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The paper is concerned with the surface acoustic waves propagating in half-infinite one-dimensional
piezoelectric phononic crystals of general anisotropy. The phononic crystal is formed of periodically repeated
perfectly bonded layers, and its exterior boundary is one of the layer boundaries. The surface waves occurring in
the so-called full stop bands are considered. It appears that the number of surface waves existing within a full stop
band for a given layered structure is interrelated with their number in the same stop band for the phononic crystal
different from the given one only due to the reversed ordering of layers within a period. A series of statements
is proved on the maximum possible number of surface waves per full stop band for both these structures in
total, i.e., embracing surface-wave occurrences in either one or the other structure. The analysis is performed for
the electrically closed, electrically open, and electrically free types of boundary conditions on the mechanically
free crystal surface, in which cases it admits a correspondingly different number of surface waves. A subsidiary
instance of mechanically clamped surface is addressed as well. It is observed that the piezoelectric coupling
can create new surface waves which disappear when piezoelectric coefficients turn to zero. Besides the general
case of arbitrary anisotropy, we also consider two specific situations where the crystallographic symmetry allows
the existence of sagittally polarized piezoactive surface waves and of shear horizontally polarized piezoactive
surface waves. Numerical examples of surface-wave branches under various boundary conditions are provided.
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I. INTRODUCTION

The piezoelectric effect is one of the fundamental physical
properties of anisotropic media which exists in dielectric
and semiconductor materials without the center of inversion
(except those of 432 symmetry class) [1–3]. The coupling
between mechanical and electric fields occurring in piezo-
electric materials essentially influences various phenomena,
underlies new physical effects, and paves the way to miscel-
laneous applications in different areas of technology [3]. The
piezoelectric effect shows up in bulk and surface physical pro-
cesses. In particular, it can markedly change the velocity and
polarization of the bulk elastic modes propagating in piezo-
electric solids [4,5]. A new channel of the phonon-current
carriers’ interaction comes about in piezoelectric semiconduc-
tors because of the electric field accompanying mechanical
vibrations [6–9]. On the one hand, such interaction increases
the phonon attenuation and decreases the current carrier mo-
bility [10–12]. On the other hand, by applying a high dc
electric field which makes electrons or holes move with the
velocity exceeding the velocity of the elastic wave, one can
use this interaction to amplify elastic waves and effectively
generate coherent phonons; see, e.g., [8,13]. Moreover, the
piezoelectric effect allows as well a direct generation of elastic
waves by ac electric fields which is widely used in practice
[14]. Besides these examples, the piezoelectric coupling can
lead to the formation of polaritons of specific types [15–18].

Piezoelectricity driven modifications of the surface dy-
namics are also quite remarkable. Apart from the analogs of

above-listed bulk phenomena, the piezoelectric effect gives
rise to surface acoustic waves (SAWs) not existing in non-
piezoelectric solids. The SAWs generated by ac electric fields
in piezoelectric substrates are intensively used in modern
telecommunication systems [19]. The electric field of SAWs
propagating in a piezoelectric semiconductor is known to
affect the exciton dissociation in quantum wells [20]. Another
series of effects occurs due to the fact that the surface vibra-
tions induce the electric field not only inside piezoelectric
materials but also in the exterior space. This electric field
can couple waves in two piezoelectric solids separated by
a vacuum gap. As a result, the gap can guide a special
type of localized waves commonly referred to as gap waves
[4], and the bulk waves/phonons can penetrate from one
piezoelectric to another through the gap. Due to the same
tunneling mechanism, an additional channel of heat exchange
appears [21].

The general theory of SAWs on homogeneous piezo-
electric substrates of arbitrary anisotropy, approached in
Refs. [22,23], was developed in full in Refs. [24,25] and
independently, by using a somewhat different approach, in
Ref. [26]. It was proved there that two SAWs can exist on a
piezoelectric substrate, whereas at most one SAW is allowed
on a purely elastic substrate [27,28]. The piezoelectric effect
was shown to also change the maximum permissible number
of interfacial waves at solid-solid contacts [29,30].

In recent years much effort has been made for studying
bulk and surface acoustic waves in both the purely elastic
and the piezoelectric man-made periodic structures called the
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phononic crystals [31–34]. In particular, many studies were
devoted to the wave propagation in one-dimensional (1D)
phononic crystals, also termed superlattices, which consist of
periodically arranged layers [35]. The most numerous results
were obtained for the shear horizontally polarized SAWs
considered under different settings in phononic crystals of
various compositions [36–45]. The sagittally polarized two-
partial and the fully coupled three-partial SAWs were also
widely investigated [46–54]. The spectra of SAWs along with
the bulk-wave reflection and transmission coefficients were
studied as well for periodic solid-fluid structures [55,56] and
for solid-solid and solid-fluid Fibonacci superlattices [57–60].
Results of the numerical modeling of SAW propagation
in two-dimensional piezoelectric phononic crystals may be
found in [61–63].

In Ref. [64], we have studied the existence of SAWs in
half-infinite 1D purely elastic phononic crystals. It was proved
that, for any given wave number, at most three SAWs can exist
in a full stop band (i.e., in the spectral zone where no bulk
modes can exist), this number embracing the SAWs which
occur in the given phononic crystal and those which occur
in the related phononic crystal of the same set of layers but
arranged in the reversed order within a period. Only one SAW
per full stop band can exist in the special case of a phononic
crystal whose layer arrangement in a period is symmetric with
respect to its midplane.

The present paper is concerned with the existence problem
of SAWs in half-infinite 1D piezoelectric phononic crystals of
general anisotropy under different types of electrical condi-
tions supplied at the crystal surface, namely, under the electri-
cally closed, electrically open, and electrically free boundary
conditions. The impact of piezoelectric effect will be shown
to increase the maximum permissible number of SAWs pera
stop band as compared to the purely elastic case. Our analysis
is going to be largely based on the analytical properties of the
surface impedance and related matrices. The concept of the
surface impedance and admittance matrices was introduced in
Ref. [65] and developed in Refs. [24,25,27,28,66,67] as a key
tool of the theory of SAWs in homogeneous elastic and piezo-
electric anisotropic substrates. These matrices also appear
fruitful for constructing recursive schemes of numerically sta-
ble modeling of SAW propagation in multilayered media; see,
e.g., [52] (there is a large number of later publications on this
issue, but it is beyond the scope of our paper). Algebraic and
analytical properties of the surface impedance and admittance
defined for a 1D elastic phononic crystal were established
and applied to the SAW existence problem in Ref. [64]. In
the present paper, we will elaborate this formalism for 1D
piezoelectric phononic crystals.

The paper is organized as follows. The background of our
study is introduced in Sec. II, where we outline some basics
of the theory of acoustoelectric waves in piezoelectrics and
formulate the boundary conditions to be considered further
in the paper. In Sec. III we examine the possible number of
SAWs per full stop band in the phononic crystals of general
anisotropy and of certain types of crystallographic symmetry
subjected to various boundary conditions. Numerical exam-
ples illustrating the analytical conclusions are provided in
Sec. V. Section VI summarizes the results obtained. In the
Appendix some auxiliary properties of the surface admittance

and impedance of a half-infinite piezoelectric phononic crys-
tal are proved.

II. ACOUSTOELECTRIC WAVES IN PERIODIC
PIEZOELECTRIC MATERIALS

Consider a piezoelectric nonconductive medium character-
ized by the density ρ, the elastic stiffness tensor at constant
electric field cE

i jkl , the piezoelectric tensor ei jk , and the di-
electric permittivity tensor at constant strain εS

i j (i, j, k, l =
1, 2, 3). The velocity of sound being four to five orders
smaller than that of light, the quasielectrostatic approximation
is commonly a good approximation for the description of
electric fields accompanying elastic waves in piezoelectric
materials [4,5]. Within this framework, the propagation of
time-harmonic acoustoelectric waves with a frequency ω is
described by the equations

∂σi j

∂x j
= −ρω2ui,

∂Di

∂xi
= 0, (1)

complemented by the constitutive relations

σi j = cE
i jkl

∂uk

∂xl
+ eki j

∂ϕ

∂xk
, Di = ei jk

∂u j

∂xk
− εS

i j

∂ϕ

∂x j
, (2)

where σi j are the components of the mechanical stress tensor
σ̂ , ui are the components of the mechanical displacement
u(r, t ), xi are the components of the radius vector r, Di are the
components of the electric displacement D(r, t ), and ϕ(r, t ) is
the electric potential.

