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Dissipative spin chain as a non-Hermitian Kitaev ladder
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We derive exact results for the Lindblad equation for a quantum spin chain (one-dimensional quantum compass
model) with dephasing noise. The system possesses doubly degenerate nonequilibrium steady states due to the
presence of a conserved charge commuting with the Hamiltonian and Lindblad operators. We show that the
system can be mapped to a non-Hermitian Kitaev model on a two-leg ladder, which is solvable by representing
the spins in terms of Majorana fermions. This allows us to study the Liouvillian gap, the inverse of relaxation
time, in detail. We find that the Liouvillian gap increases monotonically when the dissipation strength γ is small,
while it decreases monotonically for large γ , implying a kind of phase transition in the first decay mode. The
Liouvillian gap and the transition point are obtained in closed form in the case where the spin chain is critical.
We also obtain the explicit expression for the autocorrelator of the edge spin. The result implies the suppression
of decoherence when the spin chain is in the topological regime.
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I. INTRODUCTION

With recent advances in quantum engineering, it becomes
increasingly important to study how the coupling to the envi-
ronment affects a system. The time evolution of such an open
system can be described by a master equation. Under rather
general conditions that the evolution is Markovian and com-
pletely positive and trace preserving (CPTP), one obtains the
Lindblad equation [1] for the time-dependent density matrix.
In the past, this quantum master equation had been mostly
used to describe few-particle systems in, e.g., quantum optics.
However, recent years have witnessed a growing interest in
many-particle systems in the Lindblad setting [2–5].

Although there are several approaches to analyze the Lind-
blad equation such as perturbation theory [6,7] and numerical
methods [2,8–10], exact results for the full dynamics are few
and far between. In some cases [11,12], the nonequilibrium
steady states (NESSs) can be constructed exactly, but it is
more challenging to completely diagonalize the Liouvillian
(the generator of the Lindblad equation). In this sense, much
fewer cases are known as exactly solvable models [5,11]. The
difficulty lies in dealing with the space of linear operators,
the dimension of which grows more rapidly than that of the
Hilbert space. This limits the system size amenable to exact
numerical diagonalization. To make matters worse, it is often
the case that effective interactions arise from dissipation even
when the Hamiltonian itself is reducible to that of a free-
particle system. This prevents us from understanding the full
dynamics of the system.

In this paper, we present an exactly solvable dissipative
model which corresponds to the non-Hermitian many-body
quantum system. The model we propose has a conserved
charge that leads to two exact NESSs. Moreover, our model
can be seen as a non-Hermitian Kitaev model on a two-leg
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ladder [13,14]. Therefore, by applying Kitaev’s technique
[15], our model can be mapped to free Majorana fermions in
a static Z2 gauge field, which allows us to fully diagonalize
the Liouvillian. We numerically identify the gauge sectors
where the first decay modes live. Then, assuming the flux
configurations obtained, we derive the exact Liouvillian gap,
the inverse of the relaxation time. We also study the infinite
temperature autocorrelator of an edge spin and obtain its exact
formula by applying techniques from combinatorics.

II. MODELS AND NESSS

We consider the Lindblad equation for the density
matrix ρ

dρ

dt
= L[ρ] := −i[H, ρ] +

∑
i

(
LiρL†

i − 1

2
{L†

i Li, ρ}
)

,

(1)

where H denotes the Hamiltonian of the one-dimensional
quantum compass model [16–21] given by

H = −
N/2∑
i=1

Jxσ
x
2i−1σ

x
2i −

N/2−1∑
i=1

Jyσ
y
2iσ

y
2i+1, (2)

and Li = √
γ σ z

i (i = 1, . . . , N ) are Lindblad operators. This
form of dissipation is known as dephasing noise [4,22,23]
which kills off-diagonal elements of the density matrix, and
hence destroys the quantum coherence. Here, σα

j (α = x, y, z)
are the Pauli operators at site j, Jx and Jy are the exchange
couplings (in the unit of energy), γ � 0 is the dissipation
strength parameter, and N is the number of site. We assume
N is even and the open boundary conditions are imposed.
It suffices to consider the case Jx, Jy � 0, as the other cases
can be obtained by an appropriate unitary transformation.
The operator L[ρ] is called a Liouvillian or a Lindbladian.
A NESS is a fixed point of the dynamics Eq. (1), i.e.,
an eigenstate of the Liouvillian L with eigenvalue 0. For
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τ1 τ2 τ3 τ4 τ5 τ6

