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Role of electrons in collision cascades in solids. II. Molecular dynamics
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We present a model for the role of electrons in collision cascades in solids in which the coupling between ions
and electrons is calculated using first-principles models and introduced into the classical ion equations of motion
using our modified Langevin dynamics [A. Tamm et al., Phys. Rev. Lett. 120, 185501 (2018)]. This model gives
a full picture of the entire collision process, from the ballistic to the thermal phases of a cascade, giving a detailed
representation of the energy exchange between ions and electrons until their final thermalization, removing in
this way some ad hoc assumptions used in the state-of-the-art two-temperature model. This work is separated
into two papers: Part I [M. Caro et al., Phys. Rev. B 99, 174301 (2019)] reports on the ab initio methodology
used to translate stopping power into the parametrized dissipation function. Part II applies the nonadiabatic ion
dynamics using the dissipation functions developed in Part I to specific collision cascade events.
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I. INTRODUCTION

The analysis of the interaction of energetic ions with matter
starts with the concept of a primary knock-on atom (PKA).
The PKA is the atom of the target that is first hit by the
irradiation particle, a neutron, an electron, a γ ray, etc. This
atom moves and collides with others in the solid, creating a
collision cascade that damages the lattice. This damage has
profound effects on the properties of the material. Quantifying
this process has been a primary objective of radiation damage
theories for decades.

The simplest approach to quantify damage, proposed by
Kinchin and Pease (KP) in 1955 [1], has been to consider the
energy balance between two-body elastic collisions of hard
spheres. The rationale behind this approach has its grounds
in the following main assumptions: (i) An atom is displaced
from its lattice site if, after a collision, it receives an energy
larger than some displacement threshold value Ed; (ii) the ar-
rangement of atoms in the solid is random, i.e., no crystallinity
effects. Using the scattering cross section for hard-sphere
collisions, the number of displacements NKP becomes

NKP = TPKA

2Ed
, (1)

where TPKA is the PKA kinetic energy. The KP formula is
merely a linear scaling of the available energy for damage in
relation to the energy required to produce a single displace-
ment event.

At high PKA energies, this balance needs to be altered
because electronic losses become important. Improvements
to the KP approach using more elaborate cross sections and
consideration of electronic losses led Norgett, Robinson, and
Torrens to postulate in 1975 an expression known as the NRT
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formula [2],

NNRT = κ
(TPKA − η)

2Ed
= κ

ED

2Ed
, (2)

where κ is an efficiency factor, usually ∼0.8, η is a measure
of the energy loss to electronic excitations, and T and Ed

were defined above. The quantity ED = TPKA − η is known as
damage energy and is the kinetic energy available to actually
displace atoms once the electronic losses are accounted for.

For years, the NRT formula and its related concept, the
displacement per atom (dpa), was the workhorse of radiation
damage studies and a key concept in nuclear engineering
designs until the introduction of large-scale molecular dynam-
ics (MD), the “brute force” solution to the coupled Newton
equations for the ions, made its appearance in the 1980’s.
Within the MD framework, the energy transfer between ions,
including chemical bonding and crystalline effects, and from
ions to electrons could all be accounted for. For a detailed
discussion, see Was [3].

With the increase in computer power and the development
of accurate interatomic potentials, MD represents the state-of-
the-art calculations of stopping power, range, and microscopic
details of the defects produced by radiation damage in solids.
One of its main early contributions was to unveil a more
elaborate form for the efficiency factor κ in Eq. (2). In fact,
many-body effects in the collision cascade, in particular, in
the quenching stage, led to a significant reduction of the
number of defects produced; the efficiency factor became a
function of the energy, with values close to 1 for low PKA
energies and decreasing smoothly to about 0.3 for energies
in the range of the 10–50 keV for Cu, for example [4]. This
result had important consequences on the assessment of the
relative damage produced by different sources, e.g., electrons
and light ions are more damaging than heavy ions at the same
TPKA because the PKA energy transferred is low.
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Electronic stopping in the low-energy regime was stud-
ied using several theoretical approaches, most notably by
Firsov [5] for atomic collisions, and by Lindhard and co-
workers in the 1960’s [6–9] for projectiles in electron gases.
These studies led to the characterization of the electronic
stopping Se as a frictionlike force proportional to the projectile
velocity. However, effects of the electronic structure of the
target point towards the need for more accurate descriptions
of the electronic structure at the low-energy limit [10]. A fully
atomistic first-principles calculation of electronic stopping for
a wide range of projectile velocities has only recently been
possible [11–18]. These advances rely on nonperturbative
time-dependent density functional theory (TDDFT) [19].

