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We study the layered J1-J2 classical Heisenberg model on the square lattice using a self-consistent bond
theory. We derive the phase diagram for fixed J1 as a function of temperature T , J2, and interplane coupling
Jz. Broad regions of (anti)ferromagnetic and stripe order are found, and are separated by a first-order transition
near J2 ≈ 0.5 (in units of |J1|). Within the stripe phase the magnetic and vestigial nematic transitions occur
simultaneously in first-order fashion for strong Jz. For weaker Jz, there is in addition, for J∗

2 < J2 < J∗∗
2 , an

intermediate regime of split transitions implying a finite temperature region with nematic order but no long-range
stripe magnetic order. In this split regime, the order of the transitions depends sensitively on the deviation from
J∗

2 and J∗∗
2 , with split second-order transitions predominating for J∗

2 � J2 � J∗∗
2 . We find that the value of J∗

2

depends weakly on the interplane coupling and is just slightly larger than 0.5 for |Jz| � 0.01. In contrast, the
value of J∗∗

2 increases quickly from J∗
2 at |Jz| � 0.01 as the interplane coupling is further reduced. In addition, the

magnetic correlation length is shown to directly depend on the nematic order parameter and thus exhibits a sharp
increase (or jump) upon entering the nematic phase. Our results are broadly consistent with the predictions based
on itinerant electron models of the iron-based superconductors in the normal state and, thus, help substantiate a
classical spin framework for providing a phenomenological description of their magnetic properties.

DOI: 10.1103/PhysRevB.99.174404

I. INTRODUCTION

The iron-based superconductors (FeSCs) represent an in-
triguing class of materials exhibiting both unconventional
superconductivity as well as peculiar normal-state properties
(see Refs. [1–3] for reviews). In particular, in the normal state,
there are strong indications that the stripe spin-density wave
order with wave vector �Q = (0, π ) or (π, 0), which occurs
below a critical temperature, is intimately related to the struc-
tural distortion of the lattice that occurs at a higher critical
temperature. This structural distortion breaks the tetragonal
symmetry, leading to long-ranged lattice-nematic order. Sev-
eral proposals have thus suggested that spin fluctuations of the
stripe order drive the nematic transition [4–6], while the lattice
distortion arises secondarily via coupling to the spin-driven
nematic order parameter.

This scenario motivates a purely magnetic approach that
captures the interplay between the vestigial nematic order
and the fluctuations of the magnetic stripe order that drive
it. Previous proposals have focused on the J1-J2 model of
localized spins [7–9], which is known, as we discuss below, to
have nematic order in the strictly two-dimensional (2D) limit
at finite temperatures [10,11]. This type of order has become
known as Ising-nematic order [6] because the order param-
eter space [the choice between �Q = (π, 0) or �Q = (0, π )] is

*paaske@nbi.ku.dk
†schecter@umd.edu

effectively Z2 due to the Mermin-Wagner theorem [12] that
precludes spontaneous spin-rotation symmetry breaking in
2D. This Ising-nematic phase transition extends to the layered
J1-J2 model where there is an additional phase transition to an
ordered magnetic stripe phase [4,5]. Thus, the layered J1-J2

model may serve as the simplest phenomenological model
capable of describing the putative magnetic spin-fluctuation
triggered nematic phase in the FeSCs, although a connection
to the underlying microscopic parameters of the electronic
model is less direct (see, e.g., Refs. [7–9]).

Nevertheless, the fact that the FeSCs are not insulators
indicate that the normal-state of the FeSCs is likely best
described as an itinerant magnet at low doping [13], and a
rich phase diagram based on itinerant magnetism has been
predicted [14]. It is unclear whether the phase diagram of
the layered J1-J2 model is as rich, or if and where the J1-J2

model consists of regions of split nematic and magnetic
transitions. Moreover, the nature of the phase transitions is
an important aspect of the problem that is known in the
itinerant models to depend sensitively on the microscopic
parameters near the bifurcation point where the simultaneous
(first-order) transition splits into two separate transitions. In
particular, as the transitions split, there appears to be a narrow
intermediate regime where the order of the transitions may
be different for the magnetic and nematic order parameters.
This can lead, e.g., to a metanematic transition at which the
finite nematic order parameter jumps to a higher value as the
magnetic order sets in. In addition, the itinerant models predict
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FIG. 1. (a) Schematic phase diagram of Eq. (1) for a fixed value
of Jz > 0. The phase diagram is invariant under J1 → −J1 and
antiferromagnetic order (AFM) → ferromagnetic order (FM). For
J2/J1 > 1/2, the system enters the stripe phase via a simultaneous
(magnetic and nematic) first-order transition when J2 < J∗

2 , depicted
in (b). For J2 > J∗

2 , the magnetic and nematic order parameters, M
and I , develop at different temperatures, TM and TI , respectively. Near
the branching point, J2 ∼ J∗

2 , one (or both) of the split transitions
may remain first-order, while for J2 � J∗

2 the transitions are predom-
inantly second-order, as shown in (d). In the case where the magnetic
transition is first-order, as shown in (c), one has a metanematic
transition whereby the nematic order parameter jumps from a finite
value to a higher one.

a sharp increase of the spin correlation length upon entering
the nematic phase due to its direct dependence on the nematic
order parameter [14].

It is the purpose of this paper to determine whether such
phenomena arise also within a specific microscopic model
based on localized spins: the layered square lattice J1-J2

classical Heisenberg model. We study this model using the
nematic bond theory developed in Ref. [15], which can detect
nematic and magnetic orders independently and determine the
order of the transitions. A dual purpose of this paper is also to
explain this method in depth. The nematic bond theory allows
us to construct (for the first time, to the best of the authors’
knowledge) the phase diagram of the layered J1-J2 model for
fixed J1 as a function of temperature T , J2 and interlayer
coupling Jz. The nematic bond theory can be employed to
investigate temperature-dependent properties of any classical
Heisenberg hamiltonian, and requires considerably less nu-
merical efforts than Monte Carlo simulations. We show that
practically all of the phenomena discovered in the itinerant
electron models arise also in the Heisenberg model, including
an intermediate regime of transition types near the bifurcation
points, and a sharp increase of the spin correlation length upon
entering the nematic phase.

