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Role of electrons in collision cascades in solids. I. Dissipative model
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We present a detailed model for the nonadiabatic coupling between ions and electrons in energetic ion-solid
interactions over a wide range of energies in concentrated solid-solution fcc alloys of the 3d transition metals
Ni, Co, Fe, and Cr. The model is based on general statistical mechanical principles and results in a stochastic
modification of the classical nuclei motion which is parameterized by the first-principles calculation of a
dissipation function produced by explicit time-dependent electronic evolution. This model provides a full picture
of an entire collision process, from the ballistic to the thermal phases of a cascade, giving a detailed description
of the energy exchange between ions and electrons till their final thermalization, removing in this way some
ad hoc assumptions used in the state-of-the-art atomistic two-temperature models. This work is separated in
two papers; in the present Part I, we report on the ab initio methodology used to translate stopping power and
electron-phonon interaction into a parameterized dissipation function; Part II, to be published, addresses the
nonadiabatic ion dynamics using our modified Langevin dynamics [Tamm et al. Phys. Rev. Lett. 120, 185501
(2018)] applying the dissipation functions developed here to specific collision cascade events.
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I. INTRODUCTION

The traditional way to study the dynamics of ions in solids,
and in particular the interaction of energetic ions with matter,
relies on the Born-Oppenheimer approximation (BOA) [1],
where ions and electrons can be decoupled and their equations
of motion solved separately. An additional approximation,
which considers that ions move classically under the forces
derived from a potential energy function [e.g., the instan-
taneous ground state (GS) electronic energy], proves to be
useful to describe both thermal motion and nuclear stopping
power, Sn. However, for ion velocities approaching a fraction
of the Fermi velocity of electrons in a solid target, electronic
losses, or nonadiabatic effects, become increasingly relevant.

The rate of energy transfer to electrons can be cast in
the form of an electronic inelastic cross section, leading to
an electronic stopping power. As a simple extension of the
BOA, Sn and Se are customarily assumed to be independent of
each other; however, in the presence of nonadiabatic energy
exchange, the actual material response is considerably beyond
the BOA [2] and the combined scattering of ions and electrons
needs to be taken into account.

There is a vast literature reporting decades of theoretical
and experimental work related to Sn and Se, which started a
century ago with Bohr at the time of the formulation of quan-
tum mechanics [3–6] and extends to today; for a summary of
the key discoveries, see the recent review by P. Sigmund [7].

Ion-solid interaction models for Sn in the adiabatic or
elastic framework are based on the knowledge of the adiabatic
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potential energy function for ions, Uadiab, which enables the
calculation of cross sections and Sn within classical mechan-
ics using binary collisions theory. Seminal work addressing
this problem by Lindhard et al. in the 1960s, known as
the Lindhard-Scharff-Schiøtt (LSS) theory [8–11], provides
a simple universal expression for the nuclear-scattering cross
section with only a few parameters, such as the charges of
projectile Z1 and target Z2 atoms. This universal description
is achieved once a model for the screening of the nuclear
charge by electrons is adopted, for example Thomas-Fermi
theory, and translates into a nuclear stopping power that shows
a maximum and tends to zero at low and high energies.

More recently, with the increase in computer power and
accurate interatomic potentials, stopping power, range, and
microscopic details of the ensuing damage could be obtained
via full many-body ion-ion interactions within the frame of
molecular dynamics that, for a given potential and within the
realm of classical mechanics, provides the solution of the
many-body interaction process; for a detailed discussion see
Was [12].

Models for Se fundamentally need to resort to quantum
mechanics and yet were developed much earlier than those
for Sn by Bohr, Bethe, Moller, Bloch, Lindhard, and others,
as summarized in a 1963s review by Fano [13]. Electronic
stopping power is characterized by a curve that has a maxi-
mum as a function of velocity, often called Bragg maximum,
which occurs at a projectile velocity comparable with the
characteristic velocity of electrons in the target, such as the
Fermi velocity in an electron gas. Regimes of low or high
energy refer to energies below or above this maximum, and
are described by the Bethe (high energy) and Fermi-Teller
[14] (low energy) approximate theories (see Ref. [7]). The
intermediate regime has been a challenge for theoreticians, as
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is the very low-energy regime where band structure for solids
[15,16] deviate from the results obtained for the uniform elec-
tron gas, introducing, for example, stopping power threshold
effects in insulators [17].