σ1 σ2 σ3 σ4 σ5 σ6

bra

ket

Jxτx
1 τx

2 Jyτy
2 τy

3 Jxτx
3 τx

4 Jyτy
4 τy

5 Jxτx
5 τx

6

−Jxσx
1σx

2 −Jyσy
2σy

3 −Jxσx
3σx

4 −Jyσy
4σy

5 −Jxσx
5σx

6

iγσz
1τz

1 iγσz
2τz

2 iγσz
3τz

3 iγσz
4τz

4 iγσz
5τz

5 iγσz
6τz

6

FIG. 1. The non-Hermitian ladder system for the
one-dimensional quantum compass model with dephasing noise.
By Kitaev’s mapping, this can be seen as a model of free Majorana
fermions in a static Z2 gauge field. We fix all the signs of the links
except for those of red wavy lines (see Appendix C for more details).

our model, there are two steady states ρ± := (1 ± Q)/2N ,
where 1 is an identity matrix and Q := ∏

i σ
z
i is a conserved

charge, i.e.,

[H, Q] = 0, [Li, Q] = [L†
i , Q] = 0 for ∀i. (3)

The proof goes as follows. Because of the Hermiticity
of Lindblad operators, there is a trivial NESS, i.e., com-
pletely mixed state ρc := 1/2N . One can easily verify that if
L[ρc] = 0, then ρ = Qρc also satisfies L[ρ] = 0. Although
ρ itself is not positive semi-definite which is a necessary
condition to be a density operator, one can construct the
following operators P± := (1 ± Q)/2, which are orthogonal
projections, and hence positive semi-definite. This then gives
(normalized) steady states ρ± = P±/trP±. We have checked
numerically for small N that they are the unique NESS of the
system.

III. MAPPING TO KITAEV LADDER

A 2N × 2N density matrix ρ can be thought of as a 22N -
dimensional vector (see Appendix A for details). In this sense,
we can identify the Liouvillian L for the one-dimensional
chain as a non-Hermitian Hamiltonian of a ladder system [3,4]
(see Fig. 1):

i(L + γ N ) ∼= H ⊗ 1 − 1 ⊗ H +
N∑

i=1

iγ σ z
i ⊗ τ z

i =: H, (4)

where the Hilbert space of the RHS is the “Ket ⊗ Bra space”
and τ z

i is the Pauli matrix for the ith Bra site. The nonunitary
terms in the Liouvillian (1) correspond to the non-Hermitian
terms in H.

We apply to this ladder Hamiltonian (4) the technique by
Kitaev [15], which was originally used to solve the quantum
spin model on a honeycomb lattice. In order to solve the
model, Kitaev developed an elegant technique: substituting
Majorana fermion operators for spin operators σα

j → ibα
j c j .

Here, bα
j and c j are Majorana operators obeying the

Clifford algebra {c j, ck} = 2δ jk, {bα
j , bβ

k } = 2δ jkδ
αβ ,

and {bα
j , ck} = 0 with {A, B} = AB + BA being the

anti-commutator. After the mapping, we have a quadratic
Hamiltonian of itinerant Majorana fermions (ci’s) in each
sector specified by the static Z2 gauge field (i.e., each link
has the sign ±1 in the hopping amplitude). Thus we can
diagonalize the Hamiltonian and obtain all eigenvalues and

eigenstates, sector by sector. Besides the honeycomb lattice,
Kitaev’s mapping is applicable to other lattices with a similar
Hamiltonian. Examples include the ladder system [13], which
is the Hermitian analog of our model (4).

Next, we define complex fermions fi, f †
i each of which

is made of two Majorana fermions ci and di: fi := (ci +
idi )/2, f †

i := (ci − idi )/2. Here, ci (respectively, di) is the
Majorana operator for the σi (respectively, τi) spin. Then, the
model is mapped to the Su-Schrieffer-Heeger (SSH) model
[24] with imaginary chemical potential [25,26]. The Hamilto-
nian reads (see Appendix C for details)

H(μ) = −
N∑

i=1

iγμi +
∑
k,l

Akl f †
k fl , (5)

where μ = (μ1, . . . , μN ) and A is a tridiagonal and complex-
symmetric matrix given by

A := 2

⎛
⎜⎜⎜⎜⎜⎜⎝

iγμ1 Jx

Jx iγμ2 Jy

Jy iγμ3
. . .

. . .
. . . Jx

Jx iγμN

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)

μi’s come from the gauge degree of freedom and take the
value ±1. The solution of a non-Hermitian quadratic form of
fermions is similar to that of a Hermitian one. One can con-
struct many-body eigenstates of H(μ) by just filling single-
particle energies of the Hamiltonian, which can be obtained
by diagonalizing A.

Symmetries of the Hamiltonian (5) enable us to restrict the
configurations of μi’s to consider. First, H(μ) and H(−μ)
have the same spectrum because the flux configuration in
the ladder system is invariant under sending μ → −μ. (In
view of the SSH model, H(μ) is transformed to H(−μ) by
the charge conjugation f j → (−1) j f †

j .) Second, due to the
inversion symmetry, the transformation (μ1, μ2, . . . , μN ) →
(μN , μN−1, . . . , μ1) leaves the spectrum of H unchanged. In
the following, we only consider the configurations in which
the number of positive μi’s is not less than the number of
negative μi’s.