The computational requirements of the first-principles ap-
proach prevent its use in cases where the ion dynamics needs
to be followed over much longer time scales, e.g., picosec-
onds, or to study defect creation. For those cases, the state-of-
the-art simulations for the combined system of ion and elec-
tron dynamics, in the nonadiabatic picture, is classical MD
with empirical potentials for the ions and a continuum heat
diffusion equation for the electrons. The two subsystems are
connected via electron-ion coupling terms extracted from the
ab initio theories, in what is termed two-temperature models
(TTMs) [20]. For a recent review, see Darkins et al. [21].

In its origin, the TTM describes a nonequilibrium state
between electrons and ions. Under a radiation damage event,
a nonequilibrium state arises between them. Since the time
required to establish equilibrium in the electron gas is much
shorter than the time required to establish equilibrium be-
tween the electrons and the ions, the metal can be considered
as composed of two interacting subsystems, one of electrons
and another of ions. The thermalization of the hot electron gas
with ions is a relatively slow process driven by the electron-
phonon interaction. This problem was solved by Ginzburg
and Shabanskii in 1955 in the high-temperature limit [22],
T > TDebye. The theory of the thermal relaxation of electrons
in metals was further extended by Allen [23] in the continuum
approximation. It consists of a coupled set of heat diffusion
equation, namely,

Ce
∂Te

∂t
= ∇ · (κe∇Te) − G(Te − T�) + A,

C�

∂T�

∂t
= ∇ · (κ�∇T�) − G(T� − Te), (3)

where Ce and C� are the specific heat of electrons and ions
(lattice), respectively, κe and κ� are their thermal conductivi-
ties, Te and T� are the electron and ion (lattice) temperatures,
G is the electron-phonon (e-ph) coupling, and A is an external
source term (e.g., additional laser excitation).

Modern versions of this model replace the second line in
Eq. (3) by full MD for the ions, with an added dissipative
force on every ion I of the form fI = −βI vI to account for the
e-ph interaction, and a random force term in the framework
of Langevin dynamics. The use of Langevin equations with a
damping term that is a function of the local electronic density
β = β(ρ) was proposed by one of us in the 1980’s [24]. At
present, in its most common implementation, the traditional

TTM MD assumes β as a piecewise function [21,25,26],

βI =
{
βSe-ph + βSe (vI > vth),
βSe-ph (vI � vth), (4)

where Se and Se-ph represent the electronic stopping and the
e-ph values of the coupling, respectively, both constant values
and usually taken from tables in SRIM [27], or theory [28]. The
value of vth is an arbitrary threshold parameter, used to adjust
the energy absorbed by electrons to match expected results.

This piecewise form reflects the fact that there is no estab-
lished model to account for the changes in the strength of the
electron-ion coupling β as the moving particles change their
energy by orders of magnitude.

We recently used time-dependent density functional theory
and Ehrenfest forces to calculate the electronic excitations
produced by a moving Ni ion in a Ni crystal in the energetic
MeV range (electronic stopping power regime), as well as
in the thermal meV range (e-ph interaction regime). This
results in a picture where ions are still classical but electrons
evolve quantum mechanically. We showed that TDDFT not
only gives quantitatively accurate values for the stopping
power regime [29], but also for the electron-phonon inter-
action regime when interpreted as a stopping process even
for energies in the meV range [30]. Results at high energy
compare well to experimental databases of stopping power,
and at low energy the e-ph interaction strength determined in
this way is very similar to the linear response calculation and
experimental measurements. This approach to the e-ph inter-
action as an electronic stopping process provides the basis for
a unified framework to perform classical molecular dynamics
of ion-solid interactions with ab initio-derived nonadiabatic
terms in a wide range of energies.

Additional work on the nonadiabatic equations of motion
led us to propose modifications to the Langevin equations
that capture in detail the wave-vector q dependence of the
phonon lifetimes, in agreement with quantum mechanics cal-
culations [31]. The modifications are based on a local view of
the e-ph interaction obtained as the low-velocity limit of the
stopping power of a moving ion.