Electronic stopping in the low-energy regime was studied
using several theoretical approaches, most notably by Firsov
[18] and the LSS theory [8]. These studies led to the char-
acterization of Se as a frictionlike force proportional to the
projectile velocity.

The separation of scattering processes into elastic scatter-
ing and electronic stopping has been a dominating principle
in ion-solid interaction physics for over 50 years. All Monte
Carlo and binary-collision simulation codes were built on this
principle. The popular transport of ions in matter (TRIM) code
[19], and its extension incorporating stopping cross sections
for energies above the stopping maximum, stopping and range
of ions in matter (SRIM) [20], are basically an implementation
of the LSS theory with a modified universal potential.

Lindhard’s and Firsov’s expressions for Se for energies
below the maximum predict velocity-proportional friction-
like stopping and, since originating in the Thomas-Fermi
model, suggest a smooth dependence of the stopping cross
section on Z1 and Z2. However, measurements by Orm-
rod and Duckworth for a series of ions in carbon [21]
first showed Z1 oscillations in electronic stopping cross sec-
tions, unaccounted for in those theories. The phenomenon
was a manifestation of the electronic shell structure of the
scattering centers, highlighting the need for more accurate
descriptions of the electronic structure of projectiles and
targets.

From the mid ’80s, atomic-scale computer simulations pre-
sented a substantial leap in the predictive power of radiation
damage studies, providing the most detailed picture of this
process, with information usually much richer than experi-
mentally accessible. Direct computer simulations of atomic
motion and electron dynamics, a “brute force” approach,
allows solving models whose complexity prevents analytical
alternatives. It makes it possible to study ion-solid interaction
directly from first principles, going significantly beyond ef-
fective theories. A fully atomistic first-principles calculation
of electronic stopping for a wide range of projectile velocities
has only recently been possible [2,22–28]. These recent ad-
vances rely on nonperturbative time-dependent density func-
tional theory (TDDFT) [29].

The computational resources required by this first-
principles approach prevent its use in cases where the ion
dynamics needs to be followed over much longer time scales,
e.g., picoseconds, or to study defect creation following cas-
cades. For those cases, the state of the art in computer
simulations for the combined ion and electron dynamics in
the nonadiabatic picture is molecular dynamics (MD) with
empirical potentials for the ions, and the continuum heat
diffusion equation for the electrons. The two systems are
connected via electron-ion coupling terms extracted from the
ab initio theories, in what is termed atomistic two-temperature
models, TTMs [30–32].

The parametrization of quantum mechanical results to feed
classical equations of motion for the ions has a long history of
accomplishments, the most successful being the one leading
to SRIM, as mentioned earlier [20]. In the framework of MD,

the use of Langevin equations with a damping term as a
function of the local electronic density was proposed by one of
us in the ’80s [33] as a plausible model of the two-temperature
system.

More recently, we showed that TDDFT not only gives
quantitatively accurate values for the stopping power regime
[34], but also for the electron-phonon interaction regime when
seen as a stopping process for energies in the meV range [35].
TDDFT and Ehrenfest forces [36] were used to calculate the
electronic excitations and dissipation produced by a moving
Ni ion in a Ni crystal in the MeV range (electronic stop-
ping power regime), as well as thermal energy meV range
(electron-phonon interaction regime). Generally, results at
high energy compare well to experimental databases of stop-
ping power, and those at low energy are very similar to lin-
ear response calculations when applicable, and experimental
measurements. This approach to electron-phonon interaction
as an electronic stopping process provides the basis for a
unified framework to perform classical molecular dynamics
of ion-solid interaction with ab-initio-derived nonadiabatic
terms in a wide range of energies.

The purpose of this paper is to provide a first-principles
approach to ion-electron interaction in concentrated alloys
for MD applications, and is motivated by recent evidence
showing that the way radiation energy is deposited into the
lattice in concentrated solutions, and later transported away,
plays a significant role in the early stages of radiation damage
[37]. While it has been shown that disorder significantly
affects transport within the electronic and ionic systems, its
effects on the interaction between the two subsystems has not
yet been elucidated. The materials of interest for our paper
are the face-centered cubic (fcc) concentrated solid solutions
based on Ni and its neighbors in the 3d transition metal series,
namely Co, Fe, and Cr.