A schematic phase-diagram illustrating the behavior of the
order parameters in the various regimes is presented in Fig. 1.
One sees that for J1/2 � J2 < J∗

2 the transition into the stripe
phase is simultaneous and first-order, while for J2 > J∗

2 the
transitions are split and predominantly second-order. Near
the bifurcation point, J2 ∼ J∗

2 , one of the transitions may
remain first-order. This leads (in the example shown in Fig. 1)
to a metanematic transition, similar to what happens in the
itinerant models for various parameter regimes. Although we

will not attempt to make a direct connection to any FeSC
compound in particular, our results show that at a phenomono-
logical level the physics of the J1-J2 model indeed appears
to capture the essential aspects of the normal-state magnetic
properties of the FeSCs and therefore may be of use as a
simplifying alternative to the itinerant approach.

While some previous studies have attempted to address
the issues discussed above within a classical spin framework,
it is important to emphasize that here we study directly the
microscopic layered J1-J2 model. An effective model of the
layered J1-J2 model, the Ising O(3) model [10], has been
studied previously using Monte Carlo simulations [16], which
yields a simultaneous first-order phase transition for large
interlayer couplings and two split transitions for weaker in-
terlayer couplings. Other studies have included a biquadratic
coupling to the Hamiltonian to mimic the long-wavelength
effective action that arises upon coarse graining [4,5,10]. Our
treatment is different in that we do not explicitly assume a
separate Ising degree of freedom from the outset and do not
insert a biquadratic coupling by hand. Instead, we shall utilize
and develop a tractable technique, the nematic bond theory,
that can tackle the J1-J2 model head-on and provide its phase
diagram in terms of microscopic parameters.

The rest of the paper is organized as follows. We first
define the Hamiltonian of the J1-J2 model, Sec. II, and then
describe in details the method we use to solve it in Sec. III.
Then we discuss in Sec. IV the order parameters relevant for
the J1-J2 model and how to compute them using our method.
The results for the J1-J2 model are then described in Sec. V,
followed by Sec. VI that describes the spin correlations. We
end by a general discussion in Sec. VII.

II. J1-J2 MODEL

The Hamiltonian of the layered classical J1-J2 model is

H = J1

∑
〈i j〉

�Si · �S j + J2

∑
〈〈i j〉〉

�Si · �S j + Jz

∑
{i j}

�Si · �S j, (1)

where 〈i j〉, 〈〈i j〉〉 denotes nearest and next-nearest in-plane
neighbors, respectively, and {i j} denotes nearest neighbors in
adjacent layers on a cubic lattice. The classical spin degrees
of freedom �S are unit length vectors with Ns = 3 components.
We will focus on the frustrated case J2 > 0 (AF). Without
loss of generality we also take J1, Jz < 0 (FM). Due to the
bipartite structure of the lattice, our results are equally valid
for the corresponding AF cases (up to a corresponding π shift
in the �Q vector), obtained by simply reversing the spins on one
sublattice (J1 → −J1), or by reversing the spins on adjacent
layers (Jz → −Jz).

The idea that a spin model with continuous symmetry
has a separate Ising-nematic phase was first predicted by
Henley [17] as an example of the order from disorder scenario
[18]. This was extended to the Heisenberg J1-J2 model by
Chandra, Coleman, and Larkin [10] and can be explained in
the following way. In the large J2 limit the spins on each
sublattice are strongly coupled. This causes them to align
antiferromagnetically on each of the two interpenetrating
sublattices. The effective field on a spin mediated through the
nearest-neighbor couplings J1 is thus zero. So the sublattices
are effectively decoupled resulting in a zero energy cost to
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rotate all the (anti)aligned spins on one sublattice relative
to those on the other sublattice. However, the entropy of
thermal spin fluctuations depends on this relative orientation,
and selects collinear spins. This can be achieved either by
forming stripes of spins along the coordinate x axis or along
the y axis. This axial orientation of spin correlations along
one of the two crystal directions is essentially a discrete Ising
degree of freedom that can order at a finite temperature even in
a two dimensional system where long-ranged magnetic order
is prohibited by the Mermin-Wagner theorem [12]. We will
refer to this ordering as lattice Ising-nematic order with order
parameter denoted by I . The presence of long-range magnetic
order will be indicated by the order parameter M.

In the layered J1-J2 model, it is believed that the order-
from-disorder scenario still holds for weakly coupled layers,
so that there is a region of Ising-nematic order that exists
before the long-range stripe order sets in at low enough
temperatures, and for strongly coupled layers, the nematicity
and stripe order occur simultaneously in a first-order transition
[4,5]. While these prior expectations are based on an effective
description that utilizes the biquadratic coupling, here we
confirm this scenario for the layered J1-J2 model directly and
provide its phase diagram for the first time.

III. METHOD

In order to make the J1-J2 model tractable, we write the
Hamiltonian in �q space

H =
∑

�q
J�q�S �q · �S−�q, (2)

where the sum goes over the first Brillouin zone and

J�q = J1(cos qx + cos qy) + 2J2 cos qx cos qy + Jz cos qz − C.

(3)
We set J1 = −1 which defines our unit of energy. For conve-
nience, we have subtracted a parameter dependent constant C
so that the energy of the minimum of J�q is zero. The momen-
tum vectors giving these minimal energies are �Q = (0, 0, 0)
for J2 < 1/2, and �Q = (±π, 0, 0), (0,±π, 0) for J2 > 1/2.
Thus the ground state is a FM for J2 < 1/2, and stripe-ordered
(with broken lattice rotation symmetry) for J2 > 1/2.

The spins on all sites are unit length vectors: �S�r · �S�r = 1.
These constraints are enforced in the partition function by
writing them as integral representations of δ functions

δ(�S�r · �S�r − 1) =
∫

βdλ�r
2π

e−iβλ�r (�S�r ·�S�r−1) (4)

where we have scaled the integration variable by the inverse
temperature, β = 1/T . This gives the partition function

Z =
∫

D�S d� Dλ e−β
∑

�q,�q ′ (K�q,�q ′ −��q,�q ′ )�S∗
�q ·�S �q ′+V β� (5)

where we have introduced a matrix ��q,�q ′ = −iλ�q−�q ′ (1 −
δ�q,�q ′ ), where λ�q is the Fourier-transformed constraint integra-
tion variable. We have separated out its �q = 0 component and
written it as � = iλ�q=0 and put it into the diagonal momentum
space matrix K�q,�q ′ ≡ K�q δ�q,�q ′ , where K�q ≡ J�q + �. Factors of
β have been absorbed into the integration measures.