The model is parameter free, as its components are derived
from ab initio-type calculations; since it is formulated in real
space it is readily extended to the case of nonperiodic sys-
tems, e.g., alloys, and it is adequate for large-scale molecular
dynamics computer simulations. We also showed how this
model removes some oversimplifications of the traditional
ionic-damped dynamics commonly used to describe situations
beyond the Born-Oppenheimer approximation, such as the
inadequate damping of the center-of-mass motion.

More recently, we presented a model that further removes
previous limitations, in particular, the different coupling
strength for different phonon polarizations while keeping a
rigorous statistical mechanics framework and conservation
laws [32]. In fact, traditional Langevin dynamics (including
traditional TTM MD) relaxes all modes equally, regardless
of their wavelength or polarization. We proposed a gener-
alization of Langevin dynamics that captures coupling be-
tween collective modes and the bath by introducing spatial
correlations in the random forces. This generalization allows
modeling the electronic subsystem in a metal as a generalized
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Langevin bath endowed with a concept of locality, greatly
improving the applicability of the two-temperature model.

The specific form proposed there for the spatial correla-
tions produces a physical wave-vector and polarization depen-
dency of the finite phonon lifetimes in crystals due to e-ph
coupling. We show that the resulting model can be used for
describing the path to the equilibration of ions and electrons
and also as a thermostat to sample the equilibrium canonical
ensemble. By extension, the family of models presented there
can be applied in general to any dense system, solids, alloys,
and dense plasmas.

In this paper, we combine the dissipation function obtained
in Part I [33] with the modified Langevin molecular dynamics
model reported in Ref. [32], giving a full representation of
energy exchanges between ions and electrons in far-from-
equilibrium situations as appearing in radiation damage. This
is a calculation of the entire process from the collisional to the
thermal phases of a cascade, which provides a detailed picture
of the energy deposition and exchange between the ion and
electron subsystems until their final thermalization.

The paper is organized as follows: In Sec. II we describe
the model and simulation methods, by introducing the formal-
ism of our generalized Langevin dynamics to perform molec-
ular dynamics simulations of radiation damage. Next, we
summarize the first-principles theory and simulations utilized
in Part I of this work to parametrize the nonadiabatic electron
dynamics as a dissipative contribution to molecular dynamics.
Finally, we describe a family of specific simulations of colli-
sion cascades produced by PKA events at different energies in
pure Ni and in the NiFeCr alloy. In Sec. III we show the results
of the molecular dynamics simulation with emphasis on the
nonadiabatic energy transfer between ions and electrons. The
discussion in Sec. IV completes the paper.

II. MODEL AND SIMULATIONS

A. Ion-electron interaction model

In the classical MD simulations proposed here, the motion
of atoms is governed by a modified Langevin dynamics based
on work that we developed in a previous paper [32] and briefly
reviewed here. The forces acting on atoms have three contri-
butions: the gradient of the empirical potential, a viscouslike
(drag) force, and a random force. To include correlations
across particles, the last two terms are given in a tensorial
form, making the second term not necessarily antiparallel to
the individual velocity. Namely,

fI ({rK}, {vK}, t )

= −∇IUadiab({rK}) −
∑

J

BIJ ({rK})vJ

+
∑

J

WIJ ({rI})ξJ . (5)

The first term describes the adiabatic forces, which derives
from a conservative potential Uadiab. In the rest of the paper
we use the formalism of the embedded atom model (EAM
potential) [34]. The second and third terms are the nona-
diabatic forces fe-i

I arising from the interaction of the ions
with an electronic reservoir (e-i), assumed to be respectively
linear with the velocities (second term, drag) and stochastic

(third term, fluctuations). The matrices B and W, which are
functions of positions alone, describe the spatial correlations
between particles, and are related through the fluctuation-
dissipation theorem,

BIJ =
∑

K

WIKWT
JK . (6)

The independent random variables (vectors) ξJ in Eq. (5) are
white noise generated by a thermal bath at local temperature
Te. These random variables are then combined by the matrix
W, resulting in spatially correlated forces on individual ions,
defined as

WIJ =
{

−αJ (ρ̄J ) ρI (rIJ )
ρ̄J

eIJ ⊗ eIJ (I �= J ),

αI (ρ̄I )
∑

K �=I
ρK (rIK )

ρ̄I
eIK ⊗ eIK (I = J ),

(7)

where eIJ is the unit vector joining atoms I and J . The
coupling function αI (ρ̄I ) includes the physics of the coupling
strength between specific ion types and electrons. The projec-
tion on eIJ ensured pair radial forces, removing local torques.