This paper is organized as follows. Section II describes the
model. In Sec. III, we describe the first-principles theory and
simulation methods we use; Sec. IV describes the construction
of the dissipation function; Sec. V contains the Discussion and
Summary of the paper.

II. MODEL

The model for the role of electrons in energetic ion-solid
interactions proposed in this paper is based on our generalized
Langevin framework [38] for classical MD, where we replace
the scalar values of friction and random forces over individual
particles with many-body forces that act in a correlated man-
ner over different particles, called here EPH-MD (electron
phonon-molecular dynamics) [39]. This represents a realistic
bathlike interaction with electrons by a friction term [40,41]
for electronic stopping power and e-ph interaction, and a
random force, e.g., produced by electronic fluctuations). In
this model, the force on particle I has three contributions:

fI = −∇IUadiab −
∑

J

BIJvJ +
∑

J

WIJξJ . (1)

The first term represents the conservative forces, assumed
here to be independent of the electronic excitations. The
second and third terms are the friction and random forces of
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the generalized Langevin dynamics, where the random forces
are correlated, as made explicit by the tensor notation.

A model for ionic motion that equilibrates with a thermal
bath (electrons) at a locally smooth temperature Te must
fulfill several conditions: First, {ξI}I must be white-noise and
mutually uncorrelated Gaussian random variables normalized
to 2kBTe; second, BIJ (and WIJ ) is, at most, a function
of positions (and not of velocities); and third, the tensorial
fluctuation-dissipation theorem must hold [39]:

BIJ =
∑

K

WIKWT
JK . (2)

Specific choices of WIJ (and Uadiab) and its parametrization
are given later.

The objective of our paper is to develop a model for the
second term in Eq. (1) based on ab initio calculations of
the coupling between ion and electrons over a wide range
of energies and ion configurations, and apply it to describe
a full calculation of the collision process. We separate this
work in two papers; in this Part I, we report on the ab initio
methodology used to translate stopping power, a complex
quantum mechanical result, into a functional form well suited
for the implementation into classical MD; namely, to find
explicit expressions for the BIJ function appearing in the
second term of Eq. (1) while simultaneously preserving a
correct correspondence with WIJ appearing in the third term.
Part II, to be published, addresses the nonadiabatic ion dynam-
ics applying our modified Langevin dynamics [39] with the
dissipation functions developed here, providing a full picture
from the ballistic to the thermal phases of a collision cascade.

III. FIRST-PRINCIPLES ELECTRON DYNAMICS

A. Time-dependent density-functional theory

To study deviations from the BOA, we introduce a specific
quantum mechanics framework, namely ab initio nonadiabatic
TDDFT for electrons [29] combined with Ehrenfest dynamics
for the ions [36]. This parameter-free method used to model
electronic excitations is particularly suitable in the presence
of substantial electronic excitations and in the limit where
ions behave classically; it opens a window to observe the
microscopic dynamics and dissipative effects for arbitrary
configurations, with unprecedented detail and accuracy.

In this theory, single-electron states evolving in time are
represented by electron wave functions {ψi} in a periodic su-
percell interacting in a mean-field effective potential produced
by other electrons and ions; wave functions are the solutions
of these time-dependent equations,

ih̄
∂

∂t
ψi(r, t ) =

{
− h̄2∇2

2me
+ Vext[{RJ (t )}J ](r)

+Vint[n](r)

}
ψi(r, t ), (3)

where Vext is the external potential produced by ions {RJ (t )}
and Vint is the Hartree and exchange-correlation potential for
the spatial-dependent electron density n.

When ions move, the energy deposited into the electronic
system above its instantaneous GS represents the work done
by nonconservative forces.

The practical utilization of TDDFT has the same system-
size limitations of DFT (e.g., hundreds of atoms) and time
scales limited to a few femtoseconds. These limitations pre-
vent the utilization of TDDFT in full or even the smallest
meaningful collective ionic events (e.g., collision cascades);
however, systems modeled here are large enough to ex-
tract the parameters for coarser models of the dissipative
dynamics.