(a) (b)

q q

FIG. 2. (a) The n = 3 term coming from expanding Sλ. (b) The
m = 3 diagram in the expansion of the integrand for the momentum
dependent susceptibility.

The enforcement of the unit length constraints as δ func-
tions allows us to treat the integrals over the spin components
as independent Gaussian integrals. We generalize the spins to
have Ns vector components, but will set Ns = 3 at the end of
the calculation. We then scale the spin components by a factor
1/

√
β and perform the Gaussian integrals to get

Z =
∫

d� Dλ e−Sλ (6)

where we have redefined the integration measure with appro-
priate factors of β and

Sλ = Ns

2
Tr ln (K − �) − βV �. (7)

The thermal average of any spin correlation function can be
obtained by adding sources to the action and performing the
appropriate derivatives. This yields the momentum dependent
susceptibility

χ�q ≡ 〈�S∗
�q · �S �q〉 = NsT

2

〈
(K − �)−1

�q,�q
〉
Sλ

(8)

where the brackets denote the average with respect to Sλ.
In order to calculate this average, we first expand the

action Sλ and the integrand (K − �)−1 in powers of λ and
treat everything except the quadratic term as perturbations.
Expanding the action gives rise to ring diagrams with n � 3
wavy lines, one for each λ factor, separated by solid lines
that each contributes a factor K−1

�p , see Fig. 2(a) for the n =
3 diagram. The expansion of the integrand gives a sum of
diagrams each with two external lines that carry a momentum
�q and m � 0 wavy lines, see Fig. 2(b).

The diagram rules are: the (bare) spin propagator is drawn
as a solid line and gives a factor K−1

�q . A wavy line, which we
will refer to as the (bare) constraint propagator, gives a factor

D0�q = 2

Ns

⎡
⎣∑

�p
K−1

�p+�qK−1
�p

⎤
⎦

−1

, (9)

which originates from the quadratic part of the action Sλ.
The �q = 0 component of D0�q is explicitly set to 0. Every
line, solid or wavy, carries a momentum. External lines have
a fixed momentum, and there is momentum conservation
at each vertex. Undetermined momenta are integrated over.
The numerical factors associated to a diagram are: a factor
−i for each vertex in a diagram, a factor Ns/2m for each
ring with m wavy lines, and an overall combinatorial factor
1/(k3!k4!k5! . . .), where km is the number of rings with m wavy
lines.

Performing the average over λ amounts to writing down
all diagrams and connecting the wavy lines. As usual, only
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= +

FIG. 3. Dyson equation for the renormalized spin propagator.

connected diagrams with two external legs having the same
momentum �q will contribute to the momentum dependent sus-
ceptibility. We approximate the averaging over λ by summing
just a selected infinite subset of diagrams in the following way.
First we define a proper self-energy ��q, which renormalizes
the spin propagator according to the Dyson equation shown in
Fig. 3. The renormalized spin propagator is drawn as a bold
solid line. Solving this equation gives the renormalized spin
propagator

K−1
eff �q = 1

J�q + � − ��q
. (10)

Similarly a proper polarization 	�q is introduced to make a
Dyson equation for the renormalized constraint propagator
(bold wavy line), see Fig. 4. Solving this gives

D−1
�q = D−1

0�q − 	�q. (11)

Next we approximate the self-energy and the polarization by
the self-consistent diagrams in Fig. 5, which is equivalent to
writing

��q = (−i)2
∑

�p
K−1

eff �q−�pD �p, (12)

	�q = (−i)2 Ns

2

∑
�p

K−1
eff �p+�qK−1

eff �p − (−i)2 Ns

2

∑
�p

K−1
�p+�qK−1

�p .

(13)

The expression for the proper polarization Eq. (13) is
finally converted, using Eqs. (9) and (11), into an equation
for the renormalized constraint propagator

D−1
�q = Ns

2

∑
�p

K−1
eff �p+�qK−1

eff �p. (14)

Equations (10), (12), and (14) represent the averaging over
the nonzero momentum modes of the constraint field and
define a system of self-consistent equations that can be solved
iteratively to give K−1

eff �q as a function of �. After averaging
over these modes the expression for the spin susceptibility,
Eq. (8), becomes

χ�q = NsT

2

〈
K−1

eff �q
〉
S�

(15)

where the brackets denote the remaining average over the
zero momentum mode(homogeneous component) � of the
constraint field taken with respect to the weight e−S� =∫

Dλe−Sλ . This averaging is carried out by simply replacing
it with a single value of �, which for self-consistency, is the
value that ensures the satisfaction of the unit vector constraint

= +

FIG. 4. Dyson equation for the effective constraint-field
propagator.

=

= -

FIG. 5. Self-consistent equations for the self-energy and the
polarization. Note that the bold lines on the right-hand sides also
include the self-energy and the polarization.

as an average: 〈�S�r · �S�r〉 = 1, which is equivalent to 1
V

∑
�q χ�q =

1. Thus the value of � (contained in K−1
eff ) is chosen so that it

satisfies
NsT

2V

∑
�q

K−1
eff �q = 1, (16)

and the spin susceptibility becomes

χ�q = NsT

2
K−1

eff �q, (17)

using the particular value of � that satisfies Eq. (16).
Instead of fixing T from the outset and seeking a value of

� that satisfies Eq. (16), we will rewrite Eq. (16) as a way to
calculate the temperature given a fixed value of �:

T =
⎡
⎣ Ns

2V

∑
�q

K−1
eff �q

⎤
⎦

−1

, (18)

and solve the self-consistent equations keeping the value of �

fixed. That is, we introduce an extra “mass renormalization”
step where � is restored to its original value after each
iteration.

Thus our procedure for solving the equations is as follows.
First pick a value of � and an initial guess for ��q. Set Ns = 3.
Then iterate the following steps.

(1) Subtract a constant from ��q so that its minimum value
becomes zero.

(2) Make K−1
eff �q according to Eq. (10), and calculate T

according to Eq. (18). If T has converged then exit and use
the obtained K−1

eff �q to compute χ�q, Eq. (17).
(3) Calculate D�q using the new K−1

eff �q, Eq. (14).
(4) Calculate the new self-energy ��q, Eq. (12).
(5) Go to step 1.
This whole procedure is repeated for a range of � val-

ues, typically two hundred values ranging from 10−9 to 1
evenly spaced on a logarithmic scale. We use the convergence
criterion that T has converged when the relative difference
between the temperatures at successive iterations, |Tn+1 −
Tn|/Tn < 10−8. Convergence is typically reached after 10–20
iterations.

