltzmann distribution defined by the temperature
of the crystal. At constant temperature T , the additional work
required to move the rare-earth ion, because of its evolutive 4 f
aspherical distribution, equals the variation of free energy as-
sociated with the 4 f shell. In this nonadiabatic approximation,
at a given temperature T , the magnetic part of the potential
identifies with the local 4 f free energy:

V4 f (r, T ) = −kB T ln
Z (r, T )

2J + 1
, (3)

where Z (r, T ) is a local partition function for the 4 f electronic
states at a point r and temperature T . The division by 2J + 1
is required in order to have a zero V4 f (r, T ) at r = 0. In
contrast with V0, the V4 f potential is clearly temperature
dependent. Indeed, at temperatures high with respect to the
splitting inside the cage, all local CEF states are equally
populated and the V4 f potential term flattens inside the cage.
Conversely, at low temperature, V4 f (r) will follow the energy
dependence of the lowest CEF level, decreasing quadratically
with respect to the components of r.

III. SPHERICAL PROOF OF CONCEPT

In principle, the discussion in the previous section allows
to define the total cage potential at a given temperature:

V (r, T ) = V0(r) + V4 f (r, T ). (4)

From there, describing the movement of the enclosed rare-
earth ion requires to solve the time-independent Schrödinger
equation for the mass m of the rare-earth ion inside the
potential well described by V (r, T ). To describe the properties
of a specific rare-earth system, one still has to detail the
V0(r) term, which requires to choose an approximant for the
cage shape, defining the infinite barrier in V0(r), and select a
value for the constant α. As regards the magnetic part of the
potential well, the knowledge of the cage center CEF scheme
is required or, at least, for a low-temperature description, an
identification of the CEF ground state. Then, one has to select
values for the Dγ and Dε displacement-quadrupole couplings
constants, involved in Eq. (2). After that, there remains the
technical difficulty of integrating the Schrödinger equation for
the possibly complex potential well.

Here, our purpose is not to investigate a specific com-
pound, but to identify the physical consequences of a position-
dependent CEF in the cage. This can be achieved using a
further simplified model, provided it retains these essential
features: the magnetic ion is trapped inside a cage, with high
point symmetry at the center; the electronic ground state at
the cage center is degenerate; the degenerate electronic states
are split as the ion moves out of the center. By reducing
the physical system to a spherical cage enclosing a rare-
earth ion, the first condition is met. Moreover, as the inner
electric field produced by a uniformly charged sphere cancels,
the 4 f electronic ground state should retain the full 2J + 1
multiplet degeneracy. In order to lift the orbital degeneracy
out of the cage center, one has to consider an additional,
spherical charge density inside the cage. In a metal, this charge
would correspond to that of the conduction electrons. In order
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FIG. 3. Spherical model for a rare-earth ion with excursion lat-
itude a inside a rigid cage. The lower part shows the nonmagnetic
potential V0(r) consisting in a quadratic bottom and infinite barrier at
r = a. The upper part shows the splitting of the rare-earth multiplet
(here exemplified by the Pr3+ ion, J = 4), that yields a magnetic po-
tential V4 f (r, T ), at a distance r from the center along the quantization
z axis. Here, the lowest energy is achieved for the doublet Jz = ±4
with “equatorial” distribution of the 4 f electrons and β decrease in
the electrostatic energy at r = a. The energy scales for the splitting
and V0(r) are independent.

to introduce temperature-dependent effects, the cage and its
guest also need to be coupled with a thermostat at T . This is
also a role that can be deferred to the conduction electrons.

A. Spherical potential well

The spherical simplification reduces the nonmagnetic V0(r)
potential to a form consisting in (see Fig. 3, lower part) an in-
finite spherical barrier at radius a, a restoring force, restricted
to a quadratic term in the potential for r < a: V0(r) = α r2,
where α is positive. The radius a of the cage and the mass m
of the guest define the practical units for length a. Instead of
using r, the position in the cage is below referred to by ρ =
r/a, in a unit; energy e.u. = h̄2

2ma2 , by reference to the energy
levels of an infinite spherical well with radius a. The V4 f (r, T )
term reflects the electrostatic interactions between the 4 f
shell and the conduction electrons. In the present spherical
simplification, it should not reflect the quadrupolar anisotropy
of Eq. (2), that arises in cubic symmetry for independent Dγ

and Dε coupling constants. Taking the quantization z axis
along the displacement direction, the isotropic reduction of
the Hamiltonian term of Eq. (2) reads as

HCEFd (ρ) = −D ρ2 O0
2 = −D ρ2

[
3J2

z − J (J + 1)
]
, (5)

where D = 2 Dγ a2 = 24 Dεa2.