IV. LIOUVILLIAN GAP

Let eigenvalues of the Liouvillian L be 	i(L). It can
be proved [1,27] that all 	i(L) satisfy Re[	i(L)] � 0. A
Liouvillian gap g is defined as

g := − max
i

Re[	i (L)] �= 0

Re[	i(L)], (7)

hence, the inverse of the relaxation time. It is clear from
Eqs. (4) and (7) that the Liouvillian gap corresponds to the
gap between the first and second largest imaginary parts of
eigenvalues of H, the former of which is γ N . The configura-
tion which gives the eigenvalue iγ N is μi = +1 for all i.

The reason is as follows. In this configuration, the one-
particle energy levels are obtained just by shifting those of
the original SSH model by +2iγ . Therefore we obtain the
eigenvalue iγ N by filling all the energy levels. Then, the
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FIG. 2. Numerical results of the Liouvillian gap g as a function of the dissipation strength γ . (a) Topological regime (Jx = 0.5, Jy = 1.0),
(b) critical point (Jx = Jy = 1.0), and (c) trivial regime (Jx = 1.0, Jy = 0.5). The position of the cusp is indicated by the dashed line in each
case. The +/− pattern below each phase shows a chemical-potential configuration μ that gives the first decay mode.

Liouvillian gap is recast as

g = γ N − max
μ

m(μ) �= 0

[
N∑

i=1

(
Imλi + |Imλi|

2
− γμi

)]

= min
μ

m(μ) �= 0

(
2m(μ)γ −

N∑
i=1

|Imλi| − Imλi

2

)
, (8)

where λi denotes the ith eigenvalue of A, and m(μ) the
number of μi’s which are −1.

Since at least one of μi’s must be −1 when m(μ) �= 0, we
have g � 2γ . One might think that we need to consider the
case where μi = +1 for all i and some single-particle energy
levels are empty. However, this is not the case. The Liouvillian
gap in this sector must be greater than or equal to g in Eq. (8),
as removing one fermion from an occupied state in this case
decreases the imaginary part of the eigenvalue of H by 2γ .
Thus it suffices to consider configurations different from the
one with μi = +1 for all i.

Figure 2 shows the numerical results of g as a function
of γ for various Jy/Jx for a system size N = 10. Here,
“topological,” “critical,” and “trivial” cases refer to the regions
Jy/Jx > 1, Jy = Jx, and Jy/Jx < 1, respectively, in analogy
with the Hermitian SSH model. From this figure, we can see

a kind of phase transition of the first decay mode in every
(topological, critical, or trivial) case. We also numerically
obtained the chemical-potential configurations which give
the first decay mode, as also shown in Fig. 2. We do not
show all the configurations which give the same eigenvalues.
In Appendix D, up to symmetries mentioned above, every
configuration which gives the first decay mode is shown. In
the “phase I” of the critical and trivial cases, the gap behaves
as exactly g = 2γ . The reason for this behavior becomes clear
in Eq. (8). When γ is small enough, all λi satisfy Imλi > 0,
then g = 2γ follows. In the topological case, the situation
is slightly different. In this case, there exists a λi which
satisfies Imλi < 0, and g is smaller than 2γ . For finite N ,
there is another configuration in the region of γ � 1 (see
Appendix D), but this region shrinks to zero as N → ∞. In
the “phase II,” the gap behaves asymptotically g ∝ 1/γ in
each case. This increase in relaxation time as γ → ∞ can be
thought of as the Quantum Zeno effect [28].

Our extensive numerical calculation suggests that the
chemical-potential configurations which give the first decay
modes do not depend on the system size. Then, under this
assumption, we can obtain the exact formula for the Liouvil-
lian gap g and the transition point γc in the thermodynamic
limit of the critical case Jx = Jy = 1 (see Appendix E for more
details):

g =

⎧⎪⎪⎨
⎪⎪⎩

2γ (0 � γ � γc)

61/3(9γ 2 +
√

48γ 6 + 81γ 4)2/3 − 2 · 62/3γ 2

3γ (9γ 2 +
√

48γ 6 + 81γ 4)1/3
(γc � γ )

, (9)

where

γc =
√√

3 − 1

2
� 0.605. (10)

We have confirmed that this result agrees well with the numer-
ical one for N = 10.