For each value of � the iteration procedure yields a value
of T and a corresponding susceptibility χ�q. While T is usually
a single-valued function of �, there are temperature regions
near phase transitions where different values of � correspond
to the same value of T but to different values of χ�q. Thus, in

174404-4



INTERPLAY BETWEEN MAGNETIC AND VESTIGIAL … PHYSICAL REVIEW B 99, 174404 (2019)

these regions, the equations give several different solutions χq

for the same value of T . We will deal with this by selecting
the solution smoothly connected to the unique solution on the
low-T side of the multivalued region.

IV. ORDER PARAMETERS

The calculation of the momentum-dependent susceptibility
χ�q at different temperatures allows us to make inferences
about different phases and order parameters. We focus on the
planar nematic order parameter

I = 1

V

∑
�r

〈�S�r · �S�r+x̂ − �S�r · �S�r+ŷ〉, (19)

where x̂ and ŷ are planar unit lattice vectors and 〈. . . 〉 denotes
the thermal expectation value. In terms of the momentum
space susceptibility, the order parameter is

I = 1

2V

∑
�q

(cos qx − cos qy)χ�q (20)

where the sum over �q is taken over the first Brillouin zone. The
planar nematic order parameter detects anisotropy in bond
ordering on the planes, and does not break spin rotational
symmetry.

We also calculate the magnetization order parameter which
breaks spin rotation symmetry. We infer this from the co-
efficient of the diverging susceptibility as the system size
goes to infinity. The �q-dependent susceptibility at the ordering
vector is

χ �Q = �m �Q · �m−�QV +
∑

�r
δ f (�r)e−i �Q·�r, (21)

where δ f (�r) is the spin fluctuation correlation function char-
acterized by a correlation length ξ . For finite ξ less than the
linear system size, the last term will be independent of V .
Therefore for large system sizes we can keep only the first
term, which diverges with increasing V , and arrive at

M2 ≡ �m �Q · �m−�Q = NsT

2V
K−1

eff �Q = NsT

2V �
. (22)

In the last equality, we have used the fact that the maximum
value K−1

eff �Q is always 1/� because both the self-energy � �Q
and J�Q is zero for the maximum value of K−1

eff . Extracting the
magnetization this way gives the dominating magnetic order
corresponding to the wave vector �Q where K−1

eff is maximal.

V. RESULTS

For simplicity, we begin by studying the J2 = 0 Hamil-
tonian where our results can be compared to Monte Carlo
data. In this case, the Hamiltonian reduces to an unfrustrated
layered ferromagnet (FM) where we expect a finite tempera-
ture phase transition to an ordered state with a FM magnetic
moment at wave vector �Q = (0, 0, 0). We first consider the
isotropic FM (Jz = −1) and solve the self-consistent equa-
tions numerically for a range of �’s and obtain results for the
magnetization using Eq. (22). We always start the iterations
of the self-consistent equations with an initial guess for ��q,
which breaks the nematic symmetry so that the initial I is
slightly negative.

0 0.5 1 1.5 2 2.5 3
T

0

0.2

0.4

0.6

0.8

1

M
2

(a)

1.52 1.5205 1.521 1.5215 1.522
T

0

0.002

0.004

0.006

0.008

0.01

M
2

(b)

FIG. 6. Magnetic order parameter squared for the unfrustrated
3D FM: Jz = −1.0, J2 = 0. Both panels show finite-size curves with
L = 100–400 where darker curves indicate larger L. (b) shows a
zoom-in in (a) near the phase transition point. A vertical red line
indicating a jump in the order parameter is drawn for the largest L
curve.

Figure 6(a) shows the magnetization squared as a function
of temperature for cubic systems of different linear sizes
L = 100–400. The finite-size curves fall almost on top of each
other and do not cross. On magnifying the behavior close to Tc

where the magnetization vanishes, finite-size effects become
apparent, see Fig. 6(b), and as T increases there is a slight
overshoot of the magnetization curves for the largest system
sizes. These magnetization curves are clearly unphysical as
the overshoot leads to a temperature region near Tc where the
magnetization is a multivalued function of T . We interpret this
behavior as the system is having multiple possible solutions to
the self-consistent equations with different free energies at the
same temperature. In order to adopt a definite procedure of ex-
tracting Tc, we choose the solution that is connected smoothly
to the low-temperature single-valued region. When following
this branch upon increasing T , the curve will turn around at
some temperature and will, if continued, give other solutions
with higher free energies. We omit these by drawing a vertical
line towards zero-order parameter at the first turning point
[infinite slope of M2(T )] upon increasing T . This is drawn
as a red line for the largest system size in Fig. 6(b). Then
the order parameter evolution with T continues from where
the line hits the order parameter curve again. This results in
a discontinuous jump in the order parameter at the critical
temperature which we interpret as a discontinuous phase
transition. However, in the case of Fig. 6(b) the discontinuous
jump decreases as the system size is increased, which when
extrapolated to infinite size results in a continuous transition,
as is expected for a 3D FM.

In order to determine Tc of the magnetic phase transition,
we use different methods based on how the finite-size curves
behave. If they cross, we pick the crossing points between
successive linear system sizes L and L + 50 and extrapolate
these crossings to infinite size using a cubic polynomial
in 1/L. For finite-size curves that do not cross but has an
overshoot we identify the temperature of each finite-size curve
at the point where the magnetization curve turns back, and
then extrapolate these points to the infinite L limit using
a cubic polynomial in 1/L. A third method we use, which
also works when the magnetization curve is single-valued,
is to use the expected behavior of the magnetization near a
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(a)
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M
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FIG. 7. Order parameters for Jz = −1, and (a) J2 = 0.51, (b)
J2 = 2.0 for various system sizes L = 100–400. Darker curves in-
dicate larger sizes. The stripe magnetization squared is shown as
positive values, while the nematic order parameter I is shown as
negative values. The red vertical lines indicate the temperature where
the magnetization curves of the largest system size turns back. We
take such an overshoot to indicate a first-order phase transition and
the red vertical line to mark the associated Tc.

continuous phase transition M = A(Tc − T )β . To do so we
make a Kouvel-Fisher plot [19], i.e., we plot (− d ln M

dT )
−1

versus T and find for each finite-size curve the temperature
where this quantity crosses the temperature axis. These are
finally extrapolated to the infinite-size limit using a cubic
polynomial in 1/L. For Jz = −1.0 and J2 = 0, these methods
give results that are very close to each other: Tc = 1.52083
(disc.) and Tc = 1.52077 (Kouvel-Fisher). This is to be com-
pared with the most accurate Monte Carlo result [20] which is
Tc = 1.442928(77), a relative difference of ∼5%. We attribute
this difference to the lack of vertex corrections in our self-
consistent equations. For very weakly coupled layers where
the system is almost two dimensional we use a fourth method
where the magnetic Tc is determined as the temperature at
which the spin-spin correlation length diverges, see Sec. VI.