We introduced the concept of locality via a weighting
function across neighbors, represented by decreasing radial
functions ρI associated with each ion I . In the current study,
the atomic electron density is used for the weighting functions
so that the bath effects of an atom at position rJ on an atom at
position rI will decrease with the distance between ions rIJ .

With this definition of the random forces, the net force
and torque of the system is zero, a condition that we proved
necessary to describe phonon lifetimes with the correct wave-
vector and polarization dependence [32]. This algorithm de-
fines a correlation between the components of the random
forces on individual particles as well as across particles.
Correspondingly, the set of all associated friction forces is a
linear function in the set of all the velocities. For instance, the
friction (drag) force on a specific particle can depend on the
velocity of a close neighbor.

Here, a modification to the initial model [32] is introduced
by making the electron-ion coupling strength α(ρ̄ ) a func-
tion of the local density where the moving atom is located,
similarly as originally proposed by Caro and Victoria [24].
The nominal site density is calculated as a superposition
of contributions from neighboring atoms, ρ̄I = ∑

J �=I ρJ (rIJ );
in turn, they are approximated by using spherical atomic
densities obtained by solving the isolated atomic problem (for
each atomic species), as described in Ref. [33]. For a given
configuration, the strength of the random force and the friction
linear operator is indirectly (through the density construction)
a function of the position.

The only free parameter in this formulation is the coupling
factor α(ρ̄), which is species dependent in this theory. This
function has to be defined in the relevant range of ρ̄ explored
by the system; for a bulk calculation the range extends from

a minimum at the vacancy electronic density (∼0.05e/Å
3
),

all the way to the electronic densities defined by the clos-
est binary collision expected to occur during the simulation

(∼2.0e/Å
3
). Such a function is obtained by fitting TDDFT

data, as described in the accompanying paper [33].
Once we interpret the electronic subsystem as a ther-

modynamic bath endowed with the concept of locality, it
is natural to think of it as a spatially modulated heat
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reservoir. The simplest realization of this heat reservoir is one
in which heat fluxes and temperature gradients arise. Using
a bulk electron thermal conductivity and Fourier law, we can
relate the gradients to the fluxes. The heat bath composed of
electrons is thus modeled with a heat diffusion equation to
be solved simultaneously with MD for the atoms, where the
electronic heat capacity (Ce) and heat conduction (κe) define
the evolution of the temperature within the electronic system,
Eq. (8). The energy exchange between the electronic and ionic
system is controlled by a source term (Qe-i),

Ce
∂Te

∂t
= ∇ · (κe∇Te) + Qe-i. (8)

The local source term Qe-i(r) = −∑
I fe-i

I · vIδ(r − rI ) in
the diffusion equation couples the continuum electronic sys-
tem to the atomic system (ions), and is the counterpart of the
second and third terms in Eq. (5). This equation is also subject
to boundary conditions that are not addressed in this paper.

The model is fully defined by providing, for each element,
a spherical atomic density ρI (r) (which we regard as given
here) and a coupling function αI (ρ̄ ) as a function of the
environment density. The coupling function α(ρ̄ ) defines the
overall magnitude of the random forces, and therefore, also
of the friction forces. The sought-after function α(ρ̄) must
satisfy two main requirements. First, that the dynamical model
reproduces the e-ph coupling strength for a crystalline phase
and, second, that the electronic stopping power is recovered
under ballistic, e.g., channeling conditions. The e-ph cou-
pling can be obtained by either using first-order perturbation
theory [35] or by doing TDDFT simulations in the e-ph
regime [30], while the electronic stopping for channeling can
be acquired by first-principles TDDFT calculations [33].

This generalization of classical molecular dynamics with e-
ph coupling (termed here EPH-MD) provides a single frame-
work to fully describe the dissipative process in both the
high-energy stopping and the thermalization regimes, which
is the main goal of this series of papers.

B. Model parameters

To apply the model in simulations of collision damage
cascades in pure Ni and concentrated solid solutions such as
NiFeCr [36], two functions are required for the former and
six for the latter case ]one density function ρ(r) and one
density-dependent coupling function α(ρ̄ ) for each element].
The reader is referred to the accompanying paper for the de-
termination of these functions [33], which are reproduced here
for clarity, in Fig. 1 for the densities, and in Fig. 2 for α(ρ̄).
It is important to note here that the present parametrization
of the model is limited to PKA energies below ∼100 keV
because the first-principles calculations in Ref. [33] were done
with only up to 3p explicit semicore states, preventing the
excitation of deeper core levels at higher PKA energies.