This Hamiltonian describes the splitting of the J multiplet
outside the cage center (see Fig. 3, upper part). The eigenstates
coincide with the |J, Jz〉 states, the ones with opposite Jz

projections being degenerate. Depending on the sign of D,
the local CEF ground state at ρ will either correspond to
the maximum projection doublet Jz = ±J or to the minimum,
Jz = 0 singlet, or Jz = ± 1

2 doublet. Following Stevens equiv-
alent operators’ method [39], the 4 f electrons’ quadrupolar
component along the displacement axis Qzz = 〈3z2 − r2〉 is
directly related to the Jz projection:

Qzz = αJ
〈
R2

4 f

〉〈
3J2

z − J (J + 1)
〉
, (6)

where αJ is the Stevens second-order constant and 〈R4 f
2〉

the second moment for the 4 f radial wave function of the
considered rare earth. From Eq. (5), it appears that the energy
extrema correspond to an equatorial or polar distribution of
the 4 f electrons along the displacement axis. To identify
the configuration of lowest energy, more detail about the
conduction electrons density is required. If a net excess of
negative charge lies well inside the average 4 f radius, reduced
to a central negative charge, a simple electrostatic calculation
shows that an equatorial distribution of the 4 f electrons is
favored. This means that the coupling constant D has to be
negative for αJ positive (which occurs only for the heaviest
tripositive rare earth) and, respectively positive, for αJ nega-
tive (which is the case for most tripositive rare-earth ions). In
the following, it is assumed that the equatorial configuration
is of the lowest energy, as represented on Fig. 3. For a given
value of D, T , and ρ, the local partition function Z (ρ, T ) can
be computed, then the potential term, according to Eq. (3).
Once the spherical potential V (ρ, T ) is defined, one can turn
to solving the time-independent Schrödinger equation for the
enclosed nucleus at a given temperature T . The angular parts
of the eigenfunctions are the spherical harmonics Y m

l (θ, ϕ),
whereas the radial part Rn,l (ρ) and energies En,l require solv-
ing a differential equation specific to the considered potential.
Except for very specific l values and potential shapes, one is
forced to resort to a numerical treatment (see Appendix B).
In the following, the solutions to the Schrödinger equation
are labeled using the usual atomic notations n[l], the sorted
sequence of the levels being 1s, 2p, 2d , etc. In all physically
relevant cases, this energy sequence is maintained, with a 1s
vibration ground state.

B. Thermodynamic and magnetic consequences

1. Energy scales

In the hypothesis of a conduction electron’s density fa-
voring an equatorial distribution of the 4 f electrons around
the displacement axis, the lowest energy corresponds to the
O0

2 value Q0 = 2J2 − J , for αJ negative (doublet, Jz = ±J).
For αJ positive, Q0 = −J (J + 1) for an integer J (singlet,
Jz = 0), or Q0 = 3/4 − J (J + 1) for a half-integer J (doublet,
Jz = ±1/2). One can introduce the constant

β = DQ0 (7)

that equals the decrease in energy of the lowest 4 f level
when the rare earth has maximum deviation from the center
(see Fig. 3). As the temperature approaches the range of β,
the local probabilities of occupation will start to segregate
between the 4 f levels. This has necessarily an impact on the
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thermodynamic and magnetic properties which acquire a spe-
cific temperature dependence for T lower than β. Estimating
the order of magnitude of β is crucial in order to decide
wether it interferes with the energy scale of the vibrations,
represented by the separation �EV of the lowest vibration
levels. To this regard, the only quantitative experimental
indication comes from the example of CeB6. CeB6 has a
well-isolated CEF �8 quadruplet ground state, separated by
�ECEF = 46 meV from the excited �7 doublet [10]. Actually,
�ECEF is temperature dependent, showing an increase of
1.24 meV in the Raman CEF excitation [10] when cooling
down from 300 to 4 K. Ascribing this to the average lowering
of the cage split �8 level (the �7 doublet cannot be split), the
magnitude of the β equivalent in the CeB6 case should be
about 2 meV. As regards the energy scale of the vibration, for
rare-earth hexaborides, experiments show that �EV is slightly
above 13 meV for LaB6 (see Fig. 2). The CeB6 example is
thus representative of this energy scale’s hierarchy:

β < �EV < �ECEF.