Assume the given medium to be multilayered. Let m be the
unit vector parallel to the plane of layer interfaces and n be the
unit vector orthogonal to this plane. A plane wave traveling in
this medium with the wave number k is sought in the form

(
u(r, t)

ϕ(r, t )

)
=

(
a(y)

φ(y)

)
ei(kx−ωt ), (3)

where y = (nr) and x = (mr). By combining Eqs. (1) and (2),
the displacement and potential amplitudes a(y) and φ(y) can
be incorporated together with the amplitudes of the normal
components of the stress and of the electric displacement,

(
σ̂(r, t )n

D(r, t ) · n

)
= −ik

(
l(y)

d (y)

)
ei(kx−ωt ), (4)

to obey a system of eight first-order ordinary differential
equations depending on the y coordinate only. This system
can be written in either of two equivalent forms [24,25],

1

ik

dξP

dy
= N̂PξP, P = 
, F, (5)

where ξ
(y) = (a, φ, l, d )t and ξF (y) = (a, d, l, φ)t are
the eight-component state vectors of amplitudes (the
superscript t means transposition) and

N̂


= −
(

(nn)−1(nm) (nn)−1

(mn)(nn)−1(nm) − (mm) + ρ(ω/k)2Î′ (mn)(nn)−1

)

(6)
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is the 8 × 8 matrix built from 4 × 4 matrices (ab) whose
elements are contractions of the three-component vectors
a, b = n or m with the material tensors of the medium,
namely, (ab)IJ = akEkIJlbl , I, J = 1, . . . , 4, where EkIJl =
cE

kIJl , I, J = 1, 2, 3, Ek4Jl = ekJl , J = 1, 2, 3, EkI4l = elIk ,
I = 1, 2, 3, Ek44l = −εS

kl . The symbol Î′ denotes the 4 × 4
matrix with three unit elements I ′

ii = 1, i = 1, 2, 3, the other
ones being zero. The material tensors are piecewise constant
functions of y in that their values vary from one layer to
another. The matrix N̂F is obtained from the matrix N̂


by permuting fourth and eighth rows and fourth and eighth
columns. Using two complementary 
 and F representations
facilitates the analysis of SAWs on piezoelectric substrates
subjected to various electrical boundary conditions. Where
appropriate, we will apply a common index P = 
, F to both
above representations.

In what follows we consider a 1D phononic crystal con-
sisting of periodically repeated sequences of homogeneous
piezoelectric nonconductive layers with a perfect mechanical
and electrical bonding along their mutually parallel interfaces.
According to Eq. (5) for ξ
 and to its analog for ξF , the unit-
cell transfer matrix transmitting the wave field amplitudes
ξP(y) through a period of n layers is

M̂P = M̂P,nM̂P,n−1 . . . M̂P,1, (7)

where M̂P,m = exp(ikhmN̂P,m) is the transfer matrix through
the mth layer with the coefficient matrix N̂P,m and thickness
hm.

In view of the symmetry relation

N̂P = T̂N̂t
PT̂, P = 
, F, (8)

where

T̂ =
(

Ô Î
Î Ô

)
(9)

with Î and Ô being the 4 × 4 unit and zero matrices, respec-
tively, the matrix (7) obeys the relation

M̂−1
P = T̂M̂†

PT̂, (10)

where the symbol † denotes the Hermitian transpose.
Basic concepts of the theory of wave propagation in peri-

odic media rest on the eigenproblem for the matrix M̂P,

M̂PζP,α = γαζP,α, α = 1, . . . , 8. (11)

The eigenvalues γα are the same for both 
 and F representa-
tions and the eigenvectors ζP,α are composed as follows:

ζ
,α =
(

U
,α

V
,α

)
, U
,α =

(
Aα


α

)
, V
,α =

(
Lα

Dα

)
,

ζF,α =
(

UF,α

VF,α

)
, UF,α =

(
Aα

Dα

)
, VF,α =

(
Lα


α

)
, (12)

where the components Aα , 
α , Lα , and Dα have the same
physical meaning as a, φ, l, and d, respectively.

The algebraic properties of the eigenvalues and eigenvec-
tors of M̂P are similar to those of the transfer matrix for
nonpiezoelectric periodic structures [53,68], since they are
based on identity (10) common for both cases. By (10), the

eigenvalues γα of M̂P appear in pairs satisfying either

|γα| = |γα+4| = 1, (13)

or

γα = 1

γ ∗
α+4

for |γα| �= 1, (14)

where ∗ means complex conjugate and α is fixed among
1, . . . , 4. Given the value of k, the frequency intervals, where
at least one pair of eigenvalues satisfies (13), are called pass
bands, and the frequency intervals, where all eight eigenvalues
obey (14), will be called full stop bands. The orthonormaliza-
tion and completeness relations following from Eq. (10) for
a common case of a diagonalizable M̂P specify within a full
stop band in the form

ζ
†
P,αT̂ζP,β = δα+4,β , α = 1, . . . 4, β = 1, . . . , 8, (15)

4∑
α=1

(ζP,α ⊗ T̂ζ ∗
P,α+4 + ζP,α+4 ⊗ T̂ζ ∗

P,α ) =
(

Î Ô
Ô Î

)
, (16)

where δα,β is the Kronecker symbol and ⊗ denotes the dyadic
product.

A wave field taken at some reference coordinate y0 can
always be presented as a linear superposition of the eigen-
vectors ζP,α , and then this wave field at arbitrary y is a
similar superposition of the partial modes ξP,α (y), each being
generated by the eigenvector ζP,α . The so-defined αth partial
mode taken at the edge of the pth period of thickness H is
ξP,α (y0 + pH ) = γ

p
α ζP,α , i.e., the mode corresponding to the

eigenvalue |γα| = 1 retains a constant absolute value at all
period edges, while the absolute value of the mode with |γα| �=
1 increases or decreases with growing number of periods.
By analogy with the case of a homogeneous medium, the
former and the latter partial modes can be called bulk and
inhomogeneous, respectively. Thus, at least one pair of partial
modes in a pass band are bulk ones, and all eight partial modes
in a full stop band are inhomogeneous, four increasing and
four decaying ones.

It is noteworthy that for any k �= 0 there always exists a
frequency interval 0 < ω < ωu which is a full stop band. This
can be proved by invoking the time average internal energy
Wα associated with an αth partial mode and integrating it over
the period in the static limit ω = 0. Using Eq. (A6) of the
Appendix yields

〈Wα〉ω=0 =
∫ y0+H

y0

Wα (y)|ω=0dy

= − ik

8
(|γα|2 − 1)(U†

F,αVF,α − V†
F,αUF,α )y0 . (17)

Since Wα is strictly positive for all ω and k, except that it
vanishes at both ω and k being zero, assuming k �= 0 and
appealing to Eq. (17) shows that |γα| �= 1 for any α at ω = 0
and hence by continuity at nonzero ω < ωu, where ωu is some
positive upper bound. It should also be added that the value
ω = 0 is not a stop band/pass band border and therefore it
differs from all other band edges in that zero frequency does
not necessitate a degeneracy among the eigenvalues γα of M̂P

and it keeps finite the matrix �̂P (see Sec. III A).
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(a)

(b)

FIG. 1. Example of a “direct” half-infinite phononic crystal with
the order of layers 1-2-3 (a) and the corresponding “reversed” half-
infinite phononic crystal with the order of layers is 3-2-1 (b).

Turning to the context of SAWs, we further specify the
phononic crystal in hand as a periodic half space truncated
at one of the layer surfaces, which is therefore natural to
take as a period edge. In order that a SAW satisfies the
mechanical and electrical boundary conditions at the half-
space surface, it should usually consist of four partial modes.
Hence SAWs usually occur in the full stop bands. As we
shall see, the existence of SAWs in a half-infinite phononic
crystal y > 0, characterized by an arbitrary given arrangement
of layers within a period and referred to below as the “direct”
phononic crystal [Fig. 1(a)], is interrelated to the existence of
SAWs in the associated “reversed” phononic crystal, occupy-
ing the half space y < 0 and consisting of the same layers as
the direct phononic crystal but arranged within a period in
the reversed order relatively to that in the direct phononic
crystal [Fig. 1(b)]. The direct and reversed phononic crystals
can be viewed as two halves of the infinite phononic crystal
cut along a period edge. Given that the material tensors of
both phononic crystals are defined with respect to the same
coordinate system and the orientations of the vectors m and n
are unchanged when passing from one structure to the other
(see Fig. 1), the unit-cell matrix M̂′

P of the reversed phononic
crystal is the inverse of unit-cell matrix M̂P of the direct

phononic crystal,

M̂′
P = e−ikh1N̂P,1 . . . e−ikhn−1N̂P,n−1 e−ikhnN̂P,n = M̂−1

P . (18)

Thus the matrices M̂′
P and M̂P have the same eigenvectors

ζP,α, while their eigenvalues are inverse of each other: γ ′
α =

1/γα , α = 1, . . . , 8, i.e., the direct and reversed phononic
crystals share the same spectrum of pass bands and stop bands.