V. AUTOCORRELATOR AT T = ∞
In this section, we study the “infinite temperature” autocor-

relator of the edge spin

C∞(t ) := 〈
σ z

1 (t )σ z
1 (0)

〉
T =∞ = 1

2N
tr
(
etL∗[

σ z
1

]
σ z

1

)
, (11)
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where L∗ is the adjoint operator of the Liouvillian, which
describes the time evolution of an operator X as follows:

d

dt
X (t ) = L∗[X (t )]

:= i[H, X (t )] +
∑

i

(
L†

i X (t )Li − 1

2
{L†

i Li, X (t )}
)

.

(12)

In other words, it corresponds to the Heisenberg picture of the
open quantum system. A fundamental motivation in quantum
engineering is for localized degrees of freedom to maintain
coherence over long times. In Ref. [29], this quantity for
the transverse-field Ising and XYZ chains without dissipation
(i.e., closed system) has been studied as the witness of long
coherence times for edge spins. The autocorrelator for the
dissipative transverse-field Ising model was also studied in
Ref. [28]. However, very few exact results are available for
the time evolution of physical quantities [30,31]. Here, we
study C∞(t ) for our model with N = ∞. Let us consider how
the adjoint Liouvillian acts on σ z

1 . For notational simplicity,
we set Jx = q/2, Jy = 1/2 and r := 4γ . In this case, one
finds

L∗[P0] = qP1, (13)

and for n � 1,

L∗[Pn] =
{

−qPn−1 − rPn − Pn+1 (n: odd)

Pn−1 − rPn + qPn+1 (n: even)
, (14)

where

P0 = σ z
1 ,

Pn =
{−σ

y
1

(∏n
i=2 σ z

i

)
σ x

n+1 (n: odd)

−σ
y
1

(∏n
i=2 σ z

i

)
σ

y
n+1 (n � 2 and even)

. (15)

It is important to note that Pn’s are Hermitian and form an
orthonormal set, i.e.,

〈〈Pi, Pj〉〉 := 1

2N
tr(P†

i Pj ) = δi j .

The inner product 〈〈·, ·〉〉 for matrices is called the Hilbert-
Schmidt inner product, with which Eq. (11) takes the form

C∞(t ) =
∞∑

n=0

t n

n!
〈〈L∗n[P0], P0〉〉. (16)

Now we compute C∞(t ) by considering the so called “Ri-
ordan paths” [32,33] (Motzkin paths [34] with no horizontal
steps at the bottom line) weighted through q and r (see
Fig. 3). To this end, it is useful to consider the generating
function F (z; q, r) of the weighted Riordan paths, which can
be obtained by the so called “Kernel method” [35]. The
autocorrelator in terms of F (z; q, r) reads

C∞(t ) =
∞∑

n=0

t n

n!
[zn]F (z; q, r), (17)

FIG. 3. An example of the weighted Riordan paths. Each path is
from (0, 0) to (n, 0) with up (↗), down (↘), and horizontal (→)
steps, never going below the bottom line nor containing horizontal
steps on it. Dashed (wavy horizontal) steps are endowed with a
weight q (r), which yields the weight of each Riordan path. For
instance, the red path from (0, 0) to (7, 0) has a weight q4r. The
sign of a weight is plus (respectively, minus) if (number of matched
up-down pairs depicted by blue double-headed arrows) + (number
of horizontal steps) is even (respectively, odd).

where [zn] f (z) denotes the coefficient of zn in f (z). This can
be rewritten as a contour integral

C∞(t )y =
∞∑

n=0

t n

n!

∮
dz

2π i

F (z; q, r)

zn+1
(18)

= 1

2π i

∮
F (1/w; q, r)

w
etw dw, (19)

where w = 1/z. Here we have chosen the contour in the z
plane so that it surrounds the origin and is sufficiently small.
As a result, the contour in the w plane is sufficiently large.
The final explicit expression for C∞(t ) is cumbersome and is
shown in Appendix F. The analytic and finite-size numerical
results of C∞(t ) with γ = 0.1 in the topological/trivial regime
are shown in Fig. 4.

From the exact formula, we can derive the inverse of the
decay time τ of C∞(t ) (C∞(t )

t→∞∼ e−t/τ ) with nonzero r: for
0 < q < 1, one has

τ−1 = −η+(q, r), (20)

and for q > 1,

τ−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r (0 < r � 1)

1 + r2

2r
(1 � r � q +

√
q2 − 1)

−η+(q, r) (r � q +
√

q2 − 1)

, (21)

where η+(q, r) := (−1 − r2 +
√

(1 + r2)2 − 4q2r2)/(2r). In
particular, we find that the decay is suppressed in the topo-
logical regime (0 < q < 1), although C∞(t ) goes to 0 as
t → ∞ in both regimes. One might note that C∞(t ) behaves
differently from the Liouvillian gap g; g has a cusp for ev-
ery, i.e., topological, critical, and trivial regime, while C∞(t )
has nonanalytical points only for critical and trivial regime
corresponding to q � 1. There is, however, no contradic-
tion between them. This is because g is determined by the
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tt

FIG. 4. Autocorrelator C∞(t ) with γ = 0.1 in (left) the topological regime q = 0.5 and (right) the trivial regime q = 1.5. Blue lines are
obtained from the analytical result Eq. (F5) in Appendix F, while orange dots are numerical results with N = 100 by the Runge-Kutta method.