This quantitative examination of CeB6 yields a 15% estimate
for the ratio between β and �EV . In this case, the effect
of the splitting of the central ground-state multiplet will
manifest itself at temperatures much lower than the �EV

vibration energy scale. This allows a further simplification,
wherein the only considered cage distribution is that of the
vibrational ground state. The below spherical illustration, with
the praseodymium example, matches with the energy scales
of CeB6: it consists in a well-isolated, orbitally degenerate
electronic ground state, with a β cage splitting significantly
smaller than the �EV separation of the vibration levels.
Beyond the CeB6 example, the other rare-earth hexaborides
PrB6 and NdB6, for which the CEF scheme is well determined
[11], also have a well-isolated non-Kramers CEF ground
state. A hierarchy of energy scales, similar to the CeB6 case,
is likely to apply. More contrasty is the situation of filled
skutterudites. The anomalies, possibly related to the CEF,
reported in their paramagnetic range, mostly occur at low
temperature, typically below 30 K. This is lower than the
vibration energy scale �EV that is inside the 50–100 K range,
thus agreeing with the CeB6 example as regards the β < �EV

condition. However, as regards the amplitude of the CEF level
spacing, all situations, with small or large �ECEF with respect
to the other energy scales, can be found in these series. The
analogy with the below spherical illustration has then to be
judged on a case-by-case basis. As regards the calculation of
macroscopic observables such as the internal energy, entropy,
magnetic susceptibility, etc., note that the hypothesis of a local
Boltzmann distribution (introduced in Sec. II C 2 for comput-
ing the magnetic contribution to the cage potential well) is not
required. The measured system contains an extremely large
number of equivalent cages which, considered as independent,
realize a large ensemble for which a Boltzmann distribution is
certainly applicable. As shown below in Sec. III C, in relative
terms, the magnetic effect on the potential is small.

2. Praseodymium example

At a site of cubic symmetry, the CEF ground state of
an ion with integer value of J can be onefold, twofold, or
threefold degenerate [36]. In case of a half-integer J , the

ground state can be twofold or fourfold degenerate. The here
relevant cubic CEF ground states are non-Kramers, i.e., carry
an excess of orbital degeneracy. In case of an integer values of
J, they are thus twofold or threefold degenerate and fourfold
degenerate for a half-integer J . If, instead of a pseudospin,
one considers a real rare-earth ion inside the spherical cage,
the central 2J + 1 degeneracy is necessarily higher than that
of a cubic, non-Kramers CEF ground state. Nevertheless, for
the sake of a quantitative illustration, we arbitrarily select the
example of a J = 4 multiplet that corresponds to the ground
multiplet of a Pr3+ ion (ninefold degenerate at the center). As
the second-order Stevens coefficient αJ is negative for Pr3+,
an equatorial distribution of the 4 f electrons corresponds to
a positive 〈O0

2〉. This means that the local lowest-energy level
is the Jz = ±4 doublet and that the zero-temperature limit of
〈O0

2〉 is Q0 = 28 (see Fig. 3). Moreover, to get the minimum
energy for this 4 f distribution, the D constant in Eq. (5) has
to be positive. Then, one has to choose a value for D. For the
most simple, flat bottom, spherical well, the 1s-2p separation
is 10.33 e.u., which means that a simple value β = 2 e.u.

agrees with the order of magnitude derived from the CeB6

example. In order to have β = 2 e.u. for a Pr3+ guest, one has
D = β/Q0 = 1/14 e.u.

3. Calculation and results

Another required parameter for the calculation is α, that
defines the quadratic bottom for the nonmagnetic potential
V0(r). There is no experimental data that could help estimate
the magnitude of α. Two values, 0 for a flat bottom and
5 e.u. for a pronounced harmonic bottom, relatively to the
1s-2p separation, are used in the following calculations. Once
the potential is defined at a given temperature T , solving
the radial Schrödinger equation (see Appendix B) yields the
radial wave function R1,0(ρ). The 4 f partition function at
ρ allows to define the local values for the internal energy
U4 f (T, ρ), entropy S4 f (T, ρ), and specific heat CV4 f (T, ρ).
The averaged values U4 f (T ), S4 f (T, ), and CV4 f (T, ρ), for the
1s state are then obtained by numerical integration over the
radial distribution. For instance, in the case of U4 f (T ),

U4 f (T ) =
∫ 1

0
4πρ2 |R1,0(ρ)|2 U4 f (T, ρ) dρ. (8)

Figure 4 gives the temperature dependencies of these quan-
tities, in the range defined by the β value. The plot of the
constant volume specific heat CV is obtained from a numerical
derivative of U4 f . The chosen value for β has little impact on
the potential well, then on the temperature variation of the 1s
vibration energy: in this temperature range, the variation of
the total internal energy is essentially that of U4 f .