The classical-continuum model has been implemented
as an extension (fix) for the LAMMPS MD code [38] and
is released as an open-source code at the LLNL software
repository [39]. Similarly to the close-range-corrected ion-
ion (EAM) empirical potential, the electron-ion part of the
model is supplied with tabulated functions ρ(r) and α(ρ̄ ) for
individual elements.

El
ec

tr
on

ic
 D

en
sit

y 
[e

 / 
3 ]

Distance [ ]

 0

 0.002

 0.004

 0.006

 0.008 Ni
Co
Fe
Cr

10-6

10-4

10-1

102

104

 0  1  2  3  4  5

1st 2nd 3rd neighbor

FIG. 1. Electronic density as a function of distance to the nucleus
calculated for isolated atoms in vacuum, an approximation we adopt
to the actual electronic densities along the trajectory of projectiles in
our model. Arrows indicate distances for neighbors in the fcc lattice.
For clarity, the lower panel is plotted in logarithmic scale.

The electronic subsystem is integrated with the finite-
difference method (FDM), using the midpoint forward-
propagation rule in a coarse regular spatial grid where the
time step is selected so that the numerical stability criteria are
met [40]. This means that depending on the electronic heat
capacity and conductivity, there may be many steps within the
electronic system between each ionic integration step.

Because in our model the electron-ion interaction is de-
fined with fast decaying spherical functions (Fig. 1), the size

FIG. 2. Dissipation functions for each element of interest αNi(ρ̄ ),
αCo(ρ̄), αFe(ρ̄), αCr(ρ̄ ) that parametrizes WIJ and BIJ in Eq. (5).
These functions univocally relate the unperturbed electronic density
to dissipation, and represent a simplification to the ab initio relation-
ship such as that given in Ref. [37]. Arrows indicate the density at a
vacant site and at the center of a 〈001〉 channel. Higher densities are
explored by close collision events. The coupling is not necessarily an
increasing function of the density, because in a real material higher
densities are also associated with core atomic-level excitations which
are hard to produce by ion motion.
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of the atom neighbor list is controlled by a rather small radial
cutoff (5 Å); the electronic grid size is independent of ions,
implying that if the conductivity is high, a sparse grid or
even single point can be used, since electronic temperature
equalizes quickly.

The maximum grid size for the heat diffusion equation is
set by the maximum value of the heat conductivity, but on
the other hand, there exists a possible physical limit for the
smallest grid size given by the electronic mean free path.
Contrary to standard two-temperature MD, the grid size is
independent of the ionic problem since the ionic temperature
does not appear explicitly in our equations [see Eq. (12) in
Ref. [25] and below Eq. (4) in Ref. [41]].

C. EPH-MD simulations

Two sets of simulations were run to investigate the nonadi-
abatic aspects of radiation damage, one with the dissipation
forces alone, to compare our EPH-MD model with other
models in the literature, and one with both dissipation and
random forces acting simultaneously, to study the dynamics
of the energy exchange between electrons and ions.

In the first type of simulations, we aim at comparing our
model to the standard TTM Langevin model, in which the
friction force is a constant times the velocity of the ion, fe-i =
−βv, with β having two values, one corresponding to the e-ph
interaction for low velocities, βe-ph, and one corresponding to
the electronic stopping power regime for high ion velocities,
βSe-ph + βSe [see Eq. (4) and Eqs. (2) and (3) in Ref. [25]].

For a meaningful one-to-one model comparison, the trajec-
tories of every atom in a collision cascade are the same; to this
end, the simulations were run in the microcanonical ensemble,
i.e., with no dissipation forces, but the work done by the
dissipation forces was recorded at each time step as if they
were acting. We ran 20 collision cascades at three different
PKA energies for Ni (0.1, 1, and 10 keV), up to 10 ps. In the
simulations, the lattice was initially at rest and one atom in the
center of the box of a 32 × 32 × 32 conventional fcc supercell
was given a velocity in a random direction, matching the
selected PKA energies. In the case of standard Langevin we
used a constant coupling function given by SRIM for electronic
stopping of Ni in Ni from Ref. [27], as is customary done [26].
For the test of our model, we used the functions determined in
Ref. [33].