NESSs and the first decay mode, while C∞(t ) is obtained
only from the completely mixed state, i.e., the mixture of the
two NESSs.

VI. CONCLUSIONS

We have studied the one-dimensional quantum compass
model with dephasing noise and obtained the exact steady
states. We showed that the model can be mapped to the
non-Hermitian Kitaev model on a ladder, which is solvable
by representing the spins in terms of Majorana fermions. This
technique allows us to study the Liouvillian gap exactly. In
particular, in the critical case where Jx = Jy, the gap in the
thermodynamic limit is obtained analytically. We have also
studied the autocorrelator of the edge spin and obtained its
exact formula using the technique of combinatorics.
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APPENDIX A: MAPPING OF THE LIOUVILLIAN TO THE
NON-HERMITIAN HAMILTONIAN

In this Appendix, we describe the identification of the
Liouvillian with a non-Hermitian Hamiltonian in detail. Let A

be a linear operator on Hilbert space H [i.e., A ∈ EndC(H )].
Assuming dim(H ) = N , there is a complete orthonormal
basis {|φi〉}Ni=1 of H , and A can be regarded as an N × N
matrix

A =
N∑

i, j=1

Ai j |φi〉〈φ j |, (A1)

where a sans-serif style A ∈ MN×N (C) and its element Ai j is
just a c number. Now, we introduce a new space Ket ⊗ Bra of
dimension N 2 by the following linear map F :

F : EndC(H ) → Ket ⊗ Bra

∈ ∈ (A2)
|φi〉〈φ j | �→ |φi, φ j〉〉.

Note that F depends on the choice of the basis {|φi〉}Ni=1, but
after fixing the basis, F is an isomorphism, i.e., EndC(H )
and Ket ⊗ Bra are in one-to-one correspondence.

Let us consider how superoperators [∈ EndC(EndC(H ))]
look like in the Ket ⊗ Bra space. All superoperators in the
Liouvillian L[ρ] have the form

ρ �→ AρB. (A3)

This map is rewritten as∑
i, j

Ri j |φi〉〈φ j | �→
∑
i, j

(ARB)i j |φi〉〈φ j | (A4)

for A = ∑
i, j Ai j |φi〉〈φ j |, B = ∑

i, j Bi j |φi〉〈φ j | and ρ =∑
i, j Ri j |φi〉〈φ j |. In the Ket ⊗ Bra space, the superoperator

can be seen as the following map:

∑
i, j

Ri j |φi, φ j〉〉 �→
∑
i, j

(ARB)i j |φi, φ j〉〉 =
⎡
⎣
⎛
⎝∑

i,k

Aik|φi〉〉〈〈φk|
⎞
⎠

Ket

⊗
⎛
⎝∑

j,l

BT
jl |φ j〉〉〈〈φl |

⎞
⎠

Bra

⎤
⎦∑

m,n

Rmn|φm, φn〉〉. (A5)

Therefore this superoperator ρ �→ AρB can be thought of as the tensor product of two matrix A ⊗ BT. Note that this matrix is
basis-dependent because it is not A ⊗ B†. Then, one can identify the Liouvillian L in Eq. (1) as

L ∼= −iH ⊗ 1 + i1 ⊗ HT +
∑

i

(
Li ⊗ L∗

i − 1

2
L†

i Li ⊗ 1 − 1

2
1 ⊗ LT

i L∗
i

)
. (A6)
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Here, we do not distinguish operators in italic with matrices
in sans-serif. For Eq. (4), transpose or conjugate in Eq. (A6)
does not matter if we choose a basis which diagonalizes σ z

i ’s.

APPENDIX B: NON-HERMITIAN QUADRATIC
FORM OF FERMIONS

In a usual closed free-fermion system, we can generally
write the Hamiltonian as follows:

H = f †A f , (B1)

where f = ( f1, . . . , fN )T, f † = ( f †
1 , . . . , f †

N ), and A is an
N × N Hermitian matrix. In general, all eigenvalues of a Her-
mitian matrix are real, and eigenvectors form an orthonormal
basis (after normalization and orthogonalization in degenerate
spaces). In other words, A can be diagonalized by a unitary
matrix U, and the Hamiltonian is rewritten as

H = f †U diag(a1, . . . , aN ) U† f , (B2)

where ai (i = 1, . . . , N ) are the eigenvalues of A. Then, we
can define new operators f ′ := U† f , and it is easily verified
that f ′ also satisfy anticommutation relations. Therefore we
obtain