In the upper part of Fig. 4, one can observe how the average
4 f energy is lowered for temperatures below β/kB. In a real
system, with a non-Kramers CEF ground state at the center,
this decrease in energy of the CEF ground state results in a
larger transition energy to an unsplit excited CEF level. This is
precisely what is observed via neutron and Raman scattering
experiments in the example of CeB6 [10]. Note that the shift
in energy in this spherical illustration represents only 27% of
the β value and about 5% of the energy difference between
the lowest 1s and 2p vibration energies. A better agreement
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FIG. 4. Computed thermodynamic consequences, as function of
the reduced temperature kBT/β, for a cage split J = 4 multiplet
in the spherical 1s vibrational ground state. The full line curves
are obtained for a nonmagnetic potential with flat bottom (α = 0),
whereas the dashed lines are for a quadratic bottom (α = 5 e.u.). β

is the amplitude of the energy decrease for the lowest CEF level at
the cage limit. The upper part gives the temperature variation of the
4 f shell contribution to the internal energy. The middle and lower
frames, respectively, show the associated specific heat and magnetic
entropy.

with the order of magnitude derived from CeB6 example
would require a larger β value of about 6 e.u. As regards the
specific heat, the 4 f energy lowering results in a Schottky-
type anomaly that peaks at a temperature between 0.1 and
0.2 β/kB. In systems where an ordering occurs at temperatures
competitive with β/kB, only the higher-temperature part of
the peak will appear on the specific-heat curves, the peak
itself being concealed by the order. This is typically the case
in rare-earth hexaborides where most elements order anti-
ferromagnetically. Low-temperature Schottky-type anomalies
are reported for rare-earth-filled skutterudites, notably for
praseodymium compounds with nonmagnetic CEF ground
state as PrOs4Sb12 [41] or PrOs4P12 [42]. These anomalies
are interpreted as the effect of a low-lying CEF level above
the �1 singlet ground state. As illustrated here, an alternative
would be to consider an isolated, cage split, nonmagnetic �23

doublet ground state. Schottky anomalies are also observed
to survive the ferromagnetic order in neodymium compounds

such as NdOs4Sb12 [17], NdOs4As12 [19], or NdRu4As12 [43].
In all these examples, the crystal field ground state seems to
be a non-Kramers quadruplet, therefore likely to be split in
the cage context. The associated entropy (Fig. 4, lower part)
shows that a temperature level of β/kB is required to recover
the entropy of the J = 4 multiplet. A prolonged increase
of the entropy in the paramagnetic range, with difficulties
for achieving the well-defined degeneracy of a CEF ground
state, is a frequent trait of rare-earth cage compounds. In the
illustrating case of the J = 4 multiplet, the choice of a positive
value for D defines the doublet Jz = ±4 as the local CEF
ground state at any point in the cage, except the center. This
results in an average magnetic entropy that does not go to zero
but to the finite value kB ln 2 at zero temperature. Conversely,
a negative D would have resulted in a singlet local CEF
ground state and vanishing magnetic entropy at 0 K. Another
information brought by the calculation is the little influence
of the bottom of the nonmagnetic cage potential, expressed
via the values 0 (full line in Fig. 4) and 5 e.u. (dashed line)
for α. The positive α slightly reduces the extension of the
1s wave functions, diminishing, at a given temperature, the
CEF energy gain. However, the amplitude of the effect and
overall aspect of the curves are very similar. The essential
parameters of the model are the size of the cage a and the CEF
splitting amplitude β. Both define separate energy scales, a
acting on the guest vibration energy separation �EV whereas
β determines the lower energy CEF effects.

4. Magnetic susceptibility

One most visible influence of the CEF scheme, when inves-
tigating rare-earth compounds, is the change in the magnetic
susceptibility with respect to the degenerate 2J + 1 ground-
state multiplet. Similarly, an effect on the susceptibility can be
expected in the β/kB temperature range, where the population
of the 4 f states evolves. To compute the magnetic susceptibil-
ity in the cage context, a Zeeman term needs to be added to
the local CEF Hamiltonian of Eq. (1). In the spherical simpli-
fication, the CEF term at radius ρ reduces to the uniaxial O0

2
term [Eq. (5)] and has to be complemented with the Zeeman
perturbation in order to write the 4 f Hamiltonian at ρ:

H(ρ) = −D ρ2 h̄2

2ma2
O0

2 + μ0 μB gJ H · J, (9)

where gJ is the Landé factor and H the applied magnetic
field. In the uniaxial symmetry, the local susceptibility tensor
reduces to the susceptibilities parallel χ‖ and perpendicular
χ⊥ to the displacement axis. At given temperature T and
position ρ, χ‖(T, ρ) and χ⊥(T, ρ) can be computed from a
perturbation approach or, as done here, via a linearization
of the magnetization curve obtained from numerical
diagonalization and Boltzmann statistics. Considering only
the 1s vibration state, the effective susceptibility results from
a spherical average over all displacement directions. The
averaged contribution from a radius ρ reads as

χ (T, ρ) = χ‖(T, ρ) + 2χ⊥(T, ρ)

3
. (10)

The total, isotropic, susceptibility χ (T ) is then obtained by
a second average of χ (T, ρ) over the 1s radial distribution at
temperature T [see the example of Eq. (8)]. In practice, it is
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FIG. 5. Effect of the cage-split J = 4 multiplet on the magnetic
susceptibility χ , as function of the reduced temperature kBT/β. The
upper graph shows the inverse magnetic susceptibility, the lower
one the direct susceptibility. The full line gives the result of the
calculation for the 1s state with D = 1

14 e.u. and α = 0 (there is
no visible difference for α = 5 e.u.), while the dashed line gives
the Curie law for J =4. The inset shows the inverse susceptibilities,
parallel χ‖ and perpendicular χ⊥ to the displacement axis, as well as
the resulting spherical average χS , used as a standard curve (see text).

not necessary to compute χ (T, ρ) for each radius value. Since
the scale of the local CEF scheme is entirely defined by Dρ2,
a standard curve χS (T ) can be computed once for all and
then adapted to any particular value of ρ. In the present case,
the calculation is done for D = 1

14 e.u. and ρ = 1 over and
extended temperature range (inset of Fig. 5), thus defining
χS (T ). From this standard curve, χ (T, ρ) for ρ < 1 is
scaled as

χ (T, ρ) = χS (T/ρ2)

ρ2
. (11)

The results of Fig. 5 show a moderate effect of the cage
splitting, with respect to a reference Curie law for J = 4. The
difference is visible only for temperatures much lower than
β/kB. As usual for a CEF effect in a high-symmetry system, a
reduction of the susceptibility is observed. Due to the hypoth-
esis of a positive D value, the split multiplet has a local Jz =
±4, magnetic doublet ground state, that maintains a large sus-
ceptibility. A very different picture would arise for a negative
D value, that selects a nonmagnetic local ground state. The
effect of the quadratic bottom of the potential well is here im-
perceptible, at least in the considered cases α = 0 and 5 e.u..

C. Centrifugal Jahn-Teller effect

1. Zero-temperature limit

In order to identify the effects of the V4 f potential term,
one can focus on the zero-temperature limit, where it has
maximal amplitude and simplest analytical form. For T going

FIG. 6. Zero-temperature effect of the spherical well quadratic
bottom, defined by the constant W . Lower part: energies of the four
lowest oscillator levels 1s, 2p, 2d , and 2s, as functions of W with the
insets representing, as functions of the reduced radius ρ, wells for
positive and negative W . The CEF contribution results in a β shift
of W toward negative values. Upper part: sketches of the radial wave
functions for the 1s, 2p, and 2d states, for a flat bottom (W = 0) and
for opposite strong convexities (W = 100 and −100 e.u.).

to zero, in the set of quadrupolar values at ρ, Q0 with its lowest
energy is statistically dominant. In the zero-temperature limit,
the magnetic potential simplifies to V4 f (ρ) = −βρ2. Then, at
T = 0 and for ρ < 1, the total cage potential writes as

V (ρ, 0) = (α − β ) ρ2 = W ρ2. (12)