Due to the limitations mentioned above, the framework
expressed here requires a selection of a special set of well-
controlled trajectories in small systems from which the full
classical dissipative model can be adjusted. There are at
least three representative trajectories that are relevant to the
problem of cascades: (i) ions (e.g., primary knock-on atoms,
PKAs) channeling or moving interstitial in the lattice in which
a specific ion (projectile) travels ballistically through at least
several unit cells, (ii) head-on or binary collision in which
specific pairs of projectile and host atoms approach each other
(low impact parameter) at high energies, and (iii) ions at their
lattice positions oscillating at typical phonon frequencies and
exchanging, near equilibrium, energy with electrons.

Our set of ab initio TDDFT simulations are based on
representatives of these types of trajectories in rather small
systems. The idea is that a model for nonadiabatic forces will
be considered adequate if it can reproduce the TDDFT dissi-
pative forces (friction terms) in this set of selected trajectories.
The materials of interest are the 3d transition metals known
to form single-phase fcc-concentrated solid solutions, namely
Ni, Co, Fe, and Cr [37]. As we shall see, the nature of the
model calls for its parametrization via simulations of each
element in a representative host.

Two types of first-principles electronic calculations are per-
formed; one is the adiabatic or BOA [1], in which electrons are
always at their GS, i.e., standard DFT calculations. The other
method is TDDFT, in which electrons evolve in time from
their GS at time t = 0 [29]. Both types of simulations were
performed using the plane waves Lawrence Livermore code
Qball (for details, see Refs. [42,43]) with norm-conserving
pseudopotentials and an energy cutoff of 150Ry for the
plane-wave basis set. The calculations include 3p semicore
states, are nonmagnetic, and use the adiabatic LDA exchange-
correlation potential [44].

For all projectile trajectories, a supercell with 108 atoms on
a fcc lattice with a lattice parameter of 3.52 Å was used, with
a projectile velocity of 0.3 a.u. (131keV for Ni), kept constant
while the target atoms are at rest, i.e., we do not integrate the
equation of motion of any target atom in the simulation: The
projectile is forced to have a rectilinear trajectory at constant
velocity. This method simplifies the analysis of the relevant
information; it then represents an open system where energy
is given to or subtracted from the projectile to keep its velocity
constant.

A point needs to be made justifying the use of a small
supercell geometry. Periodic boundary conditions in our sim-
ulations imply that an array of projectiles with parallel trajec-
tories separated by 10.56 Å interact simultaneously with the
target; projectile-projectile interactions may therefore affect
the results. However, in metals the screening length is of
the order of the nearest-neighbor distance, restricting the
perturbation caused by the projectile to its local surroundings.
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FIG. 1. Energy transfer to the electronic system by a Ni projectile
traveling in fcc Ni at v = 0.3 a.u., along three different trajectories.
The dashed lines are obtained from TDDFT calculations and solid
lines from the fitted MD model. The main plot represents the
incommensurate trajectory where the site density is also added for
informative purposes. The subset shows the energy transfer along
the channel in the center (channel 4/16) and offset from the channel
(channel 2/16).

This effect can be seen in the fact that the stopping power
process is basically a two-body effect involving the projectile
and its closest target atom, as Figs. 4 and 5 in Ref. [45] and
discussions therein prove.

Our model is constructed for a bounded set of velocities
(less than 1 a.u.), mainly because we limit electronic excita-
tions to 3p semicore states. Given that bound, the question
is whether the cell is large enough to be in the limit of
effective screening between replicas (and their wakes). Size
effects in the limit of large velocity can be estimated, as
we do in Ref. [46]. Here, we made sure that the results are
converged with respect to the cell size. Independent support to
this assertion comes from Ref. [47]; Fig. 1 in that paper shows
that the screening decays only after the maximum stopping is
achieved. In the case of Ni into Ni, the maximum of stopping
occurs at velocities around 10 a.u., well above the upper limit
of validity of our model. Our case is not |Z| = 1 like in
this analytic model, but at the same time, more (semicore)
electrons participate in the screening as shown in Ref. [34],
so the argument holds.

Similarly, time effects for a fixed cell size and veloc-
ity imply that there will be a time after which the energy
deposition is no longer an intensive quantity. In the same
way that we have access to finite size effects (for bounded
velocity) by increasing the cell size, we have access to the time
domain question by running long enough to reach a steady
state and observe the saturation of the energy deposition
later on. Longer times in our simulation cell are obtained
when the projectile wraps around the cell and reenters. As an
example of a stationary state, from Fig. 1 it can be seen that
at each equivalent two-body encounter in a given trajectory,
the energy deposited into electrons is essentially the same,
indicating no saturation effects. Also, we note that after one

passage of the projectile across the entire sample, the total
energy deposited into the target is a few hundred eV. The
system contains (109 x 16) 1744 electrons, which means
that less than half an eV/electron is deposited; this is a
small amount in terms of the band energy of the electrons.
A pictorial illustration of this effect is shown in Fig. 8 of
Ref. [48].