H =
N∑

i=1

ai f ′
i

† f ′
i , (B3)

and all eigenvalues of H are obtained by E = ∑
i aini with

arbitrary choice of each ni = 0 or 1.
However, some care must be taken when A is non-

Hermitian. First, eigenvalues of A are not necessarily real.
Second, eigenvectors with different eigenvalues are in general
not orthogonal. Third, left and right eigenvectors with the
same eigenvalue are in general not a Hermitian-conjugate to
each other. We briefly explain the general prescription for
treating non-Hermitian matrices according to Ref. [36]. A
similar discussion can be found in Ref. [37].

Let A be a non-Hermitian and nondegenerate N × N ma-
trix. Remember that if a matrix is nondegenerate, then it
is diagonalizable [38]. Then, A has left/right eigenvectors
{l†

i }N
i=1 and {r j}N

j=1 which satisfy

l†
i A = λil

†
i , (B4)

Ar j = ξ jr j . (B5)

(l i and r j are column vectors.) From these, we obtain

λi〈l i, r j〉 = l†
i Ar j = ξ j〈l i, r j〉

∴ (λi − ξ j )〈l i, r j〉 = 0, (B6)

where 〈l i, r j〉 := l†
i r j is the standard inner product of CN .

Because A is diagonalizable, each of {l i}N
i=1 and {r j}N

j=1 is
a basis of CN . Therefore, for each i, at least one j satisfies
〈l i, r j〉 �= 0. Then, we can assume λi = ξi after relabeling j’s.
It follows that 〈l i, r j〉 = 0 if i �= j and 〈l i, ri〉 �= 0. Therefore,
after “normalization” of {l i}N

i=1 and/or {r j}N
j=1 so as to satisfy

〈l i, ri〉 = 1, we obtain

〈l i, r j〉 = δi j . (B7)
Then, we define

V := (r1 . . . rN )

⎛
⎜⎜⎝ ⇐⇒ V−1 =

⎛
⎜⎜⎝

l†
1

...

l†
N

⎞
⎟⎟⎠
⎞
⎟⎟⎠, (B8)

and A is diagonalized as

V−1AV = diag(λ1, . . . , λN ). (B9)

Now, let us return to Eq. (B1) with non-Hermitian A. By
diagonalizing A as above, we obtain

H = f †V diag(λ1, . . . , λN ) V−1 f (B10)

and we define

ai := l†
i f , b†

i := f †ri, (B11)

then the Hamiltonian can be written in the form similar to
Eq. (B3),

H =
N∑

i=1

λib
†
i ai. (B12)

One can easily verify the following anticommutation relations

{ai, b†
j} = δi j, {ai, a j} = {b†

i , b†
j} = 0. (B13)

Therefore ai and b†
i can be seen as an annihilation and an

creation operator of new fermions, respectively, although a†
i

is not equal to b†
i unlike Hermitian cases [39]. From these

anticommutation relations, it follows that b†
i ai has eigenvalues

0 and 1, although it is not Hermitian. Then we obtain all
eigenvalues of H as E = ∑

i λini with arbitrary choice of each
ni = 0 or 1.

APPENDIX C: FROM KITAEV LADDER TO SSH MODEL

By Kitaev’s mapping, a non-Hermitian Hamiltonian H can
be seen as a model of free Majorana fermions in a static Z2

gauge field. Introducing Majorana fermion operators as σα
j →

ibα
j c j and τα

j → ib̃α
j d j (i = 1, . . . , N, α = x, y, z), we obtain

H = Jx

N/2∑
j=1

[(
ibx

2 j−1bx
2 j

)
(ic2 j−1c2 j ) − (

ib̃x
2 j−1b̃x

2 j

)
(id2 j−1d2 j )

]+ Jy

N/2−1∑
j=1

[(
iby

2 jb
y
2 j+1

)
(ic2 jc2 j+1) − (

ib̃y
2 j b̃

y
2 j+1

)
(id2 jd2 j+1)

]

− iγ
N∑

i=1

(
ibz

i b̃
z
i

)
(icidi ), (C1)

where the operators, ibx
2 j−1bx

2 j, iby
2 jb

y
2 j+1, ib̃x

2 j−1b̃x
2 j, ib̃y

2 j b̃
y
2 j+1, and ibz

i b̃
z
i commute with the Hamiltonian and their eigenvalues

are ±1. Therefore the Hilbert space splits into sectors labeled by the eigenvalues of these operators. One can define the flux