Figure 6 shows the dependence on W of the four lowest-
energy levels: 1s, 2p, 2d , and 2s. For large positive W values,
the system tends to harmonicity, with a constant level sepa-
ration and “accidental” 2d-2s degeneracy. The centrifugal 4 f
term shifts W the opposite way, toward negative values by the
amount of β, which results in: a reduced energy difference
between the three lowest levels, particularly between the
singlet 1s ground state and the first excited triplet 2p states;
radial wave functions that adapt to the centrifugal term. The
1s ground state is the most affected (see the upper part of
Fig. 6) as, from Eq. (B1), the centrifugal effect is exclusively
of magnetic origin in case l = 0. The concomitant reduc-
tion of energy separation and increase in the wave-function
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overlap increases the multipolar susceptibilities of the rare-
earth distribution. In particular, the dipolar and quadrupolar
susceptibilities, respectively involving 1s to 2p and 1s to
2d matrix elements. This should facilitate low-temperature
phenomena that involve a redistribution of the rare-earth ion
inside the cage. For instance, the dipolar susceptibility is
at play in the antiferromagnetic range of rare-earth hexa-
borides, where exchange-induced displacements of the rare
earth (i.e., dipoles) determine the magnetic wave vector and
the first-order kind of the magnetic transition [44,45]. The
cage quadrupoles, analogously to the 4 f ones [37], should
couple with the crystal strain modes and, via their associated
susceptibilities, influence the elastic properties. This coupling
with the rare-earth cage distribution also applies for a volume
strain. Despite the above consideration of a perfectly rigid
cage, in a real elastic system, an evolution in the guest
radial distribution (see the sketches for the 1s radial wave
function in Fig. 6) will impact the cage and lattice volumes.
The centrifugal term should also affect the lowest acoustic
and optical phonon branches (see Fig. 2): the reduced 1s-2p
spacing at T = 0 means that, for all phonons involving the
vibration of the rare-earth inside its cage, some softening will
develop as the system is cooled.

2. Thermal dependence

To identify the above effects, the amplitude of the cen-
trifugal term has been deliberately exaggerated: the horizontal
scales of Fig. 6 go well beyond the orders of magnitude
considered in Sec. III B. Here, we go back to the same J = 4,
β = 2 e.u. and α = 0 or α = 5 e.u. values as in Sec. III B.
Inspired by the CeB6 orders of magnitude, these values ensure
more realistic predictions as regards the centrifugal effect and
its temperature dependence. The calculation relies on the more
delicate, nonadiabatic, approximation that allows to individ-
ually define a potential for the considered cage [Eq. (3)].
Figure 7 shows, as a direct illustration of the centrifugal
effect, the temperature dependence of the second-order radial
moment 〈ρ2〉 for the 1s state. The radial distribution expands
as the temperature goes below β/kB. For β = 2 e.u., the
amplitude of the relative change in 〈ρ2〉 reaches about 1.5%.
This amplitude is similar for the two considered nonmagnetic
bottoms, defined by α = 0 and 5 e.u.. The absolute values
of 〈ρ2〉 for α = 5 e.u. are logically smaller because of the
associated restoring force that opposes the Jahn-Teller cen-
trifugal effect. This seems too small to be investigated by
diffraction techniques through a Debye-Waller analysis, but
high-precision dilatometry might be an option. Indeed, as
the cage and crystal cannot be infinitely rigid, an isotropic
change in the rare-earth distribution has necessarily an impact
on the crystal volume. In an elastic cubic lattice of cages,
since a volume strain εα = εxx + εyy + εzz and the second-
order radial moment of the guest 〈ρ2〉 = 〈x2〉 + 〈y2〉 + 〈z2〉
transform identically, they can be phenomenologically related
[46]. At the lowest-order description, a small change in 〈ρ2〉
is linearly related to a volume strain: εα = κ (〈ρ2〉 − 〈ρ2

0 〉),
where 〈ρ2

0 〉 is the second-order radial moment in absence of
the centrifugal effect. At this point, one cannot guess the
magnitude and sign of the constant κ . Nevertheless, for a
sufficiently large κ , a specific volume change and associated
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FIG. 7. Illustrations of the centrifugal Jahn-Teller effect in the
spherical simplification within the 1s state, for J = 4, β = 2 e.u.

and two values, 0 (full lines) and 5 e.u. (dashed lines), of α. The
upper part materializes the centrifugal effect via the temperature
dependence of the second-order radial moment 〈ρ2〉 for the cage
guest. The lower part shows the softening effect on the energy
difference between the lowest vibration levels 1s and 2p. The left
vertical scales are for the flat bottom case, α = 0, whereas the
right ones are for α = 5 e.u.. Left and right scales do not differ in
amplitude, but are adapted by a shift.