Note that the period of an infinite phononic crystal may be
counted from any level on the periodicity axis, not necessarily
coinciding with a layer interface. Therefore, the boundary
surface of the periodic half space, which is a result of the
cleavage of the infinite phononic crystal at its arbitrary level,
can always be taken as a period edge. Correspondingly, all
subsequent derivations equivally apply to a more general
case than that depicted in Fig. 1, namely, the thickness of
the external layer may be different from the thickness of
the internal layers of the same material. The transfer matrix
M̂P changes with changing the location of period edges and
so do its eigenvectors. Hence, the characteristics of SAWs
depend on whether the external layer has the same thickness
as the similar internal layers or it is different. However, the
eigenvalues of M̂P and hence the band spectrum are invariant
to where the period edge is taken.

Considering in what follows the full stop bands, let us label
the eigenvalues |γα| < 1 and |γα| > 1 by α = 1, 2, 3, 4 and
α = 5, 6, 7, 8, respectively. Under this numbering, the former
four eigenvalues generate the partial modes decaying at y →
∞ and hence constituting the SAWs in the direct phononic
crystal, and the latter four eigenvalues generate the partial
modes decaying at y → −∞ and constituting the SAWs in
the reversed phononic crystal.

Sticking to the above-specified numbering of the partial
modes, the SAW wave fields taken at the surface y = 0 of
the direct and reversed phononic crystals, respectively, can be
written as

ξP =
4∑

α=1

bαζP,α, ξ ′
P =

8∑
α=5

b′
αζP,α, (19)

where the coefficients bα and b′
α are to be found from the

boundary conditions set at y = 0. The main attention of this
paper is paid to SAWs on the mechanically free surface
with three different types of electrical conditions, while the
occurrence of SAWs on the mechanically clamped surface is
briefly discussed in Sec. III D.

Mechanically free electrically closed surface. This bound-
ary condition implies the vanishing of the traction and electri-
cal potential at y = 0, that is,

4∑
α=1

bαVF,α = 0,

8∑
α=5

b′
αVF,α = 0 (20)

for the direct and reversed phononic crystals, respectively. In
practice, the mechanically free electrically closed boundary
condition is used to describe the traction-free surface which is
coated with a thin metallic film such that it completely shields
the electric field and at the same time does not produce any
mechanical loading.

Mechanically free electrically open surface. In this case, the
traction vanishes at y = 0 along with the normal component of
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electric displacement, so that

4∑
α=1

bαV
,α = 0,

8∑
α=5

b′
αV
,α = 0 (21)

for the direct and reversed phononic crystals, respectively.
This is a somewhat model case which is, however, of clear
interest for several reasons. First, as it will be seen in Sec. III,
the information regarding the existence of SAWs on the
mechanically free electrically open surface is required for ana-
lyzing the existence of SAWs in the common case of a crystal-
vacuum interface. Second, this condition can be viewed as the
limiting case of the boundary condition on a crystal-vacuum
interface when the relative dielectric permittivity of the crystal
is far greater than unity. Third, bearing in mind that the
piezomagnetic effect is described by a third-order tensor with
the same symmetry in indices as the piezoelectric tensor [1],
we note that all considerations to be developed for the case
of a piezoelectric phononic crystal with an electrically open
surface can be carried over to the case of a piezomagnetic
phononic crystal with a thin superconductive coating merely
via interpreting Dn,α as the normal component of magnetic
induction.

Mechanically and electrically free surface (crystal-vacuum
interface). This setting describes the most common type of
electrical contact which maintains continuity of the corre-
sponding electric parameters. It implies that the acoustoelec-
tric wave (3) taken in the direct phononic crystal y > 0 is
accompanied in the vacuum half space y < 0 by the wave of
electric potential ϕ(v)(r, t ) and displacement D(v)(r, t ) such
that

ϕ(v) = 
(v)eky+i(kx−ωt ), D(v) · n = −ε0kϕ(v), (22)

where ε0 is the vacuum permittivity and k > 0 is assumed.
Thus the vanishing of traction and the continuity of potential
and of normal component of electric displacement yield

4∑
α=1

bαLα = 0,

4∑
α=1

bα
α = 
(v),

4∑
α=1

bαDα = −iε0

(v).

(23)
In the case of acoustoelectric wave in the reversed phononic
crystal y < 0, the accompanying quasielectrostatic wave in
the vacuum half space y > 0 is described by

ϕ(v)′(r, t ) = 
(v)′e−ky+i(kx−ωt ), D(v)′ · n = ε0kϕ(v)′, (24)

hence the boundary condition at y = 0 requires

8∑
α=5

b′
αLα = 0,

8∑
α=5

b′
α
α = 
(v)′,

8∑
α=5

b′
αDα = iε0


(v)′.

(25)
Note that the boundary condition (23) or (25) applies

as well to the case of a dielectric adjoined to the crystal
without a mechanical contact. The only modification, which
is due on adopting this case, is replacement of ε0 with the
relative permittivity ε of the dielectric medium. Note also that
one way to change the effective permittivity of the exterior
from ∞ to ε0 (i.e., to pass from the electrically closed to
electrically free boundary conditions) is to adjust, without a
mechanical contact, a conducting layer with an outer face

at some distance h from the crystal surface y = 0. Given an
acoustoelectric wave traveling with a wave number k in the
crystal, the effective dielectric permittivity of the exterior will
be ε = ε0 coth(kh).

III. EXISTENCE OF SURFACE WAVES

A. Electrically closed and open surfaces

In accordance with Eqs. (20) and (21) an immediate form
of the dispersion equations for SAW in the direct and the
reversed phononic crystal is, respectively,

det(V̂P ) = 0 and det(V̂′
P ) = 0, (26)

where the symbols V̂P and V̂′
P stand for the 4 × 4 matrices

whose columns are the vectors VP,α , α = 1, 2, 3, 4, and VP,α ,
α = 5, 6, 7, 8, respectively. However, Eqs. (26) as well as
certain other equivalent forms of the dispersion equations
cited in the end of Sec. III A are not actually suitable for the
analysis of the SAW existence.

Our approach will proceed from the dispersion equations,
each of which embraces the occurrences of the SAWs in
the direct and reversed phononic crystals simultaneously. For
formulating and analyzing such equations, we introduce the
matrix

�̂P ≡
(

�̂P,11 �̂P,12

�̂P,21 �̂P,22

)

= i
4∑

α=1

[ζP,α ⊗ T̂ζ ∗
P,α+4 − ζP,α+4 ⊗ T̂ζ ∗

P,α], (27)

which is defined within the full stop bands via the eigenvectors
of M̂P normalized according to Eq. (15). The key element is
its off-diagonal block 4 × 4 block �̂P,21. By its construction
as defined in (27), �̂P,21 is a Hermitian matrix. Combining
(27) with the completeness relation (16) yields

�̂P,21 = 2i
4∑

α=1

VP,α ⊗ V∗
P,α+4 = 2iV̂PV̂′†

P , (28)

and hence

det(�̂P,21) = 16 det(V̂P ) det(V̂′∗
P ). (29)

Therefore

det(�̂F,21) = 0 (30)

and

det(�̂
,21) = 0 (31)

are the dispersion equations for SAWs on the mechanically
free electrically closed and open surfaces, respectively, each
of these equations embracing the SAW occurrences in the
direct and the reversed phononic crystals.