174303-6



DISSIPATIVE SPIN CHAIN AS A NON-HERMITIAN … PHYSICAL REVIEW B 99, 174303 (2019)

through each plaquette by the eigenvalue of the product of b and b̃ operators around it. The spectrum of the Hamiltonian H
depends only on the set of fluxes. Thus we can fix all but N − 1 signs of the links, as we have N − 1 plaquettes in our model.
We fix them as

ibx
2 j−1bx

2 j = iby
2 jb

y
2 j+1 = −1, ib̃x

2 j−1b̃x
2 j = ib̃y

2 j b̃
y
2 j+1 = +1, (C2)

and define μi = −ibz
i b̃

z
i to recast H as

H = −Jx

N/2∑
j=1

[(ic2 j−1c2 j ) + (id2 j−1d2 j )] − Jy

N/2−1∑
j=1

[(ic2 jc2 j+1) + (id2 jd2 j+1)] + iγ
N∑

i=1

μi(icidi ). (C3)

Next, we define complex fermions fi and f †
i , consisting of two Majorana fermions ci and di:

fi := ci + idi

2
, f †

i := ci − idi

2
. (C4)

It is easy to verify that they satisfy the anticommutation relations

{ fi, f †
j } = δi j, { fi, f j} = { f †

i , f †
j } = 0. (C5)

We then have

H = 2iJx

N/2∑
i=1

( f †
2 j f2 j−1 − f †

2 j−1 f2 j ) + 2iJy

N/2−1∑
i=1

( f †
2 j+1 f2 j − f †

2 j f2 j+1) + iγ
N∑

i=1

μi(2 f †
i fi − 1). (C6)

After the unitary transformation f j → ei(π/2) j f j , we obtain
Eq. (5).

APPENDIX D: THE FIRST DECAY
MODES’ CONFIGURATIONS

In Fig. 2, we show for each phase only one example of the
configurations where the first decay mode lives, but numerical
calculation reveals that there are other such configurations.
Table I shows the numerical results of all such configurations
up to symmetries mentioned in the main text.

APPENDIX E: DERIVATION OF EQ. (9)

We call the pattern of μ which satisfies “μ1 =
−1, otherwise μi = +1” “pattern 1,” and that which sat-
isfies “μ1 = μ2 = −1, otherwise μi = +1” “pattern 2.” A1

(respectively, A2) denotes the matrix A with the pattern 1
(respectively, pattern 2). The (unnormalized) eigenstates vvv =
(v1, v2, . . . , vN ) of A1 whose eigenvalues have negative imag-
inary parts are obtained by the following ansatz

v2n−1 = αn−1, v2n = iβαn−1 (n = 1, . . . , N/2), (E1)

where α, β ∈ C and |α| < 1. Letting λ be the eigenvalue of
A1 corresponding to vvv, we obtain the following conditions for
this ansatz

left boundary: − 2iγ + 2iJxβ = λ1, (E2)

bulk:

{
2Jx − 2γ β + 2Jyα = iβλ1

2iJyβ + 2iγα + 2iJxαβ = αλ1
. (E3)

Here, we neglect the right boundary condition that is justified
in the thermodynamic limit. The solution of λ is

λ1 = − i

2γ

[− J2
y +

√
8γ 2(2γ 2 + J2

y − 2J2
x ) + J4

y

]
. (E4)

In the critical case of Jx = Jy = 1, λ has negative imaginary
part when γ > 1/

√
2, and the gap for pattern 1 [i.e., the

argument in parentheses in Eq. (8) for pattern 1] reads

g1 =

⎧⎪⎨
⎪⎩

2γ (0 � γ � 1/
√

2)

1

γ
(1/

√
2 � γ )

. (E5)

TABLE I. The chemical-potential configurations where the first decay modes live.

very small-γ phase phase I phase II

topological

{
μi = −1 i = 1, N
μi = +1 otherwise

{
μi = −1 i = 1
μi = +1 otherwise

{
μi = −1 i = 1, 2, 3
μi = +1 otherwise

critical ∃!i s.t. μi = −1, and μ j = +1 for j �= i

{
μi = −1 i = 1, 2
μi = +1 otherwise

trivial ∃!i s.t. μi = −1, and μ j = +1 for j �= i

{
μi = −1 i = 1, 2, 3, 4
μi = +1 otherwise

174303-7



NAOYUKI SHIBATA AND HOSHO KATSURA PHYSICAL REVIEW B 99, 174303 (2019)

In a similar way, we obtain the localized solution for pattern 2 by the ansatz{
v1 = 1, v2 = iδβ

v2n−1 = δαn−1, v2n = iδβαn−1 (n = 2, . . . , N/2)
(E6)

and conditions

left boundary:

{−2iγ + 2iJxδβ = λ2

2Jx + 2γ δβ + 2Jyδα = iδβλ2
, (E7)

bulk:

{
2Jx − 2γ β + 2Jyα = iβλ2

2iJyβ + 2iγα + 2iJxαβ = αλ2
. (E8)