The difference in energy between TDDFT and BOA cal-
culations for the same trajectory represents the net energy
given to electrons by the projectile, i.e., energy that would
not be given to the electrons if the ions move adiabatically.
Therefore, this energy difference is the nonadiabatic part of
the problem.

It is important to note that, contrary to perturbative ap-
proaches to electronic stopping, adiabatic DFT and nonadi-
abatic TDDFT formalism do not require an a priori choice of
the charge state for the projectile. In all simulations, the total
nuclear charge of the 108+1 ions is exactly compensated by
the same number of electrons, i.e., the sample is electrically
neutral. As the projectile moves, the effective charge that
moves with it is part of the solution to the calculation, and not
an input. Analysis of the charge states of the projectile and of
the closest target atoms for similar channeling simulations can
be found in Ref. [49].

B. Simulation results

We run TDDFT and BOA simulations for two cases,
namely, a Ni projectile into a Ni target, and Ni, Co, Fe, and
Cr projectiles into a NiCoFeCr alloy target.

1. Ni projectile into Ni target

As a first example, and since Ni is special among other
elements in a recently discovered family of fcc-concentrated
solid solutions [37], we start by describing the case of a
moving Ni ion (projectile) in a Ni host (target). The Ni
projectile moves through a pristine 108/107-atom system
along three types of trajectories, two 〈001〉 channeling direc-
tions, one at the center of the channel (projectile Cartesian
position along r(t ) = (4/16a0, 4/16a0, vt ), and another off-
center r(t ) = (2/16a0, 2/16a0, vt ), and one incommensurate
direction close to the 〈111〉 direction, which includes going
through a vacancy, introduced purposely to explore dissi-
pation at the lowest host electronic density, representative
of the e-ph interaction regime. The chosen value for v in
these simulations is 0.3 a.u., which allows obtaining a clear
numerical result for dissipation; the results for lower velocities
are down-extrapolated as linear in the velocity by the model.
This is a relatively low velocity in terms of deviations from
linearity of stopping power and validity of the pseudopotential
approximation [34].

From the derivative of the energy difference between
TDDFT and BOA runs, we extract the local stopping power
as a function of position along the trajectory, which is used as
input for adjusting the dissipation model. With dashed lines,
Fig. 1 shows ETDDFT(r) − EBOA(r), the energy transferred
from the moving projectile to the electronic system up to a dis-
tance r along the trajectory for the two channeling directions
(inset) and for the incommensurate direction (main panel).
The stepwise structure of these curves reflects the projectile
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FIG. 2. Electronic energy as a function of projectile position for
Ni (black), Co (green), Fe (blue), Cr (yellow) projectiles at v =
0.3 a.u. along rectilinear trajectories. Left column: Total nonadia-
batic electronic energy. Center column: Adiabatic or BOA electronic
energy. Right column: Difference between them. Top row: Along
〈100〉 direction passing at the center of the channel. Center row:
“Off-center” along 〈100〉 direction with an impact parameter of
1.19 a.u. from closest atoms at the channel. Bottom row: Along an
incommensurate direction starting at the center of a 〈100〉 channel.
The target is a quasirandom solid solution alloy of equiatomic
NiCoFeCr.

close encounters with the target atoms. This figure also shows
the fitting to these curves by our model, which we discuss
later. Finally, Fig. 1 also shows the host GS electronic density
(lowest curve and right y axis), which will be used to relate
stopping power to electronic GS density.

2. Ni, Co, Fe, Cr projectiles into a NiCoFeCr target

Similarly, we run TDDFT and BOA simulations of self-
irradiated NiCoFeCr, as representative of a concentrated solid
solution. The initial structure was taken from our previous
work [50], where we found that there exists a degree of short-
range order in this system. We studied the same nominal tra-
jectories described above in the underlying fcc lattice. Clearly,
our strategy explores only a few of all possible environments a
projectile may find in a random solid solution, but we assume
that the sampling is good enough to extract a dissipation
function that represents well the real case.