In the following derivations, we will also use the upper off-
diagonal block �̂P,12 of (27). It is also a Hermitian matrix and
its definition by Eq. (27) admits an equivalent representation

�̂P,12 = 2i
4∑

α=1

UP,α ⊗ U∗
P,α+4 = 2iÛPÛ′†

P , (32)
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where ÛP and Û′
P denote the 4 × 4 matrices whose columns

are the vectors UP,α , α = 1, 2, 3, 4, and UP,α , α = 5, 6, 7, 8,

respectively.
Additional insight into the properties of the matrices �̂P,21

and �̂P,12 can be gained via the matrices of surface admittance
ŶP, Ŷ′

P and impedance ẐP = Ŷ−1
P , Ẑ′

P = Ŷ′−1
P of the direct

and reversed phononic crystals, respectively. We introduce the
admittances by the definition

UP,α = iŶPVP,α, α = 1, . . . , 4,

UP,α = −iŶ′
PVP,α, α = 5, . . . , 8, (33)

and the impedances follow as the inverse of (33). Combining
this definition with the orthogonality property (15) shows that
the admittance and impedances in the full stop bands are
Hermitian matrices. Moreover, by manipulating (33) together
with (15) and comparing the result with (28) and (32), or else
by observing from Eqs. (27) and (15) that

�̂PζP,α = iζP,α, α = 1, . . . , 4,

�̂PζP,α = −iζP,α, α = 5, . . . , 8, (34)

and then using these relations to express the admittances and
impedances via the blocks of �̂P, one can verify that

�̂P,21 = 2(ŶP + Ŷ′
P )−1, �̂P,12 = −2(ẐP + Ẑ′

P )−1. (35)

The above link allows us to take advantage of the sign-
definiteness property of the frequency derivative of the ad-
mittance and impedance matrices, which is established in the
Appendix [see Eqs. (A3) and (A4)]. It reads that

∂ŶP

∂ω
and

∂Ŷ′
P

∂ω
are positive definite matrices in full stop bands.

(36)

∂ẐP

∂ω
and

∂Ẑ′
P

∂ω
are negative definite matrices in full stop bands.

(37)

Hence, by virtue of Eq. (35),

∂�̂P,21

∂ω
and

∂�̂P,12

∂ω

are negative definite matrices in full stop bands. (38)

Further to this point, denote the real eigenvalues and unit-
normalized eigenvectors of �̂P,21 by τP,α and eP,α , respec-
tively. The spectral decomposition �̂P,21 = ∑4

α=1 τP,αeP,α ⊗
e∗

P,α and the orthogonalities e†
P,αeP,β = δαβ , (∂e†

P,α/∂ω)eP,α =
0 validate the equality e†

P,α (∂�̂P,21/∂ω)eP,α = ∂τP,α/∂ω. The
Hermitian quadratic form on the left-hand side is negative in
the full stop bands due to Eq. (38)1. Hence

∂τP,α

∂ω
< 0, α = 1, 2, 3, 4, in the full stop bands. (39)

The derivatives of the eigenvalues of �̂P,12 possess analogous
properties.

All elements of the matrix �̂P (27) are finite everywhere
inside the full stop bands, including possible points of degen-
eracy of the eigenvalues of M̂P at which the finiteness of �̂P

is not obvious but still can be shown to hold true (see a similar
derivation for the pure elastic case in Ref. [64]). Therefore the

eigenvalues of the matrices �̂P,21 and �̂P,12 are finite and so
they are monotonically decreasing functions of frequency in
the full stop bands.

Coming back now to the dispersion equations (30) and
(31), it follows from the monotonicity of τP,α (ω) and Eq. (39)
that each of the τP,α vanishes not more than once within a
full stop band. Therefore, each of equations (30) and (31) can
have at most four roots per full stop band. It is essential to add
that a possible simultaneous vanishing of both det(V̂P ) and
det(V̂′

P ) at the same frequency, i.e., coexistence of the SAW
in the direct phononic crystal with the SAW in the reversed
one, cannot be due to vanishing of only one eigenvalue τP,α .
Indeed, in view of the fact that the frequency derivatives of
det(V̂P ) and det(V̂′

P ) are finite, the occurrence of a common
zero of det(V̂P ) and det(V̂′

P ) at some frequency entails a
zero-frequency derivative of det(�̂P,21) = ∏4

i=1 τP,i at this
frequency. By virtue of Eq. (39), ∂τP,α/∂ω �= 0. Hence, at
least two eigenvalues τP,α must turn zero. Thus any zero of
each eigenvalue τP,α corresponds to one and only one SAW,
which propagates in either the direct or the reversed phononic
crystal.

On these grounds, we conclude that, given the value of k,

at most four SAWs within a full stop band can occur
in total in the direct and reversed phononic crystal
with mechanically free electrically closed surface; (40)

at most four SAWs within an upper full stop band
can occur in total in the direct and reversed phononic
crystals with mechanically free electrically open surface.

(41)

Statements (40) and (41) proceed from a possibility of �̂P,21

to be positive-definite at the lower edge of a given stop band
and in this the four eigenvalues of �̂P,21 are positive near the
lower edge. It can always be the case in principle, except
for the matrix �̂
,21 at the edge ω = 0 of the lowest stop
band 0 < ω < ωu. The latter is the reason for a restrictive
reservation of (41) to any upper full stop band, which implies
any full stop band except the lowest one. In fact the case of
lowest stop band 0 < ω < ωu requires a special discussion
due to the additional sign-definiteness properties of �̂P,21

at ω = 0.

By virtue of Eqs. (A7) and (A8) of the Appendix,

ŶF , Ŷ′
F , ẐF ,

and Ẑ′
F are positive-definite matrices at ω = 0. (42)

Therefore, in view of Eq. (35),

�̂F,21 is a positive-definite matrix at ω = 0,

�̂F,12 is a negative-definite matrix at ω = 0. (43)

According to Eqs. (30) and (43)1, the case of lowest stop band
in a phononic crystal with electrically closed surface precisely
fits statement (40).

The matrices Ŷ
 and Ŷ′

 and, as a result, �̂
,21 are not

sign-definite at ω = 0 (see the Appendix). However, look-
ing at Eqs. (12), (28), and (32) one can notice that the
upper diagonal 3 × 3 block of the matrix �̂
,21 coincides
with the similar block of the matrix �̂F,21 and hence is
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positive-definite at ω = 0, due to Eq. (43)1. Besides, the
diagonal 44th component of �̂
,21 is equal to the similar
component of �̂F,12 and, hence, is negative at ω = 0, due
to Eq. (43)2. From these two features of the matrix �̂
,21,
it follows that three of its eigenvalues are positive and one is
negative at ω = 0. Thus statement (41) can be supplemented
by the following conclusion:

at most three SAWs within the lowest stop band can occur
in total in the direct and reversed phononic crystals
with mechanically free electrically open surface. (44)

The case of the lowest stop band admits another particular
result, namely, the existence criterion of SAWs in a structure
with electrically closed surface. On the one hand, this criterion
is based on Eq. (43)1 which implies that all eigenvalues of
�̂F,21 are positive at ω = 0. On the other hand, it exploits the

behavior of �̂F,21 in the vicinity of the stop band upper edge
ωu. To this end, we note that the matrix �̂P usually diverges
at the stop band/pass band edges, where two eigenvalues
γα and γα+4 = 1/γ ∗

α of the unit-cell matrix M̂P degenerate
into one eigenvalue γd with |γd | = 1 and two corresponding
eigenvectors ζP,α and ζP,α+4 merge into one eigenvector ζP,d =
(UP,d VP,d )t . This eigenvector generates a bulk partial mode
with energy flow parallel to the layer interfaces which may
be called a limiting wave, by analogy with the case of a
homogeneous half space [24,25,69]. Using the perturbation
theory similarly as it has been done with respect to the purely
elastic structures in Ref. [64], it can be specified that at
least one eigenvalue of �̂F,21 tends to minus infinity as ω →
ωu − 0, unless in the exceptional case when the limiting wave
satisfies the boundary condition VF,d = 0 at the mechanically
free electrically closed surface. On these grounds, we can
conclude that

at least one SAW exists within the lowest stop band in either
the direct and the reversed phononic crystal with
mechanically free electrically closed surface, unless the limiting
wave at ωu satisfies the boundary condition at this surface. (45)

The limiting wave usually does not satisfy the boundary
condition, hence one SAW in one or the other phononic
crystal usually does exist. Note that a similar criterion cannot
be extended to SAWs possibly occurring in the lowest stop
band under the electrically open condition or to SAWs in
the upper stopbands under any boundary conditions, because
none of these cases ensure that all four eigenvalues of the
matrix appearing in the corresponding dispersion equation are
positive at stop band lower edge.