The second set of simulations was run for collision dam-
age events for various PKA energies, with both friction and
random forces active, as well as the heat equation in the
electronic subsystem. The heat equation is treated at the level
of single-cell approximation [i.e., we solve Eq. (8) with the
first term on the right-hand side equal to zero], which is
equivalent to assuming a uniform electronic temperature in
the supercell. This simplification is justified by the signif-
icantly higher heat conductivity of electrons compared to
the lattice and the small sample size (L = 11 nm). We used
a constant temperature heat capacity with a value of 3.5 ×
10−6 eV/(Å

3
K), representative of the value in the range of

representative temperatures Te = 300–1000 K [42]. As in the
previous case, the lattice is initially at rest as well as electrons
at zero temperature; next, an atom in the center of the box
is given an initial velocity corresponding to the PKA energy

FIG. 3. Upper panel: Ion-kinetic Ek (dashed line) and potential,
relative to equilibrium, Ep = Uadiab − U 0

adiab (solid line) of the system
as a function of time at three PKA energies 0.1, 1.0, and 10.0 keV
along NV E trajectories. Lower panel: Energy deposition to the elec-
tronic system in the early stages of collision cascade PKA energies
for both models, traditional Langevin (TTM-MD) and EPH-MD (this
work). The energy transfer to electrons is obtained by integration
of the friction forces, which is calculated but not applied in the
integration of the equations of motion. (Solid lines are obtained with
our model and dashed lines with standard Langevin with Se taken
from SRIM table energies [27] and no threshold velocity.)

in a random direction. For each energy, ten simulations with
different initial conditions are carried out for statistics.

For the first term on the right-hand side of Eq. (5), we
used the modified EAM-type potential for Ni by Stoller
et al. [43], which reproduces the universal Ziegler-Biersack-
Littmark (ZBL) repulsive potential at short distances, and
was modified to match with DFT energies in the intermediate
range.

Finally, we also studied a concentrated solid solution,
namely, NiFeCr, with the EPH-MD model parametrized from
TDDFT data [33], and an EAM-type potential based on
Bonny’s [44] and modified by us previously [45] to reproduce
DFT data at short distances.

III. RESULTS AND DISCUSSION

A. Early stage of collision cascade in Ni

1. Comparison of dissipation terms

We report here the first type of simulations described
above, i.e., microcanonical (NV E ) trajectory with the eval-
uation of dissipative forces according to both traditional
Langevin and EPH-MD models. The time evolution of the
atomic kinetic and potential energy is shown in the upper
panel of Fig. 3. These two energy terms reach the same value
at about 0.2 ps, which nominally corresponds to the end of
the ballistic phase, after which the system slowly evolves into
equilibrium (and approximate equipartition between kinetic
and potential energy).

The lower panel of Fig. 3 shows the (virtual) work done
by the dissipative forces on all atoms for both models. As
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FIG. 4. Histogram of host electronic densities that a Ni projectile
with different initial energies explores during a collision cascade
event. This gives the range in which the coupling function α needs
to be modeled (Fig. 2). For reference, ρv and ρch mark typical
valence (site) and channel densities, respectively. Only briefly after
the PKA event and at TPKA > 1 keV a few ions can explore channel
(“ch”) conditions which are associated with maximal electron-ion
coupling α (Fig. 2), in turn producing high electronic dissipation at
subpicosecond times (Fig. 3).

expected, the traditional Langevin viscous damping removes
the same fraction of energy linearly with time at a (large) rate
determined by the electronic stopping power, independently
of the PKA energy. It clearly demonstrates the need to set
an arbitrary energy or velocity threshold [vth in Eq. (4)] for
this term, or otherwise all the energy would rapidly transfer
to the electrons. For example, in the work by Zarkadoula
et al. a fixed value around 31–54 Å/ps was chosen for similar
applications (see Table I in Ref. [26]).

In contrast, the EPH-MD model presented here clearly
shows two distinct regimes, one of strong coupling, when
atoms in the cascade are in ballistic trajectories undergoing
close collisions and dissipating significant amounts of energy,
and another, the e-ph regime, with smaller coupling. The
transition is generated by the environment dependence of the
coupling function α, via ρ̄: It is smooth, it happens at a small
fraction of a ps, and it depends on the PKA energy because
higher energies imply higher explored values of ρ̄. This model
captures this transition with a continuous model and gives
quantitative information about this process. Our tests show
that it is unlikely that a single threshold value in the model of
Eq. (4) can match the energy balance of Fig. 3 (lower panel,
solid lines) in this range of PKA energies.