We now turn to the weakly frustrated FM regime 0 <

J2 < 0.5 with isotropic interlayer couplings Jz = −1. We find
that for increasing J2, Tc goes down, and the magnetization
overshoot seen for finite sizes at J2 = 0 quickly becomes
smaller. For J2 > 0.5, there is no longer a low-temperature
finite FM magnetization. Instead the dominating divergence of
the susceptibility is at �Q = (π, 0, 0) or �Q = (0, π, 0) which
indicates stripe magnetic order which we will denote by M.
In addition there is also a finite value of the nematic order
parameter I , see Fig. 7(a). In this figure (and in following
figures), the stripe magnetization squared is shown as positive
values, while the nematic order parameter is shown as neg-
ative values. Finite size effects are small for J2 = 0.51, and
those present indicate that the jump in the order parameters
increases slightly with system size. Thus we conclude that
for J2 = 0.51 there are simultaneous discontinuous phase
transitions in both the nematic order parameter I and the
stripe magnetization M, which we write in short-form Id/Md,
where the d means discontinuous. On further increasing J2

this simultaneous Id/Md character of the transition persists
up to the largest J2 value studied, J2 = 2, see Fig. 7(b). The
quantitative changes upon increasing J2 include: larger finite
size effects, increasing Tc, and smaller jumps in the order
parameters.

0
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1

M
2

0 0.5 1
T

-0.5

I
FIG. 8. Order parameters for Jz = −1.0 and J2 = 0.495. The

nematic order parameter I is shown as negative values. The dominant
magnetization is shown as positive values. An intermediate regime is
clearly visible with nonzero nematic order parameter I .

For J2 = 0.495, i.e., slightly less than the boundary be-
tween the FM and the stripe phase, the peak magnetic ordering
wave vector changes with temperature from being FM at high
temperatures, to stripe order, and then back to FM again at
the lowest temperatures. The intermediate stripe order is also
indicated by the finite temperature region with nonzero I in
Fig. 8. Thus, at finite temperatures, the nematic phase extends
slightly into the region J2 < 0.5.

Summarizing these results for Jz = −1 gives the phase
diagram shown in Fig. 9(a) where the black curve shows the
continuous FM phase transition while the red curve marks the
discontinuous simultaneous nematic and stripe phase transi-
tions. The blue curve which is slightly bent towards the FM
phase defines the boundary between the ordered FM and stripe
phases. The phase diagram for Jz = −0.1 similarly obtained
is shown in Fig. 9(b). To estimate the quantitative accuracy
of the Jz = 1 phase diagram we have performed independent
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FIG. 9. Phase diagrams for (a) Jz = −1.0 and (b) Jz = −0.1.
Disorder-FM (solid black), disorder-stripe (dashed red), and FM-
stripe (dotted blue) phase boundaries.
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TABLE I. Comparisons of critical temperatures with Monte
Carlo simulations for Jz = −1 and selected values for J2.

J2 Monte Carlo Nematic Bond theory Deviation(%)

0.45 0.693 ± 0.005 0.757 9
0.55 0.696 ± 0.005 0.768 10
1.0 1.331 ± 0.003 1.413 6
2.0 2.308 ± 0.008 2.428 5

Monte Carlo simulations using a combination of overrelax-
ation and Metropolis updates on cubic lattices with linear sizes
up to L = 28. The critical temperatures were determined from
the Monte Carlo simulations as the crossing-point of Binder
cumulants for the uniform/stripe magnetization L = 24 and
L = 28 system sizes and are shown in Table I.

For weaker coupling Jz between the layers, the phase
diagram is richer. In particular, the nematic and stripe phase
transitions cease to occur simultaneously, and there is a finite
temperature window where nematic long-range order exists
without magnetic stripe order. This last fact can be seen
from Fig. 10(a) at Jz = −0.0001 and J2 = 0.8. There the
magnetization curves M for different system sizes cross each
other and the nematic order parameter I becomes nonzero,
with no overshoot, at a higher temperature than the mag-
netization crossings occur. The Tc of the stripe magnetic
order is determined by extrapolating the crossings of suc-
cessive finite-size magnetization curves using a cubic poly-
nomial in 1/L. These curves are single-valued so we con-
clude that these transitions are continuous. In what follows
we indicate these split phase transitions by writing (Ic,Mc),
where the phase transition with the highest Tc is written
first. This intermediate temperature region with nematic but
no stripe order exists also for smaller J2 almost all the
way to the FM phase as can be seen from Fig. 10(b) for
J2 = 0.513.

Very close to the FM phase, J2 ≈ 0.506, the nematic order
parameter develops an additional kink feature at a finite value
of I which rapidly becomes an overshoot, Figs. 10(c) and
10(d). For these values of J2 the M curves also overshoot at
the same T as the kink feature in I . However, their magnitudes
decrease with increasing system size. In each of the panels
Figs. 10(c)–10(e) there is a temperature region close to Tc of
the nematic phase transition where the procedure of iterating
the self-consistent equations converges very slowly. In fact
there is a small temperature region (typically a little less than
10% of Tc), indicated by the orange thick line, where we are
unable to find solutions to the self-consistent equations for the
largest system size. For J2 even smaller, the branch of I which
indicates the region of nematic order without magnetic order
quickly moves down in temperature, and concomittantly the
crossings of the magnetizations move up in temperature and
end up as overshoots which again indicate an Id/Md transition,
see Figs. 10(e) and 10(f). Thus, close to J∗

2 ≈ 0.505, there
is a rapid change from a split regime with two continuous
phase transitions to a regime with simultaneous discontinuous
phase transitions. The corresponding phase diagram for Jz =
−0.0001 is shown in Fig. 11.
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FIG. 10. Order parameters for Jz = −0.0001. (a) J2 = 0.8,
(b) 0.513, (c) 0.506, (d) 0.5054, (e) 0.503, and (f) 0.5005. The
different curves are for different system sizes, the darkest being
the largest system size. The nematic order parameter I is shown as
negative values while the stripe magnetic order parameter squared is
shown as positive values. The orange thick lines indicate temperature
intervals of very slow convergence in solving the nematic bond
equations.