We note that the dispersion equations equivalent to
Eqs. (30) and (31) can be formulated in terms of the
impedances in the form det(ẐP ) = 0 and det(Ẑ′

P ) = 0 for the
direct and reversed phononic crystals with mechanically free
electrically closed or open surface. However, this formulation
is not suitable for considerations of the SAW existence. The
point is that the impedance eigenvalues may have poles,
which occur within the full stop bands at the frequencies of
SAWs supported by the mechanically clamped surface (see
Sec. III D). Hence, the sign-definiteness properties (37) do not
guarantee that an eigenvalue of ẐP or Ẑ′

P cannot have more
than one zero within a full stop band.

In view of definitions (12) and (33), another equivalent
form of the dispersion equations for piezoactive SAWs in
a given phononic crystal with mechanically free electrically
closed or open surface is Y
,44 = 0 and YF,44 = 0, respec-
tively, where YP,44 is the 44th component of the admittance ŶP.
Similarly to the previous example, these equations on their
own do not reveal a possible number of SAWs. At the same
time, their use allows us to illuminate a sequence of the SAW
frequencies for the electrically closed and open surfaces. Ac-
cording to the identity Y
,44 = −1/YF,44 which also follows
from Eqs. (12) and (33), the zeros and poles of Y
,44 in a full
stop band are associated with SAWs on the mechanically free
electrically closed and electrically open surface, respectively,

while the inverse correspondence holds for YF,44. Thus the
difference between the neighboring zeros and poles of any of
these functions YP,44 is the measure of piezoelectric coupling
in the sense of [22]. By virtue of Eq. (36), ∂YP,44/∂ω > 0,
so the zeros and poles of YP,44 follow one after another in
frequency. Hence any two frequencies of SAWs, occurring at
some fixed k in a given phononic crystal with mechanically
free electrically closed surface, envelope one frequency of
SAW, occurring at this k in the same crystal with mechanically
free electrically open surface, and vice versa. These properties
of the component YP,44 of 4 × 4 admittance of a periodic half
space are similar to the properties of eigenvalues of 2 × 2
blocks of 8 × 8 admittance of transversely inhomogeneous
piezoelectric plates; see [70].

B. Electrically free boundary condition

A handy form of the dispersion equation for piezoac-
tive SAWs on a crystal-vacuum interface can be obtained
by introducing the mechanically free boundary condition
(23)1 into the definition of, say, F admittance follow-
ing from (33), which provides the relation

∑4
α=1 bαDα =

iYF,44(
∑4

α=1 bα
α ). Inserting here the electrical part of the
boundary condition (23) and then repeating the same proce-
dure using the boundary condition (25) leads to the sought
dispersion equations for the direct and reversed phononic
crystals, respectively, in the form

YF,44 = −ε0, Y ′
F,44 = −ε0. (46)

The curves YF,44 and Y ′
F,44 within a full stop band have a

positive frequency derivative [see Eq. (36)], which makes the
dispersion equation in the form (46) convenient for graphical
analysis.

174305-7



A. N. DARINSKII AND A. L. SHUVALOV PHYSICAL REVIEW B 99, 174305 (2019)

FIG. 2. Possible frequency dependencies of YF,44 and Y ′
F,44 in an

upper full stop band, which ensure the existence of five SAWs within
this stop band in total in the direct and reversed phononic crystals
bounded by vacuum.

An example is provided in Fig. 2, where two possible
patterns of the frequency dependence of YF,44 and Y ′

F,44 at
a fixed k are shown such that they admit five intersections
of the curves YF,44 and Y ′

F,44 with the straight line −ε0,

i.e., five roots of Eqs. (46)1 and (46)2 in total, within an
upper stop band ωl < ω < ωu (ωl �= 0). Aiming to establish
a maximum possible number of SAWs per stop band in
the direct and reversed phononic crystals, we note from this
graphical perspective that the prerequisite for a maximum
number of roots of Eqs. (46) is a maximum number of zeros
and poles of the functions YF,44 and Y ′

F,44. As mentioned in
the end of Sec. III A, the zeros and poles of YF,44 and of

Y ′
F,44 indicate the SAW solutions on the mechanically free

electrically open surface and electrically closed surface, re-
spectively. In consequence, according to statements (40) and
(41), the maximum permissible number of zeros and poles of
the functions YF,44 and Y ′

F,44 per upper full stop band in total
is 4. This exactly corresponds to the case displayed in Fig. 2,
where both plotted patterns assume four zeros and four poles
split one way or another between the YF,44 and Y ′

F,44 curves.
Hence we may suppose that the maximum number of SAWs
for a fixed k and frequency varying within an upper full stop
band is 5.

Yet, in order to make sure that the number of SAWs
cannot be more than 5, we need to refute one putative option
which may seem plausible in the course of inspecting various
modifications of Fig. 2. One may notice that six intersections
of the YF,44 and Y ′

F,44 curves with a straight line −ε0 could
occur if the functions YF,44 and Y ′

F,44 having the maximum
total number of four zeros and four poles within an upper full
stop band would both be negative near the lower stop band
edge ωl . However, this is impossible. Indeed, the assumed
occurrence of, e.g., four poles of YF,44 and Y ′

F,44 in total implies
that in the immediate vicinity of ωl the matrix �̂F,21 and,
hence, the matrix �̂−1

F,21 are positive-definite. In view of (35),
in this instance YF,44 + Y ′

F,44 must be positive, so YF,44 and
Y ′

F,44 cannot both be negative. Thus five SAWs observed in
Fig. 2 is really their maximum possible number within any
upper stop band, and we are in the position to formulate the
following statement: Given the value of k,

at most five SAWs within an upper full
stop band can occur in total in the direct and
reversed phononic crystals bounded by vacuum. (47)

Passing to the case of lowest stop band 0 < ω < ωu, we
note that, in view of Eq. (44), the curves YF,44 and Y ′

F,44 in total
can have at most three zeros within the lowest stop band. In
addition, both YF,44 and Y ′

F,44 are positive at ω = 0 by Eq. (42).
These properties are incorporated in Fig. 3 which visualizes
the maximum possible number of four SAWs at a fixed k
in the lowest stop band. All other admissible configurations
of the YF,44 and Y ′

F,44 curves yield the same conclusion. Hence
we can formulate the following statement:

At most four SAWs in the lowest stop band
can occur in total in the direct and reversed
phononic crystals bounded by vacuum. (48)

Interestingly, one SAW on the phononic crystal-vacuum
interface of the direct and/or of the reversed phononic crystals
can come about within an upper full stop band even when no
SAWs exist for both the mechanically free electrically closed
and electrically open boundary conditions. Such a situation
can occur provided that YF,44 < 0 and/or Y ′

F,44 < 0 at ω = ωl .
It is impossible in the lowest stop band, since YF,44 > 0 and
Y ′

F,44 > 0 at ω = 0.

C. Effect of crystallographic symmetry

No assumptions of any crystallographic symmetry of the
layer materials have been used in the foregoing deriva-
tions. Let us now discuss two particular cases where the
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FIG. 3. Possible frequency dependencies of YF,44 and Y ′
F,44 in the

lowest stop band, which ensure the existence of four SAWs in total
in the direct and reversed phononic crystals bounded by vacuum.

crystallographic symmetry uncouples the piezoactive sagit-
tally polarized SAWs (S-SAWs) and the piezoactive shear
horizontally polarized SAWs (SH-SAWs).

Piezoactive S-SAWs come about when the sagittal plane
spanned by the vectors m and n is the common symmetry
plane for all layers of the phononic crystal [4]. For this
propagation geometry, eight partial modes are split into two
uncoupled sets describing six piezoactive sagittal modes and
two nonpiezoactive SH modes. Correspondingly, the S-SAWs
are determined through the 3 × 3 principal submatrices of the
basic 4 × 4 wave matrices, such as Ẑ, Ŷ, and �̂21, obtained
from the latter by deleting the third row and third column. The
properties of a 3 × 3 principal submatrix ensue from those
of a full 4 × 4 matrix. On this basis, it is straightforward to
adapt the derivations and conclusions of Secs. III A and III B
to the case of S-SAWs. As a result, it follows that each of
the maximum possible numbers of SAWs, established under
different conditions in statements (40), (41), (44), (47), and
(48) with respect to the case of general anisotropy, reduces
exactly by 1 when it is related to specifically the S-SAWs. In
more detail, this means that (40), (41), and (44) can be adapted
to predict the existence of, respectively, at most three and at
most two S-SAWs under the conditions specified, while the
similar adaptation of (47) and (48) predicts the existence of,
respectively, at most four and at most three S-SAWs.