As we studied four projectile types and three directions
on the alloy target, we performed a total of 24 independent
simulations. The raw data is presented in Fig. 2, where the
electronic energy as a function of projectile position for Ni,
Co, Fe, and Cr projectiles versus position along rectilinear
trajectories is shown. The three columns represent the total
nonadiabatic electronic energy, the adiabatic or BOA elec-
tronic energy, and the difference between them, respectively.
Each of the three rows show the trajectories studied along
〈100〉 direction passing at the center of the channel, “off-
center” along 〈100〉 direction with a smaller impact parameter
of 1.19 a.u. from closest atoms to the channel, and along an

incommensurate direction close to 〈111〉 starting at the center
of a 〈100〉 channel, respectively.

The energy transferred to electrons in the case of the four
types of projectiles in a fcc NiCoFeCr target is shown in Fig. 3
together with the GS electronic density seen by the projectile
along the trajectories, and the results of the dissipation model
that we discuss later.

IV. CONSTRUCTION OF THE DISSIPATION MODEL

A. Electronic density

Purposely, electronic density plays an important role in
defining the model of local dissipation, which by construc-
tion is an explicit function of the electronic density in the
vicinity of each moving ion, as envisioned in Ref. [33].
The explicit dependency on the density allows us to define
the dissipation function in a wide range of possible local
environments.

The data shown in the previous section is used to create the
functions that relate the strength of the dissipation to the local
electronic density of the host, i.e., part of the BIJ function
appearing in the second term of Eq. (1).

Since the goal is to develop a model to be used in classical
MD, with no access to instantaneous self-consistent electronic
densities, in lieu, we use spherical atomlike densities of
isolated atoms (obtained here from the OPIUM DFT pseudopo-
tential generation code [51]). This step is necessary because
during a classical MD simulation, there is no access to the
full self-consistent density solved in the TDDFT code. In a
MD simulation, the host electronic density will therefore be
calculated as a superposition of spherical atomic densities of
atoms close to the moving atom whose electronic friction is
being calculated.

Atomic density calculations are done for all four ele-
ments (Ni, Co, Fe, Cr) studied in this paper, and the re-
sults are tabulated for later use in the MD code, Part II of
this work. To control the computational cost of the clas-
sical MD simulations, the densities are modified with a
cutoff function to ensure they go smoothly to zero at a
cutoff distance (5.0 Å). The resulting radial electronic den-
sity functions used for individual elements are plotted in
Fig. 4.

Atomic densities play two roles in the model, first they
define pair correlations of the nonadiabatic forces to provide
local conservation of linear and angular momentum, and
second partial sum of neighboring atomic densities scale the
strength of the local dissipation. Of these roles, the former,
as demonstrated in Ref. [39], ensures a rich electron-phonon
interaction regime; in particular, it provides different phonon
lifetimes for different phonon polarization, while the latter
allows us to connect the low-energy regime (electron-phonon
equilibration) with the high energy regime (electronic stop-
ping power) under the umbrella of a single model. The model
was set up such that only a few functional parameters are
free; we assume spatial pair correlations controlled by the
functional form of the electronic densities. The main work is
focused on defining a local dissipation function as a function
of the density.
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FIG. 3. Energy transfer to electronic system as four different
projectiles travel along three different trajectories through NiCoFeCr
alloy. Also shown are electronic site densities (solid black line) along
the trajectories. The element types selected for projectiles are Ni
(purple), Co (green), Fe (blue) and Cr (yellow), with arbitrary vertical
offsets. The trajectories studied are (a) channelling (4/16), (b) off-
center channel (2/16), and (c) incommensurate. The data plotted
with colored dotted lines are obtained from TDDFT calculations and
the MD model predictions are shown with colored solid lines.

FIG. 4. Electronic density as a function of distance to the nucleus
calculated for isolated atoms in vacuum, used for approximating
electronic densities along the trajectory of projectiles in our model.