For even weaker interplane coupling |Jz| < 0.0001 the
nematic phase boundary (orange curve in Fig. 11) stays almost
unchanged as it becomes equal to the nematic phase transition
boundary for a 2D frustrated Heisenberg magnet shown in
Fig. 12. Our numerical values for the critical temperatures
in Fig. 12 are 7%–14% higher for J2/J1 � 0.7 than those
obtained by Monte Carlo simulations [11]. Note also that
the nematic phase extends slightly into the region J2 < 0.5
at finite temperatures also for the strictly 2D case. This is
contrary to Ref. [11] where Monte Carlo data show evidence
of an infinite slope at J2 = 0.5.

The other phase boundaries move to lower temperatures,
compliant with the expectation that a 2D system cannot
sustain long-range magnetic order in accordance with the
Mermin-Wagner theorem [12]. A plot of the magnetic Tc for
J2 = 1 as a function of |Jz| is shown in Fig. 13, and shows
a logartihmic behavior Tc ≈ 0.722 + 0.0149 ln |Jz| which we
interpret to be the first terms in a series expansion of Tc =
a/(1 + b ln (1/|Jz|)), with a and b independent of Jz, which
is the renormalization group expectation for Ns = 3 spatially
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FIG. 11. Phase diagram for Jz = −0.0001. The inset shows a
blow-up of the region where all lines meet. The black line is the
disorder-FM phase transition. The orange line is the disorder-nematic
phase transition where the nematic phase has no long-range stripe
magnetic order. The green line is where the magnetic order sets in.
The dashed red line is the simultaneous Id/Md phase transition. The
dotted blue line is the phase boundary between the ordered FM and
the ordered stripe magnetic phases.

anisotropic nonlinear σ models with a small microscopic in-
plane coupling [21].

It is interesting to explore for what values of J2 the split
regime of separate nematic and magnetic stripe phase transi-
tions occurs as the interplane coupling is lowered from |Jz| =
1. Already at Jz = −0.01 there is a hint of the split regime near
J2 = 0.5: Fig. 14(a) shows simultaneous Id/Md transitions
at J2 = 0.505, and at J2 = 0.52 in Fig. 14(b), the nematic
order parameter becomes nonzero at a higher temperature
than the Id/Md occurs. Although there is a region of slow
convergence in reaching the solution to the self-consistent
equations above this nematic phase transition, it appears to
be continuous as there is no visible overshoot. We thus have
split phase transitions; an Ic occurring at a higher Tc than
the discontinuous stripe magnetic phase transition, that oc-
curs simultaneously with another discontinuous metanematic
transition in the nematic order parameter between two finite
values, a (Ic,Ifd/Md) where the letters fd signifies that the
transition is a discontinuous jump between two finite values of
the nematic order parameter. For J2 = 0.55, Fig. 14(c), the Ic
feature has dropped back below the temperature of the Ifd/Md
transition, resulting in a single simultaneous Id/Md transition.
So for Jz = −0.01, the split transitions occur only in a narrow
parameter region J∗

2 ≈ 0.513 < J2 < J∗∗
2 ≈ 0.534. The differ-

ences in critical temperature in the split region for Jz = −0.01
are also small; for J2 = 0.52, we find �Tc/Tc ∼ 0.5%.

A wider region of split behavior exists when |Jz| is further
lowered to Jz = −0.002. What is especially interesting is how
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0.498 0.5 0.502
J

2

0

0.05

T
c

FIG. 12. The nematic Tc vs J2 for the two dimensional model
(|Jz| = 0). The inset shows a zoom in on the region J2 ≈ 0.5.

the nature of the split phase transitions appears to change
as J2 is varied. For Jz = −0.002 this is illustrated in Fig. 15
and goes as follows. A simultaneous Id/Md exists up to J∗

2 ≈
0.505, Fig. 15(a). For J2 = 0.51, Fig. 15(b), the nematic order
parameter experiences an Ic before there is an Md concomit-
tant with a discontinuous jump in the nematic order parameter
between two finite values, i.e., an (Ic,Ifd/Md). The discontin-
uous character of this lower temperature metanematic Ifd/Md

10
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-5

10
-4

|J
z
|

0.52

0.53

0.54

0.55

0.56

0.57

0.58

T
c

FIG. 13. The magnetic Tc vs. |Jz| for J2 = 1. The values of Tcs
are here obtained by the Kouvel-Fisher analysis locating the temper-
ature where the spin-spin correlation length diverges as described in
conjunction with Fig. 20 in Sec. VI.
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FIG. 14. Order parameter curves for Jz = −0.01, (a) J2 = 0.505,
(b) 0.52, and (c) 0.55 for various system sizes.
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FIG. 15. Order parameters for Jz = −0.002, (a) J2 = 0.505,
(b) 0.51, (c) 0.55, (d) 0.9, (e) 1.1, and (f) J2 = 1.2 for various system
sizes.
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transition weakens rapidly as J2 is increased, see Fig. 15(c). At
J2 = 0.55, the magnetic transition appears continuous (Mc),
and the jump in the nematic order parameter at the magnetic
transition is changed into a weak kink-like feature signaling
a regime of two distinct continuous phase transitions with
separate Tc values, (Ic,Mc), similar to that shown in Fig. 10(a).
The relative difference in the Tc values is largest for the
smallest values of J2 after the splitting occurs and changes
only slightly for an extended range of J2. However, for J2 large
enough the Tc values approach each other again and the nature
of the phase transitions changes. At J2 = 0.9, Fig. 15(d), the
nematic order parameter bends slightly back for the biggest
system sizes, thus the highest temperature transition becomes
Id, while the lower temperature phase transition still appears
to be continuous Mc; (Id,Mc). For even larger J2, the two
phase transitions come even closer in temperature, and now
also the magnetic phase transition becomes discontinuous, so
that at J2 = 1.1, Fig. 15(e) there are two slightly separated
discontinuous phase transitions; an (Id,Ifd/Md). At even big-
ger values of J2, Fig. 15(f), the upper discontinuous transition
Id moves below the simultaneous transition, resulting in a
single simultaneous Id/Md again. The boundary value, for
Jz = −0.002, where the split transitions merge again is J∗∗

2 =
1.13. The value of J∗∗

2 increases rapidly as |Jz| is further
lowered, and exceeds the largest value considered here (J2 =
2) for Jz = −0.0001. A plot of J∗

2 and J∗∗
2 versus |Jz| is shown

in Fig. 16.