Consider piezoactive SH-SAWs. The waves of this type
arise when the sagittal plane (m, n) is perpendicular to an
even-fold symmetry axis simultaneously occurring in all lay-
ers of the phononic crystal [4]. In such a case, eight partial
modes are split into two uncoupled sets describing four non-
piezoactive sagittal modes and four piezoactive SH modes.
Correspondingly, the 4 × 4 wave matrices break up into two
2 × 2 diagonal blocks, the SH-SAWs being determined by the
lower 2 × 2 block. It appropriately “inherits” the properties
of the full 4 × 4 wave matrix. Thus, similarly as above for

S-SAWs, the general conclusions of Secs. III A and III B
can be appropriately modified to establish that the maximum
possible number of SH-SAWs is smaller by 2 than its value for
SAWs in the general anisotropic case described by statements
(40), (41), (44), (47), and (48).

Note that, in view of the modal uncoupling, the pass
band/stop band spectrum splits into two independent spectra
for sagittal and SH modes freely overlapping each other, so
the above-mentioned statements specified differently for S-
SAWs and for SH-SAWs also imply correspondingly refined
definitions of the sagittal or the SH full stop bands as the
spectral zones where, respectively, two pairs of sagittal modes
are inhomogeneous regardless of the SH modes or a pair of
SH modes is inhomogeneous regardless of the sagittal modes.
In the same spirit, it is expedient to introduce two independent
sagittal and SH lowest stop bands, whose edge frequency ω(S)

u
or ω(SH )

u is associated with the limiting wave of sagittal or
SH polarization, respectively. Using these terms, the existence
condition for SAWs on the electrically closed surface (45) can
be reformulated separately for S-SAWs and for SH-SAWs in
understanding that the frequency ωu of the lowest stop band
edge mentioned in (45) implies its different values for the
sagittal and the SH modes.

D. Mechanically clamped surface

The condition of clamped surface, which demands zero
mechanical displacement a = 0 at y = 0, is not actually
met in practice. However, the knowledge about existence
or nonexistence of SAW solutions on a clamped surface
is important, because these solutions bring in the poles of
otherwise monotonic impedance eigenvalues whose presence
essentially affects the existence considerations for SAWs on
the mechanically free surface or for other SAW types, e.g.,
such as occur in the layer-substrate structure (see Ref. [71]).

The dispersion equation for SAWs on the mechanically
clamped electrically closed or open surface is det (�̂P,12) = 0,

see Eq. (32), and a similar equation in the case of electrically
free surface is Z−1

F,44 = −ε0 or Z ′−1
F,44 = −ε0 for the direct or

the reversed phononic crystals, respectively. Altogether, the
existence of SAWs on the mechanically clamped surface is
determined by the matrix block �̂P,12 of (27), in the same
sense as their existence on the mechanically free surface is
determined by the block �̂P,21. In view of Eq. (38), the
eigenvalues of both matrices �̂P,12 and �̂P,21 possess the
same property of monotonicity in frequency within the full
stopbands. In consequence, as far as the upper stop bands are
concerned, all the statements regarding SAWs on the mechan-
ically free surface subjected to various electrical conditions
apply to SAWs on the mechanically clamped surface. A differ-
ent situation, however, takes place in the lowest stop band due
to dissimilar sign-definiteness properties of the eigenvalues of
�̂P,12 and �̂P,21 specifically at ω = 0. According to (43)2,

all four eigenvalues of �̂F,12 are negative at ω = 0. Hence
no SAWs can occur in the lowest stop band in the case of
mechanically clamped electrically open surface. In turn, since
the upper diagonal 3 × 3 block of �̂
,12 coincides with the
similar block of �̂F,12 while the lowest diagonal component
of �̂
,12 equals that of �̂F,21, three eigenvalues of �̂
,12 are
negative and one is positive at ω = 0. As a result, a single
SAW propagating either only in the direct or only in the
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reversed phononic crystals can exist in the lowest stop band
in the cases of mechanically clamped electrically closed or
electrically free surface.

Note that a possible existence of a SAW on the mechani-
cally clamped surface of a 1D piezoelectric phononic crystal
is a specific feature in comparison with the case of SAWs in
homogeneous piezoelectric substrates, where no SAWs can
exist on a clamped surface for whichever anisotropy of the
substrate material [24,25] unless it is multiferroic, i.e., unless
it possesses both piezoelectric and piezomagnetic properties
[72,73].

IV. NUMERICAL EXAMPLES

With a view to provide an example of SAWs un-
der a possibly sizable impact of piezoelectricity, we as-
sume a phononic crystal made of layers of two materials
with strong piezoelectric properties, namely, of BaTiO3 and
of 0.24[Pb(In1/2Nb1/2)O3]-Pb(Mg1/3Nb2/3)O3-PbTiO3 (stan-
dard notation PIN24-PMN-PT). The latter belongs to a family
of lead magnesium niobate-lead titanate (PMN-PT) based
materials, which are widely used in actuators, sensors, and ul-
trasonic imaging transducers [74]. Both chosen materials are
of the 4mm class of crystallographic symmetry. We suppose
that the crystallographic axes X, Y , and Z of all layers are
mutually aligned. The axis Z is parallel to the fourfold axis.
For brevity, BaTiO3 and PIN24-PMN-PT will be referred to
as BTO and PPP, respectively, and a half-infinite bilayered
phononic crystal will be termed PPP/BTO when the external
layer is PPP, and BTO/PPP when the external layer is BTO.
Regarding, e.g., PPP/BTO as the direct phononic crystal and
BTO/PPP as the reversed one, we will indicate the param-
eters of the former and the latter without and with a prime,
respectively, in agreement with the notations used throughout
the paper.

The material constants of BTO are cE
11 = 275, cE

12 = 179,
cE

13 = 152, cE
33 = 165, cE

44 = 54.3, cE
66 = 113 (all in GPa

units); e31 = −2.65, e33 = 3.64, e15 = 21.3 (all in C/m2

units); εS
11/ε0 = 1744, εS

33/ε0 = 97; ρ = 6020 kg/m3 [3].
The material constants of PPP are cE

11 = 124.3, cE
12 = 109,

cE
13 = 110.2, cE

33 = 124.5, cE
44 = 69.8, cE

66 = 62.1 (all in GPa
units); e31 = −9.11, e33 = 17.6, e15 = 8.52 (all in C/m2

units); εS
11/ε0 = 1611, εS

33/ε0 = 868; ρ = 8122 kg/m3 [74].
The thickness of BTO layers will be set to be 0.75 of the
thickness of PPP layers.

The dispersion curves in the following diagrams are ex-
pressed either in terms of the dimensionless frequency param-
eter ωH/v0, where H is the period of phononic crystal and
the quantity v0 with a meaning of typical velocity is taken in
the calculations to be v0 = 3000 m/s, or else in terms of the
phase velocity V = ω/k. Both ωH/v0 or V are to be plotted
vs the ratio k/kB, in which kB = 2π/H is the Brillouin wave
number.

Let us exemplify piezoactive S-SAWs. For that, we assume
that the normal n to the plane of layer interfaces lies in
the common symmetry plane ZX of layers and we take the
propagation direction m in this plane so that the sagittal
plane (m, n) turns out to be a symmetry plane thus ensuring
uncoupling of the piezoactive sagittal modes. In addition, we
take the normal n to be parallel to the Z axis.

FIG. 4. Frequency vs wave-number dispersion branches of S-
SAWs in the lowest stop band of PPP/BTO and BTO/PPP phononic
crystals with mechanically free electrically closed surface. Grey
region: the first pass band of sagittal waves. White regions: full stop
bands of sagittal waves. Curve 1: slow S-SAW with frequency ωc,1 in
PPP/BTO; curve 2: fast S-SAW with frequency ωc,2 in PPP/BTO;
curve 3: S-SAW with frequency ω′

c in BTO/PPP.

Figure 4 shows the frequency vs wave-number S-SAW
dispersion branches in the lowest stop band of PPP/BTO
(curves 1 and 2) and BTO/PPP (curve 3) phononic crystals
with mechanically free electrically closed surface. It is seen
that faster among two S-SAWs for PPP/BTO occurs only
within a narrow interval of wave number k values and that
the frequency ωc,2(k) of this S-SAW is only slightly less
than the stop band edge frequency ωu(k) (i.e., the frequency
of the sagittal limiting wave; see Sec. III C). For the same stop
band, the velocity vs wave-number curves of S-SAWs both
on electrically closed and the electrically open surfaces are
depicted separately for PPP/BTO and BTO/PPP in Figs. 5
and 6, respectively. Figure 5 also demonstrates the dispersion
dependence of the velocity Vu = ωu/k of the sagittal limiting
wave and Fig. 6 reproduces the same curve as a benchmark.