From these conditions, we obtain in the critical case the gap for pattern 2 as

g2 =

⎧⎪⎪⎨
⎪⎪⎩

4γ (0 � γ �
√

(
√

5 − 1)/8)

61/3(9γ 2 +
√

48γ 6 + 81γ 4)2/3 − 2 × 62/3γ 2

3γ (9γ 2 +
√

48γ 6 + 81γ 4)1/3
(
√

(
√

5 − 1)/8 � γ )
. (E9)

Finally, we obtain the global gap as

g = min(g1, g2)

=

⎧⎪⎪⎨
⎪⎪⎩

2γ (0 � γ �
√

(
√

3 − 1)/2)

61/3(9γ 2 +
√

48γ 6 + 81γ 4)2/3 − 2 × 62/3γ 2

3γ (9γ 2 +
√

48γ 6 + 81γ 4)1/3
(
√

(
√

3 − 1)/2 � γ )
.

Therefore the transition point γc for the critical case is

γc =
√√

3 − 1

2
� 0.605 . . . (E10)

One may guess that even for topological or trivial case, we can obtain the exact results for the gap in a similar way. However, it
would be impossible to obtain the algebraic solutions because in these cases, we need to deal with equations of degree greater
than four.

APPENDIX F: EXACT FORMULA FOR THE AUTOCORRELATOR WITH DISSIPATION

The generating function for the weighted Riordan path is obtained by the Kernel method [35] as

F (z; q, r) := −1 + (1 − q2 + r2)z2 +
√

[(1 + q2)z2 + (1 + rz)2]2 − 4q2z4

2z[q2rz2 + (1 + r2)z + r]
. (F1)

Then, the autocorrelator is recast as

C∞(t ) = 1

2π i

∮
F (1/w; q, r)

w
etw dw (F2)

= 1

2π i

∮ −w2 + 1 − q2 + r2 +
√

[(w + r)2 + (1 + q)2][(w + r)2 + (1 − q)2]

2r(w − η+(q, r))(w − η−(q, r))
etw dw, (F3)

where

η±(q, r) := −1 − r2 ±
√

(1 + r2)2 − 4q2r2

2r
. (F4)
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FIG. 5. Integration contours of Eq. (F3). The crosses (×) represent poles or branch points, while the wavy lines are branch cuts.

The contour of w is chosen as shown in Fig. 5, and the final results are

C∞(t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−η2
+ + 1 − q2 + r2

r(η+ − η−)
eη+t

+e−rt

πr

∫ 1+q
1−q f (y, q)

(r−1 − r)y cos(yt ) + [y2 − (r + η+)(r + η−)] sin(yt )

[y2 + (r + η+)2][y2 + (r + η−)2]
dy (0 < q � 1)

e−rt

πr

∫ q+1
q−1 f (y, q)

(r−1 − r)y cos(yt ) + [y2 − (r + η+)(r + η−)] sin(yt )

[y2 + (r + η+)2][y2 + (r + η−)2]
dy (q � 1, 0 � r < 1)

e−t cos(
√

q2 − 1t ) + e−t

π

∫ q+1
q−1

f (y, q)

y2 − q2 + 1
sin(yt ) dy (q � 1, r = 1)

−η2
+ + 1 − q2 + r2

r(η+ − η−)
eη+t − −η2

− + 1 − q2 + r2

r(η+ − η−)
eη−t

+e−rt

πr

∫ 1+q
1−q f (y, q)

(r−1 − r)y cos(yt ) + [y2 − (r + η+)(r + η−)] sin(yt )

[y2 + (r + η+)2][y2 + (r + η−)2]
dy (q � 1, r > 1)

, (F5)

where

f (y, q) =
√

[(q + 1)2 − y2][y2 − (q − 1)2]. (F6)

In general, it does not have a simpler form. However, in the absence of dissipation, i.e., when r = 0, we have

C∞(t ; r = 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − q2 + 1

π

∫ 1+q
1−q

√
[x2 − (1 − q)2][(1 + q)2 − x2]

x
cos(xt ) dx (0 < q � 1)

1

π

∫ q+1
q−1

√
[x2 − (q − 1)2][(q + 1)2 − x2]

x
cos(xt ) dx (q � 1)

. (F7)
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We have confirmed numerically that the integral goes to zero as t → ∞ in either case. Therefore the autocorrelator is
nonvanishing as t → ∞ in the topological phase, whereas vanishing in the trivial phase. Moreover, when q = 1, it takes a
simpler form:

C∞(t ; q = 1, r = 0) = J1(2t )

t
, (F8)

where J1 is the Bessel function of the first kind. From the asymptotic behavior of the Bessel function, we obtain that C∞(t )
decays as ∼ t−3/2 for large t .
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