As an illustration of these features of the EPH-MD model,
Fig. 4 shows the host densities that a projectile explores
during a cascade event. At low energy (0.2 keV) the projectile
explores host densities equal to or below those corresponding
to center of the 〈001〉 channel; the main contribution to
dissipation comes from the low-density region of α(ρ̄) on
Fig. 2, while at 10 keV the whole range of densities of the
coupling function α(ρ̄) is sampled.

Since the intensity of the electron-ion coupling is environ-
ment dependent, it is also natural to assume that the relaxation

FIG. 5. Effective instantaneous relaxation time τ as the cascade
progresses for three PKA energies, 0.1, 1.0, and 10 keV. Given an
NV E trajectory, the instantaneous relaxation time was estimated
globally as τ = 2Ek/(dEe/dt ). A lower value of τ means a higher
effective coupling.

time of ionic energy to the electronic system is also effectively
time dependent. The effective relaxation time, defined as the
rate of energy loss of the ionic system, is illustrated in Fig. 5.

2. Collision cascades of Ni in Ni: Full dynamic evolution

We report here the second set of simulations of collision
damage events for Ni projectiles in a Ni target at various PKA
energies, with both friction and random forces active, as well
as the heat equation in the electronic subsystem.

The fraction of the PKA energy transferred to electrons
versus time for collision cascade simulations for a Ni projec-
tile into a Ni target is shown on Fig. 6, while the temperature
of both subsystems versus time is shown in Fig. 7. Figures 5–7
are the main results of this work.

The electronic energy evolution clearly shows the two
expected regimes of collision cascades. First, in the early
ballistic stage (lasting a fraction of a picosecond), a regime
with a high electronic stopping power is responsible for a
transfer from atoms to electrons of up to 35% of the PKA
energy for TPKA = 50 keV. This effect is at the basis of the
damage energy concept: the fraction of the PKA energy that
is actually available to damage the lattice. An equilibration
stage follows, originating in the inverse process: electrons
transferring excess energy back to atoms; in the computational
model, this is achieved by the random force term of the
modified Langevin dynamics [third term in Eq. (5)].

Figure 7 shows the time evolution of temperatures in both
electrons and ions. For the lattice temperature, we see the
transition from the ballistic to thermal stage at ∼0.1 ps, as
mentioned when discussing Fig. 3. This figure clearly shows
that the electronic subsystem transition from an energy ab-
sorber to energy emitter occurs at the same time when the ions
evolve from ballistic to thermal stages.

The combined electron-and-ion system conserves energy,
and since in the initial state all the energy is in the PKA
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FIG. 6. Fraction of energy, initially in a PKA Ni projectile,
transferred to the electronic system as a function of time during
a collision cascade event at various PKA energies. The maximum
value is interpreted as the energy loss to electronic excitations [η
in Eq. (2)] in a realistic cascade (large open system) and plotted in
Fig. 8.

motion, the final equilibrium temperature is directly related
to the PKA energy, as shown in Fig. 7.

Figure 7 also shows that the thermal equilibration stage
can last more than 25 ps, which is in agreement with our
previous work on the lifetimes of phonons due to the e-ph
interaction [32]. Note that the present simulations are done
for a small closed system, with no thermal gradients in the
electronic subsystem and no boundary sink terms for simplic-
ity. For larger samples, with the full heat diffusion equation
for electrons, a faster thermal equilibration is expected.

From Fig. 6 we extract the highest percentages of energy
deposited into the electronic system and plot them as a

FIG. 7. Evolution of electronic Te (solid curves) and lattice Tl

(dashed curves) temperatures during collision cascade events initi-
ated by Ni projectiles (PKA) at different energies. Note that the use
of the expression “lattice temperature” is not well defined during the
ballistic regime (before kinetic-potential crossing in Fig. 3).

FIG. 8. Fraction of energy deposited into the electronic system as
predicted by our EPH-MD model (black points) (maximum values in
Figs. 6 and 9) and by SRIM (blue curves). The results are shown for
a pure Ni projectile in pure Ni (thin curve) and Cr, Fe, and Ni in a
NiFeCr random alloy (thick curves).

function of projectile energy, shown in Fig. 8. This quantity
can be interpreted as η in the NRT theory [Eq. (2)].