It follows from Figs. 4–6 that the mechanically free elec-
trically closed surface of PPP/BTO supports two S-SAWs
in the lowest stop band and that one more S-SAW exists on
this surface in the case of BTO/PPP. In turn, one S-SAW
occurs in the same stop band for each phononic crystal with
mechanically free electrically open surface. Thus, in view
of the results of Sec. III C, the total number of S-SAWs,
which embraces their occurrences in the direct and reversed
phononic crystals PPP/BTO and BTO/PPP, is the maximum
possible for the lowest stop band in both cases of electrically
closed and electrically open boundary conditions. We have
also checked that there is one S-SAW in this stop band
for each of the PPP/BTO and BTO/PPP phononic crystals
with electrically free surface. In fact, the velocities of these
S-SAWs are hardly different from the velocities of S-SAWs
on the electrically open surface because of the very large
permittivity of BTO and PPP.

It can be verified that the S-SAW velocities Vc,1 and V ′
c

transform, respectively, to the velocities Vo,1 and V ′
o (see
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FIG. 5. Velocity vs wave-number dispersion branches of S-
SAWs in the lowest stop band of PPP/BTO phononic crystal with
electrically closed and electrically open surface. Vc,1: slow S-SAW
velocity on the electrically closed surface; Vc,2: fast S-SAW velocity
on the electrically closed surface; Vo: S-SAW velocity on the electri-
cally open surface; Vu: velocity of the sagittal limiting wave.

Figs. 4 and 5), as the dielectric permittivity of the exterior
space changes from ∞ (electrically closed surface) to 0
(electrically open surface). Recall that in the case of a purely
elastic phononic crystal with any asymmetric (in particular,
bilayered) arrangement of unit cell the maximum possible
number of S-SAWs per full stop band for direct and re-
versed phononic crystals in total is 2 [64]. Hence one can
interpret the existence of two piezoactive S-SAWs of the
aforementioned type as being primarily due to the elastic
properties of materials, while the piezoelectric effect only
brings in some corrections to these S-SAWs. Correspondingly,
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FIG. 6. Velocitiy vs wave-number dispersion branches of S-
SAWs in the lowest stop band of BTO/PPP phononic crystal with
electrically closed and electrically open surface. V ′

c : S-SAW velocity
on the electrically closed surface; V ′

o : S-SAW velocity on the electri-
cally open surface; Vu: velocity of the sagittal limiting wave.

FIG. 7. Frequency vs wave number of SH-SAWs in the lowest
stop band of PPP/BTO and BTO/PPP phononic crystals with me-
chanically free electrically closed surface. Grey region: the first pass
band of SH waves. White regions: full stop bands of SH waves. Curve
1: S-SAW with frequency ωc in PPP/BTO; curve 2: S-SAW with
frequency ω′

c in BTO/PPP.

the occurrence of a faster S-SAW on the electrically closed
surface of PPP/BTO can be perceived as being caused entirely
by the piezoelectricity.

Consider now piezoactive SH-SAWs in PPP/BTO and
BTO/PPP phononic crystals. To model this case, we as-
sume that the plane of layer interfaces contains the fourfold
symmetry axis, i.e., the crystallographic Z axis, of the con-
stituent layers, hence taking the propagation direction m
orthogonal to this axis provides uncoupling of the piezoactive
SH modes. We also assume that the plane of layer interfaces
coincides with the symmetry plane ZX of the layers.

Figure 7 shows the frequency vs wave-number SH-SAW
dispersion branches in the lowest stop band of PPP/BTO
and BTO/PPP phononic crystals with mechanically free
electrically closed surface. The corresponding velocity vs
wave-number dispersion branches on the electrically closed
and on the electrically open surface of PPP/BTO and
BTO/PPP along with the dispersion dependence of the SH
limiting wave velocity Vu are displayed in Fig. 8. There is one
SH-SAW for each of two PPP/BTO and BTO/PPP phononic
crystals in the case of electrically closed surface, and there is
one SH-SAW for PPP/BTO in the case of electrically open
surface. Thus, according to Sec. III C, in both these cases
the PPP/BTO and BTO/PPP phononic crystals support the
maximum possible number of SH-SAWs in the lowest stop
band. If the surface is bounded by vacuum, then the SH-SAW
exists only in PPP/BTO. Its velocity practically coincides
with that on the electrically open surface.

According to Ref. [64], the lowest stop band of a purely
elastic half-infinite phononic crystal with a bilayered unit cell
always contains one and only one frequency of SH-SAW
occurring in either the direct or the reversed phononic crystals.
Therefore, one of the two piezoactive SH-SAWs observed in
PPP/BTO and BTO/PPP phononic crystals with electrically
closed surface comes about entirely due to the piezoelectric
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FIG. 8. Velocity vs wave-number dispersion curves of SH-SAWs
in the lowest stop band of PPP/BTO and BTO/PPP phononic
crystals with electrically closed surface and with electrically open
surface. Vc: SH-SAW velocity on the electrically closed surface of
PPP/BTO; V ′

c : SH-SAW velocity on the electrically closed surface
of BTO/PPP; Vo: SH-SAW velocity on the electrically open surface
of PPP/BTO; Vu: velocity of the SH limiting wave.

effect. On purely analytical grounds, it is impossible to
determine which of these two waves is “piezoelectricity
borne.” However, taking into account the fact that the SH-
SAW in the lowest stop band exists in PPP/BTO for both
cases of electrically closed and electrically open surfaces, one
can conjecture that it is the SH-SAW in BTO/PPP which
occurs due to the piezoelectric effect.

No SAWs can exist in the lowest stop band of a
purely elastic half-infinite phononic crystal if its surface
is mechanically clamped [64]. In contrast, the lowest
stop band of a piezoelectric phononic crystal admits
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FIG. 9. Velocity vs wave-number dispersion curves of SH-SAWs
in the lowest stop band of PIN-PMN-PT:Mn-BTO phononic crystal
with the mechanically clamped electrically closed surface. Vc: SH-
SAW velocity; Vu: velocity of the SH limiting wave.

the existence of one SAW on the mechanically clamped
electrically closed or electrically free surface. Let us give
an example of such a wave in the case of an electrically
closed surface. Consider a periodically bilayered phononic
crystal formed of BaTiO3 (BTO) and of Mn modified
0.26Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.32PbTiO3

(standard notation PIN-PMN-PT:Mn). Let the exterior layer
be of the latter material. Its crystallographic symmetry
is mm2 and the material constants are as follows:
cE

11 = 200, cE
12 = 106, cE

13 = 46.4, cE
22 = 149, cE

23 = 102,
cE

33 = 150, cE
44 = 18.4, cE

55 = 4.9, cE
66 = 71.4 (all in GPa

units); e15 = 15.2, e24 = 44.8, e31 = 2.38, e32 = −6.23,
e33 = 14.5 (all in C/m2 units); εS

11/ε0 = 679, εS
22/ε0 = 4672,

εS
33/ε0 = 561, ρ = 8120 kg/m−3 [75]. The thickness of BTO

layers is set as 0.3 of the thickness of PIN-PMN-PT:Mn
layers. It is assumed that the fourfold symmetry axes
of BTO layers and the twofold symmetry axes of the
PIN-PMN-PT:Mn layers are mutually aligned and that their
symmetry planes are also parallel to each other and coincide
with the plane of layer interfaces. Given this setting, the
propagation direction orthogonal to the joint symmetry axis
uncouples the piezoactive SH modes. Figure 9 depicts a part
of the SH-SAW dispersion branch occurring in the lowest
stop band curve of the given phononic crystal in the case of
its mechanically clamped electrically closed surface.

V. CONCLUDING REMARKS

The present paper has studied the existence of SAWs in
1D half-infinite piezoelectric phononic crystals of arbitrary
anisotropy. This framework generally precludes finding ex-
plicit expressions for the acoustoelectric wave fields. Instead,
we use particular intrinsic symmetries of the unit-cell transfer
matrix in conjunction with certain sign-definiteness properties
of the surface impedance and admittance matrices, which
altogether allow us to establish the maximum possible number
of SAWs occurring per full stop band in total in the direct and
reverse phononic crystals. This number depends on the type
of electrical conditions supplementing the traction-free condi-
tion on a crystal surface. There is also a difference between
the number of SAWs in the lowest stop bands, which extend
from zero frequency, and in the other full stop bands. The
difference is due to the fact that the admittance and impedance
matrices at ω = 0 possess some specific sign-definiteness
properties, which are missing at the lower edge of the other
full stopbands. The results obtained for the case of arbitrary
anisotropy of constituting layers have also been specialized
for the symmetry-based cases of sagittal and SH piezoac-
tive SAWs. The overall main conclusions are summarized in
Table I. Besides these, the SAWs on a mechanically clamped
surface were briefly considered as well.