thermal expansion anomaly should be detected in a cage
system with a non-Kramers CEF ground state. There is scarce
experimental data as regards the paramagnetic thermal ex-
pansion of filled skutterudites, but an x-ray investigation of
rare-earth hexaborides shows noticeable differences between
the nonmagnetic LaB6 and other elements in the series [47].
In particular, a peak develops in the linear thermal expansion
coefficient of CeB6, PrB6, and NdB6 below T = 30 K. It is to
be noted that all three compounds have a non-Kramers CEF
ground state [10,11], which is the condition of realization of
the centrifugal Jahn-Teller effect. Also, this anomaly occurs in
a temperature range where, due to the large CEF level spacing,
usual CEF volume effects should be absent. The lower part
of Fig. 7 shows another effect of the centrifugal term in the
cage potential, that is the decrease of the energy differences
between the lowest-lying vibrational states. The graph dis-
plays the most relevant difference between the 1s ground
state and 2p first excited level. This difference defines the
vibration frequency of the “rattler” that, at low temperature,
can be identified with ω0 in the harmonic approximation of
Sec. II A 2. Here, for β = 2 e.u., a softening of about 1.5% is
predicted, that should directly reflect on the low-temperature
dispersion curves (see Fig. 2), particularly on the flattened
part of the “acoustic” branch and, at q = 0, on the “optical”
branch. Resolving a 1.5% softening is difficult using inelastic
neutron scattering and infrared spectroscopy might be better
adapted for detecting the small energy shift in the optical
branch at q = 0. The softening of acoustic phonons, close to
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the border zone, has been observed in PrOs4Sb12 [48] and
in other filled skutterudites [33]. However, this softening is
difficult to relate to the cage Jahn-Teller mechanism: the large
magnitude of the effect, and its wide temperature range, do
not fit with the energy scales in the above calculation.

IV. SUMMARY

Inside a high-symmetry cage, an offset position of a rare-
earth ion splits its orbitally degenerate electronic levels. These
levels thus acquire a dynamical width that reflects the dis-
tribution of the guest inside the cage. In case of an orbitally
degenerate CEF ground state at the cage center, the associated
energy width defines a temperature range, in the paramagnetic
state, where very specific phenomena take place. Within this
range, as the temperature is lowered, the lowest level of the
split multiplet becomes statistically dominant. This allows a
reduction of the 4 f energy. As this energy gain is obtained
for an offset position, a centrifugal Jahn-Teller force is si-
multaneously exerted on the guest. In order to investigate
the physical consequences of a cage-split electronic ground
state, a simplified, spherical model has been used, where a
J = 4 multiplet enacts the degenerate level at the cage center.
The experimental data on CeB6 offer a quantitative frame for
this description, fixing a value for the energy width of the
multiplet, that is much smaller than the separation between
the lowest vibration levels. In this context, the only cage
distribution that has to be considered is that of the singlet
vibrational ground state. Thanks to this spherical simplifi-
cation, the following is shown: for thermal energies below
the electronic ground-state width, a Schottky-type anomaly
develops in the specific heat, that evidences the decrease in
the 4 f energy and entropy; the magnetic susceptibility is
reduced with respect to the degenerate case; some volume
anomaly should occur, reflecting the expansion of the rare-
earth distribution inside the cage; the centrifugal term reduces
the rattling frequency of the guest, with resulting softening of
low-energy phonons. This model also shows that the above
conclusions are not dependent on the precise shape of the
cage potential. Indeed, the two dominant energy scales in the
problem are the separation �EV between the lowest-lying
and first excited vibration levels, which essentially depend
on the size of the cage, and the smaller energy width of the

electronic ground state (≈2β), that defines the amplitude and
temperature range of the phenomena resulting from the split
CEF ground state. This is encouraging as regards the descrip-
tion, in the paramagnetic range, of the macroscopic properties
of a real cage system. Once defined the central CEF ground
state, the rare-earth distribution in the lowest vibrational state
is required for computing the specific heat, entropy, magnetic
susceptibility, etc. In this purpose, the detail of the cage shape
and associated potential well can be ignored. Indeed, the
wave function for the singlet vibration ground state will be
very similar for all highly symmetrical shapes of the poten-
tial well: harmonic well, spherical or cubic box, etc. What
actually matters is the width of the rare-earth distribution
and the magnitude of the quadrupole-displacement coupling
constants. In this way, one may explain, by a pure crystal field
mechanism, paramagnetic anomalies otherwise ascribed to
exchange couplings, such as magnetic correlations or Kondo
lattice related effects. An interesting perspective, at the price
of an increased difficulty, is the description of paramagnetic
properties under higher magnetic fields. The contrast in the
local magnetic susceptibilities inside the cage should result in
an anisotropic potential well: cage quadrupoles should emerge
with an associated magnetostriction and influence on the
magnetic anisotropy. Another, completely unexplored, aspect
is the influence of a distributed crystal field on the ordering
properties of a rare-earth compound. It is hoped that this work
will encourage investigations in these directions.
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APPENDIX A: DISPERSION RELATIONS FOR A LINEAR
CHAIN OF ELASTIC CAGES