VI. SPIN CORRELATIONS

For J2 > 0.5, the Fourier transform of the spin-spin corre-
lation function χ�r ≡ 〈�S�r · �S0〉 is dominated by peaks around
(±π, 0, 0) and (0,±π, 0). These peaks generally have differ-
ent shapes along qx, qy, and qz directions, and in the nematic
phase the peaks related by a π/2 lattice rotation about the
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FIG. 17. χ�q in the (qx, qy ) plane for J2 = 0.6, Jz = −0.0001 at a
temperature T = 0.31 just below the nematic phase transition.

z axis also have different heights, see Fig. 17, while peaks
related by a π rotation about the z axis have equal heights.

Approximating these peaks by Lorentzians, we can write
the real-space spin-spin correlation function as

χ�r ∝
∑

�q

(
A

ξ 2
2 (qx − π )2 + ξ 2

1 q2
y + ξ 2

z q2
z + 1

+ A′

ξ ′2
1 q2

x + ξ ′2
2 (qy − π )2 + ξ ′2

z q2
z + 1

)
ei�q·�r (23)

where the lattice spacing has been set to unity. Un-
primed(primed) symbols refer to the (±π, 0, 0)((0,±π, 0))
peaks, and ξ−1

i is the half width half maximum of the peak
in the direction along the real space stripes (i = 1), in-plane
perpendicular to the stripes (i = 2) and perpendicular to the
stripes in the z direction (i = z). Carrying out the summations
one obtains

χ�r ∝ A cos(πx)

ξ1ξ2ξz
f (|�r ′|) + A′ cos(πy)

ξ ′
1ξ

′
2ξ

′
z

f (|�r ′′|), (24)

where �r ′ = ( x
ξ2

,
y
ξ1

, z
ξz

), �r ′′ = ( x
ξ ′

2
,

y
ξ ′

1
, z

ξ ′
z
) and f (r) = 2π2

r e−r .
For temperatures above the nematic phase transition the

peaks are related by a π/2 rotation about the z axis, i.e.,
ξ1 = ξ ′

1, ξ2 = ξ ′
2, ξz = ξ ′

z and A = A′. This means that the
in-plane correlation function along one of the axes, here the
x axis, is

χ(x,0,0) ∝ f

(
x

ξ2

)
cos(πx) + f

(
x

ξ1

)
. (25)

The spin correlation function, Eq. (25), is thus governed by
two components: an oscillating component that decays with
correlation length ξ2 and a uniform component that decays
with correlation length ξ1. The difference between ξ1 and ξ2

measures the ellipticity of the peaks of the susceptibility in
momentum space. For weak interlayer couplings, the correla-
tion length ξz is much smaller than ξ1 and ξ2.

For temperatures below the nematic phase transition, one
set of peaks will become higher and narrower than the other
set. In the case of a negative nematic order parameter, the
peaks at (±π, 0, 0) will dominate, leading to A � A′ and
ξ1 � ξ ′

1 etc. Therefore, in the nematic phase with negative
nematic order parameter, the spin-spin correlation function
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FIG. 18. Inverse correlation lengths vs T for Jz = −0.0001 and
J2 = 1 for a lattice with 2400 × 2400 × 48 sites. Shown are 0.01ξ−1

z

(green dashed), ξ−1
2 (red dot-dashed), ξ−1

1 (black solid), and the
nematic order parameter I (light blue solid).

along the stripes (y direction) is given at long distances by

χ(0,y,0) ∝ f

(
y

ξ1

)
. (26)

Similarly the in-plane correlation function perpendicular to
the stripes becomes

χ(x,0,0) ∝ f

(
x

ξ2

)
cos(πx). (27)

For our finite lattice system with periodic boundary condi-
tions, we extract the width of the peak in the i direction by
fitting the values of χ�q along a line in direction i in �q space
through the point �Q using the functional form

A

2(1 − cos(qi − Qi ))ξ 2
i + 1

, (28)

where A is independent of �q and the cosine takes care of the
q-space periodicity. Here we have �Q = (π, 0, 0). The inverse
correlation lengths in the three directions so obtained are
shown as a function of T for J2 = 1 and Jz = −0.0001 in
Fig. 18. We note that the correlation lengths are in general
different, also above the nematic phase transition. Due to the
very weak coupling Jz between the layers, the correlation
length in the z direction is correspondingly small (note that we
have plotted 0.01ξ−1

z in Fig. 18). Especially noteworthy is the
fact that the correlation lengths increase much more rapidly
with lowering temperature below the nematic phase transition
than above. In fact, this difference in behavior can be taken
as an observational signature of the nematic phase transition
alone.

To derive the relation between the magnetic correlation
length and the Ising-nematic order parameter near Tc, we
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expand the self-energy in Eqs. (10) and (17) to linear order
in the order parameter I . Next we expand near the peaks
of χ�q as in Eq. (23), and substitute this expression into the
equation for the order parameter, Eq. (19). Since χ�q is peaked
near �Q and its symmetry-related points, we may perform a
calculation similar to the one yielding Eq. (25) to write the
order parameter as

I = NsT

2V

⎡
⎣ ∑

�q∼(0,π,0)

1

Jeff �q + �0(1 − αI )

−
∑

�q∼(π,0,0)

1

Jeff �q + �0(1 + αI )

⎤
⎦, (29)

where the first (second) sum over �q is restricted to the region
around the peak at (0, π, 0)[(π, 0, 0)], and Jeff �q = J�q − �′

�q
may be expanded near its minima [as in Eq. (23)], �′

�q is
the point-group symmetric part of the self-energy and α is
a parameter determined below. �0 is the value of � at Tc.
Expanding Eq. (29) to linear order in I on its right side, we
obtain the relation

α =
⎛
⎝NsT �0

2V

∑
�q

K−2
eff �q

⎞
⎠

−1∣∣∣∣∣∣T =Tc . (30)

Upon inspection of Eqs. (23) and (29), one sees that the
susceptibility peak heights and widths may be expanded in
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FIG. 19. Scaled spin correlation lengths and susceptibility peak
heights vs. I close to the nematic phase transition for Jz = −0.0001
and J2 = 1. The quantities specified in the legends are plotted as
the y values. The dashed lines have slopes 4.46 and 8.79. For Jz =
−0.0001 and J2 = 1, Eq. (30) gives α = 8.55.
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FIG. 20. Kouvel-Fisher plot showing K (T ) ≡ −( ∂ ln ξ1
∂T )−1 vs T .