Comparing the results of the present paper with those
obtained for purely elastic 1D phononic crystals in Ref. [64]
shows that the piezoelectric coupling increases the possible
number of SAWs, i.e., it allows new types of SAWs not
existing in the purely elastic case. Of course, the emergence of
additional SAWs is only a possibility, which comes into being
provided the piezoelectric effect is strong enough. However,
the only restriction on the piezoelectric coupling is sup-
posed to come from the condition of medium thermodynamic
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TABLE I. Maximum total number of SAWs per full stop band at
a fixed k in the direct and reversed phononic crystals with different
boundary conditions on the mechanically free surface. Notation in
the first column is e closed: electrically closed surface; e open:
electrically open surface; e free: boundary with vacuum. Other
columns refer to the SAWs in the case of general anisotropy, to the
piezoactive S-SAWs, and to the piezoactive SH-SAWs. The notation
(0, ωu) implies lowest stop band and (ωl , ωu) implies upper stop
bands.

SAWs S-SAWs SH-SAWs

Surface (0, ωu) (ωl , ωu) (0, ωu) (ωl , ωu) (0, ωu) (ωl , ωu)

e closed 4 4 3 3 2 2
e open 3 4 2 3 1 2
e free 4 5 3 4 2 3

stability and this does not impose direct upper bounds
upon the piezoelectric coefficients. Therefore the occurrence
of such additional piezoelectricity-stipulated SAWs in 1D
phononic crystals is perfectly feasible in practice. It has been
numerically modeled in Sec. IV.

Note a possible generalization of the present results to
the case of 1D functionally graded phononic crystals. For
such media, the transfer matrix is no longer a product of
a finite number of matrix exponentials but it is a so-called
multiplicative integral of the system matrix; see [68]. This
fact certainly makes the explicit calculations more intricate;
however, all the conclusions on the SAW existence obtained
herein for layered periodic phononic crystals apply as well to
functionally graded periodic materials.

Finally let us point out two issues, which have not been
discussed in this paper but which seem quite worthy of further
study. First, we note that the above-presented results, which
are valid for any ordering of layers within a period of a
phononic crystal, can be substantially specialized for the case
where this ordering is arranged to be symmetric with respect
to the period midplane. In this case, the unit-cell transfer ma-
trix M̂P acquires certain additional algebraic symmetry which
should restrict the maximum possible number of SAWs, like it
was established for the case of purely elastic phononic crystals
in Ref. [64]. Second, the case of SAWs propagating normally
to the layer interfaces also deserves a special attention. It can
be shown that a zero tangential wave number k modifies the
general predictions on the SAW existence. Both these issues
along with some other topics of interest will be considered
elsewhere.
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APPENDIX

Assume a 1D half-infinite phononic crystal y > 0 and
consider a wave of the type (3) in there, which propagates

within a full stop band and vanishes at the infinite depth.
According to [65], its time average local kinetic energy per
unit surface can be cast in the form

E (y) = ρω2

4
|u|2 = −ωk2

8
ξ

†
P

(
∂

∂ω
T̂N̂P

)
ξP

= iωk

8

d

dy

(
ξ

†
PT̂

∂ξP

∂ω

)
, (A1)

where ξP(y) is the solution of Eq. (6) referred to the mth layer.
Note that E certainly remains nonzero at k = 0 because of
the factor k−1 in the definition of l and d , which enter ξP; see
Eq. (4). In view of Eq. (A1), the continuity of the vector ξP(y)
at the layer interfaces, and its zero limit at y → ∞, the total
kinetic energy per unit surface E = ∫ ∞

0 E (y)dy reduces to a
contribution at the surface y = 0, namely

E = − iωk

8

(
ξ

†
PT̂

∂ξP

∂ω

)
y=0

= − iωk

8

(
U†

P

∂VP

∂ω
+ V†

P

∂UP

∂ω

)
,

(A2)
where ξP = ∑4

α=1 bαζP,α and hence UP = ∑4
α=1 bαUP,α ,

VP = ∑4
α=1 bαVP,α, according to the adopted numbering of

those four eigenvectors ζP,α of M̂P which generate the decay-
ing partial modes; see Sec. II A. By (A2), recalling definition
(33) of the admittance for the direct phononic crystal and
assuming that either the vector VP or the vector UP does not
depend on frequency, we obtain, respectively,

E = ωk

8
V†

P

∂ŶP

∂ω
VP or E = −ωk

8
U†

P

∂ẐP

∂ω
UP. (A3)

In the case of reversed phononic crystal y < 0, the total kinetic
energy E

′ = ∫ 0
−∞ E (y)dy satisfies Eq. (A2) with the opposite

sign on the right-hand side, which is then inverted once more
due to the opposite signs in the impedance definitions (33) for
the direct and reversed phononic crystal. Hence

E
′ = ωk

8
V′†

P

∂Ŷ′
P

∂ω
V′

P or E
′ = −ωk

8
U′†

P

∂Ẑ′
P

∂ω
U′

P (A4)

under the condition that, respectively, either V′
P =∑8

α=5 b′
αVP,α or U′

P = ∑8
α=5 b′

αUP,α does not depend on
frequency. Note that the admittances and impedances are
Hermitian matrices and that UP or VP and U′

P or V′
P are

arbitrary constant vectors (i.e., independent of frequency
which can always be arranged via the coefficients bα or
b′

α). Thus, since the kinetic energy is a positive quantity,
Eqs. (A3) and (A4) reveal the corresponding sign-definiteness
of frequency derivatives of the admittance and impedance
matrices, which is expressed in Eqs. (36) and (37).

Now consider the time average local internal energy per
unit surface,

W (y) = 1

8

(
σi j

∂u∗
i

∂x j
− ∂ϕ

∂x j
D∗

j + σ ∗
i j

∂ui

∂x j
− ∂ϕ∗

∂x j
Dj

)
, (A5)

associated with the wave (3) in the mth layer. In the static
limit, by virtue of Eq. (1), the right-hand side of Eq. (A5)
taken at ω = 0 can be presented as a full divergence, which
actually reduces to a derivative in the thickness coordinate
x2 ≡ y, so that

W (y)|ω=0 = 1

8

d

dy
(σi2u∗

i − ϕD∗
2 + σ ∗

i2ui − ϕ∗D2). (A6)
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Thus, assuming a half-infinite phononic crystal y > 0 and
introducing the total internal energy of the wave (3) per unit
surface W = ∫ ∞

0 W (y)dy, we observe from Eq. (A6) that the
static limit of W can be evaluated by exact analogy with
the above instance of the kinetic energy. Recall that, for any
k �= 0, a certain vicinity of zero frequency is always a full
stop band (see Sec. II A) and so the static limit of the wave
(3) can be assumed in the form of a four-partial superposition
of the modes α = 1, . . . , 4 vanishing at the infinite depth.
Using this fact and invoking Hermiticity of the impedance and
admittance matrices, we obtain

W |ω=0 = −1

8
(σi2u∗

i − ϕD∗
2 + σ ∗

i2ui − ϕ∗D2)y=0

= ik

8
(U†

F VF − V†
F UF ) = k

4
V†

F ŶF VF = k

4
U†

F ẐF UF ,

(A7)

where UF and VF are defined as in (A2). An analogous
relation for the total internal energy W

′ = ∫ 0
−∞ W (y)dy in the

reversed phononic crystal y < 0 follows in the form

W
′|ω=0 = k

4
V′†

F Ŷ′
F V′

F = k

4
U′†

F Ẑ′
F U′

F , (A8)

where V′
F and U′

F are defined as in (A4). Since the
internal energy is positive, Eqs. (A7) and (A8) im-
ply positive-definiteness of the static limit of admit-
tance and impedance matrices, which is expressed in
Eq. (42).

The admittances in 
 representation are related at ω = 0
to the electric enthalpy, the appropriate expressions being
similar to Eqs. (A7) and (A8). The electric enthalpy is not
sign-definite [1,3], neither are Ŷ
 and Ŷ′
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