SRIM simulations of Ni projectiles in Ni are also shown
for comparison. Figure 8 shows that our model predicts a
significantly larger energy loss than SRIM, an effect probably
due to the fact that SRIM assumes a constant scalar linear
stopping power in the projectile energy range from 1 to
130 keV.

Finally, we ran the 10-keV cascade with TTM MD with
the SRIM stopping power value and our EPH-MD to compare
the defect production with both models. On average, in our
model, the number of Frenkel pairs at the end of the 50-ps
simulation was 18.7 [3.2 standard deviation (SD)] and with
TTM MD 26.3 (4.7 SD). Although these values cannot be
compared directly to experiments (due to small simulations
and unrealistic boundary conditions), the results clearly show
the difference between the two models having a significant p
value in Welch’s t-test (p = 0.0007).

B. Collision cascades of Ni, Fe, and Cr in a NiFeCr random alloy

In the accompanying paper, we report model parametriza-
tion for the four elements in the NiCoFeCr concentrated solid
solution. However, there are no classical potentials Uadiab

of the EAM type to perform MD simulations for such a
quaternary system including Co. Therefore, we applied our
EPH-MD model to study collision cascades in the ternary
NiFeCr random alloy, which has an EAM potential available
in the literature [44], and serves to display the ability of the
EPH-MD model to describe alloys.

The results for cascades initiated by each of the three
different elements are shown on Fig. 9. The same trends as
for pure Ni are also visible in the alloy case, where the initial
collision cascade regime transitions smoothly into the e-ph
regime. No significant differences are observed for different
elements used as PKAs. Although the electron-ion coupling
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FIG. 9. Energy transfer by different projectiles into the electronic
system as a function of time during a collision cascade event at
various PKA energies. The maxima are interpreted as energy losses
to electronic excitations [η in Eq. (2)] and are plotted in Fig. 8.

functions for different species are slightly different, the energy
deposition curves for the element types studied are quite
similar, reflecting the fact that the role of the primary knock-
on atom in a collision cascade at these low energies is not
relevant because the energy is rapidly distributed among all
atoms after a few collisions. In other words, at low energies,
the result of a collision cascade is an average of the alloy
properties, regardless of the chemical identity of the PKA.

In Fig. 8 we compare the cascade simulation results with
similar SRIM calculations. The results are qualitatively similar
to those of the pure Ni case, namely, that SRIM reflects a
significantly smaller energy dependence in this energy range.

IV. CONCLUSION

This work presents a study of the dynamics of energy
exchanges between ions and electrons in the cascade collision
process that follows the interaction of an energetic ion with a
metallic target. The model is based on a modified Langevin
dynamics for the ions that we published recently [32],
which takes into account the complex coupling to electrons.
Additionally, due to the explicit dependence on local den-
sity, the model simultaneously captures the strong coupling
corresponding to the electronic stopping power regime, and

the weak coupling corresponding the e-ph interaction regime.
This last regime is captured with all its complexity, in partic-
ular, with the dependence of phonon lifetimes on wave vector
and polarization.

The parametrization of the model is presented in the ac-
companying paper [33], where first-principles time-dependent
density functional theory is used to provide electronic stop-
ping and electron phonon interactions. This information is
used to construct dissipation functions readily usable in clas-
sical MD simulations.

The model has been implemented as an extension for
LAMMPS [38] and is released as an open-source code at the
LLNL GITHUB page [39]. The computational cost of this
model is about 50% higher than the standard TTM MD (1.5
times slower), mainly due to the need to calculate the nontriv-
ial extra dissipative force from ion positions and velocities.

The simulations reported here present a unified picture of
a collision process, starting with an energetic ion, the PKA,
and ending with a system with both electrons and ions in
thermal equilibrium. Between these initial and final states, a
complex energy exchange process occurs, starting with the
kinetic energy of ions going to the electrons, followed by the
excess electronic energy of electrons going back to the ions.
While this picture was qualitatively known, this model shows
quantitatively and with very few free parameters the precise
nature of this interaction.

These results represent a step further in the description of
damage processes, in particular, it helps remove the arbitrari-
ness in the election of a cutoff energy (velocity threshold)
range for the stopping power regime in the state-of-the-art
two-temperature models, providing a quantitative estimate of
the damage energy that is left available to damage the lattice.
It also provides a means to describe cases of high electronic
excitations, such as those in swift heavy ion tracks. Finally,
this model also gives an assessment of the accuracy of the
SRIM code.
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