Jz = −0.0001 and J2 = 1. The different curves are for different
system sizes and aspect ratios with grey scale coding such that the
darkest curves correspond to the largest system sizes. Two families
of system sizes are used L × L × L/50 with L = 400 − 2400, and
L × L × L/20 with L = 400–1800. The red curve is the best fit to a
quadratic polynomial for the largest system size 2400 × 2400 × 48
restricted to the temperature region T ∈ [0.587, 0.61].

powers of the order parameter I . Keeping only the linear term
(valid near Tc where I � 1), one finds that

A(A′) = A0(1 ∓ αI ), (31)

ξi(ξ
′
i ) = ξi,0(1 ∓ αI/2) (i = 1, 2, z), (32)

where the 0 subscript indicates the value at T = Tc (i.e.,
I = 0). As a result, both the peak height (A) and width (ξ−1)
exhibit a nonanalytic temperature variation across the nematic
phase transition, in an amount directly proportional to I . This
scaling behavior for the correlation lengths and the amplitudes
is shown in Fig. 19.

To investigate the diverging behavior of the correla-
tion length associated to the magnetic phase transition
which occurs below the nematic phase transition we have
made a Kouvel-Fisher analysis in Fig. 20 showing K (T ) ≡
−( ∂ ln ξ1

∂T )−1 versus T for the same parameters as used in
Fig. 18. Taking into account also the leading irrelevant opera-
tor with a scaling dimension y1 < 0, we expect that close to Tc

the Kouvel-Fisher function behaves as K (T ) = 1
ν

(T − Tc) +
B(T − Tc)y+1 where y = −y1ν > 0 and B is a constant. In
Fig. 20, we have plotted K (T ) for different system sizes.
We see that finite-size effects are visible as low-temperature
upturns for all system sizes, but that the infinite size behavior
can be inferred by extrapolating the largest system size results
for temperatures above the finite size upturn. We find that a
value y = 1 gives a good fit to the behavior of the largest
system. Fixing y = 1, we find a best fit, shown as the red
curve in Fig. 20, of K (T ) = 1

0.678 (T − Tc) − 29.316(T − Tc)2

174404-11



SYLJUÅSEN, PAASKE, AND SCHECTER PHYSICAL REVIEW B 99, 174404 (2019)

with Tc = 0.5854. The value of ν = 0.678 so obtained is rea-
sonably close to the value ν = 0.7112 for the 3D Heisenberg
universality class [22].

VII. DISCUSSION

Our results show that the phase diagram of the layered
J1-J2 model is remarkably rich. In particular, in the frustrated
regime, J2>0.5, it has separate nematic and magnetic phase
transitions as the temperature is lowered, if the interplane
coupling |Jz| is small enough. For weak interplane couplings,
|Jz| � 0.0001, both of these phase transitions are continuous
for most values of J2(> 0.5). At |Jz| = 0.0001 the relative
difference in critical temperatures of these transitions is rather
small, ∼7%, but increases as |Jz| is further reduced. This is
because the critical temperature of the nematic phase transi-
tion stays almost unchanged below |Jz| = 0.0001, while the
critical temperature of the magnetic phase transition goes to
zero.

For values of J2 very close to 0.5, the nature of the phase
transitions change, and eventually both become simultaneous
first order phase transitions for J2 → 0.5. Exactly how this
change happens is complicated as evidenced by Fig. 10. In
particular it involves a metanematic phase transition where
the already finite nematic order parameter exhibits a jump
to another value when the magnetic phase transition occurs,
Fig. 10(d).

In contrast, the regime of split transitions does not ex-
ist for strong interplane couplings |Jz| > 0.01. There the
phase transition into the magnetic phase from the disordered
side is a discontinuous transition where the nematic and
stripe magnetic order sets in simultaneously for all values
of J2 > 0.5.

For intermediate interplane couplings, 0.0001 < |Jz| <

0.01, the J2 regime of split phase transitions opens up from
a value J∗

2 ≈ 0.5, which is very weakly dependent on Jz and
continues up to a value J∗∗

2 where it closes and reverts to
simultaneous first order transitions. The value J∗∗

2 is very close
to J∗

2 for |Jz| = 0.01 and increases rapidly as |Jz| is lowered.
Our results show also that the spin-spin correlation length,

or more accurately its temperature derivative, can serve as a
probe to detect the nematic phase transition. This is so because
the correlation length depends directly on the nematic order
parameter, thus it exhibits a sharp increase with decreasing
temperature exactly at the nematic phase transition. For split

transitions, this is separate from the normal critical divergence
of the correlation length that happens at a lower temperature
where the stripe magnetic phase transition occurs.

Our results are strictly only valid for the classical layered
J1-J2 model, so we can only speculate on how our results
carry over to the corresponding quantum model. What seems
plausible on general grounds is that quantum effects will
enhance fluctuations and be most dramatic in the regions
of the phase diagram where there are adjacent phases and
the critical temperatures are the lowest, especially the region
close to J2 = 0.5. Evidences of a gapless spin liquid phase
in the two dimensional quantum spin-1/2 J1-J2 model near
J2 = 0.5 was recently reported in Ref. [23] but this region
is notoriously difficult to address. For higher spins with less
quantum fluctuations, we do expect that the high temperature
features discussed here, such as the splitting of the nematic
and the stripe magnetic phase transitions, carry over to the
quantum case.

When it comes to the applicability of our results to the iron-
based superconductors, it will depend on how well iron-based
superconductors are based on models of localized magnetic
moments. We do not address this question. Nevertheless, our
results show that virtually all of the rich phenomena predicted
to occur in effective classical models of itinerant magnetic
moments [14] appear also in the classical J1-J2 model for
weak interplane couplings. Split continuous phase transitions
is a generic feature for weak interplane couplings. More exotic
phase transitions, such as split metanematic transitions, were
found only in narrow regions of the phase diagram.

In addition to obtaining the results for the J1-J2 model, we
have in this paper also taken the opportunity to outline the
details of the nematic bond theory introduced in Ref. [15]. As
demonstrated here, this is an efficient and versatile method for
dealing with frustrated magnetism, even for very large system
sizes, and can serve as a supplement to computationally
demanding Monte Carlo techniques.
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