The chain, of period d , is defined in Fig. 2, through the
sketch of the involved masses and springs. One starts by
writing the classical equations of motion for the guest (mass
m) and the two halves (masses M/2) of the cage, subjected
to the springs’ restoring forces. Then, imposing the form
of the displacements as imaginary exponentials describing
propagating waves with angular frequency ω and wave vector
k = 2π

d q, one gets the secular equation

[
�0

2[1 − cos(2πq)] + 2ω2 (1 + δ)ω0
2 − ω2

ω2 − ω0
2

]{
�0

2 [1 + cos(2πq)] + 2
(
�1

2 + δ ω2
0 − ω2)} = �0

4sin(2πq)2, (A1)

where δ = m
M , ω0

2 = 2k0
m , �0

2 = 4K0
M , �1

2 = 4K1
M .

Further parametrizing, introducing the reduced variable x = ω/ω0, frequencies ρ0 = �0/ω0 and ρ1 = �1/ω0, replacing
sin(2πq)2 with 1 − cos(2πq)2 = [1 − cos(2πq)][1 + cos(2πq)], some simplifications yield

ρ0
2[1 − cos(2πq)]

(
ρ1

2 + δ − x2
)
(x2 − 1) + x2(δ − x2 + 1)

{
ρ2

0 [1 + cos(2πq)] + 2
(
δ + ρ2

1 − x2
)} = 0. (A2)

Isolating cos(2πq), the general dispersion relation can be expressed as

cos(2πq) = 1 − 2
x2

ρ2
0

(δ − x2 + 1)
(
δ + ρ2

1 − x2
)

δ + ρ2
1 (1 − x2)

+ 2x2(x2 − δ − 1)

δ + ρ2
1 (1 − x2)

(A3)
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which, in the general case, yields three dispersion branches.
In the limit of an infinitely soft cage (ρ1 = 0), the dispersion
relation reads as

cos(2πq) = 1 − 2
x2

δρ2
0

(δ − x2 + 1)(δ − x2)

+ 2x2

δ
(x2 − δ − 1), (A4)

whereas, for an infinitely rigid cage (ρ1 → +∞), the disper-
sion relation simplifies to

cos(2πq) = 1 − 2

ρ2
0

(
1 + δ

1 − x2

)
x2. (A5)

The cage becoming a single, rigid object, there are only
two branches. This allows the fit of Fig. 2, according to the
equation

q = 1

2π
arccos

[
1 − 2

(
1 + m

M

ω2
0

ω2
0 − ω2

)
ω2

�2
0

]
. (A6)

APPENDIX B: SOLVING THE RADIAL
SCHRÖDINGER EQUATION

The spherical symmetry allows to use the methods, easily
found in quantum mechanics textbooks, developed for the
quantum description of atoms. The angular part of the wave
functions are the spherical harmonics Y m

l (θ, ϕ), whereas the
radial part Rn,l (ρ) and energies En,l require solving a dif-
ferential equation specific to the considered potential, here

V (ρ, T ). It is convenient to introduce the radial function un,l :

un,l (ρ) = ρ Rn,l (ρ).

For ρ < 1, in the case of the above-defined potential well, the
sought after un,l (ρ) functions have to satisfy the differential
equation

d2

dρ2
un,l =

(
l (l + 1)

ρ2
+ V (ρ, T ) − En,l

)
un,l , (B1)

where l is the orbital quantum number and En,l the energy
associated with un,l (all energies are in e.u. units, as defined
in Sec. III A). At the cage limit ρ = 1, the infinite barrier
imposes un,l (1) = 0. At the origin, un,l (ρ) has also to cancel
as, otherwise, one would get a diverging radial wave function
Rn,l for ρ going to zero. In the general case, the only practical
option is a numerical treatment of Eq. (B1). For a given value
of l and numerically evaluating V (ρ, T ), one can iteratively
refine a numerical solution, which yields the radial wave
function Rn,l and corresponding energy En,l . The calculations
presented in this paper are realized using a simple Numerov-
type method, the 0 to 1 radial interval being divided into 2000
equal segments. The convergence is tested by checking the
stability of the En,l eigenvalue, which is required to vary less
than 10−8 e.u. between successive iterations. Obviously, the
obtained Rn,l need to be normalized so that 4πρ2|Rn,l (ρ)|2
can be interpreted as the radial probability of presence of the
nucleus.
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