In summary, electronic density defines the geometrical
aspect of the model and gives an explicit dependency of the
magnitude of dissipation forces (for details, see Ref. [39], and
Supplemental Material therein):

WIJ =

⎧⎪⎪⎨
⎪⎪⎩

−αJ (ρ̄J ) ρI (rIJ )
ρ̄J

eIJ ⊗ eIJ (I �= J )

αI (ρ̄I )
∑
K �=I

ρK (rIK )
ρ̄I

eIK ⊗ eIK (I = J ),
(4)

where ρ̄I = ∑
J �=I ρJ (rIJ ). Note that this tensor fully defines

BIJ by the relation given in Eq. (2). This part of the model,
which completes Eq. (1), fully specifies the equations of mo-
tion for the ions, which is implemented by us as the USER-EPH

fix (plug-in) [52] for the LAMMPS code [53]. The remainder
of the paper explains the method to adjust the functional
parameter αI (ρ) for each of the four species considered here.

B. Dissipation function

We are interested in deriving an expression for the dis-
sipation of ionic kinetic energy into the electronic system
able to capture the complexity implicit in an interaction that
covers nine orders of magnitude in energy (from meV to
MeV) and ∼two orders of magnitude in the local electronic
density visited by the moving particle, while at the same time
we aim at a model simple enough so it is usable in classical
molecular dynamics simulations with the correct asymptotic
equilibration limits. These constraints force us to make some
simplifications.

In connection with our goal of relating the strength of the
dissipation force to the host unperturbed electronic density
ρ0, our previous work [45] shows that, contrary to the meV
e-ph interaction regime that can be represented as a stopping
process with a dissipative force proportional to the velocity
and function of the electronic density, Fdrag = −β(ρ0)v [35],
the higher energy regime cannot be so represented, because β

becomes, at the least, a multivalued function of ρ0. Here, β

symbolically represents a scalar version of the B in Eq. (1).
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FIG. 5. Coupling parameter β(ρ ) for a Ni projectile moving with
velocity v = 0.3 a.u. into a fcc Ni target. The trajectories studied are
channelling (4/16), off-center channel (2/16), and incommensurate,
as a function of the unperturbed local electronic density ρ0, from
Ref. [45].

Since B is the hermitian square of W [Eq. (2)], the drag
coefficient β is dimensionally proportional to α2.

This multivalued behavior of β is illustrated in Fig. 5,
which shows loops when β is represented in terms of ρ0. In
Fig. 1, we reported the energy difference (dashed line), i.e., the
energy transferred from the moving projectile to the electronic
system, and the host density (solid line) along the projectile
trajectory. For example, in that figure one sees two points
along the projectile trajectory that have host density equal to

2 e/ Å
3
. For these points, the derivative of the energy differ-

ence divided by the projectile velocity is different; in other
words, for a given density there are two different dissipation
values β. Therefore, loops appear in the β(ρ) representation.

As we explain in Ref. [45], the origin of the multivalued
character of β(ρ0) can be traced back to the fact that the GS
electronic density seen by the projectile on equivalent points
in the incoming and outgoing phases of a collision is the same
by symmetry, while the time-dependent density is not. It is
then the dynamic response of the electrons during the collision
that creates the asymmetry in the dissipation represented as
a function of the projectile coordinate, which prevents the
construction of an ad hoc β(ρ0) (single-valued) functional
relation.

For clarity, we highlight here that phonon excitation en-
ergies, i.e., meV, originate when ions move close to their
crystal equilibrium positions, which coincide with minima of
the host electronic density, while high energy collisions, i.e.,
in the keV–MeV range, bring ions to close contact where they
explore regions two or more orders of magnitude higher in
electronic density than for the meV case.

The dissipation function will therefore be an average of
the loops, chosen to give the same TDDFT total energy
dissipation after a full collision, rather than point-by-point
agreement with it. To this end, we minimize a fitness function
that measures the difference in dissipation between the ab
initio results and the results obtained by moving a projectile
along the same trajectories used in the ab initio calculation;

FIG. 6. Dissipation function for each element of interest
αNi, Co, Fe, Cr(ρ ) that parameterizes WIJ in Eq. (4). These functions
univocally relate unperturbed electronic density to dissipation, and
represent a simplification to the real relationship such as that given
in Fig. 5 and in Ref. [45].

the dissipation along these trajectories is calculated using the
atomic sphere electronic densities described above and the
trial function α(ρ). Note that this is a strong simplification
motivated by the practical limitation of resolving the elec-
tronic density on the fly. However, compared to other types
of bonding, for metals this approximation is reasonable.

The fitting was done separately for each case in which we
have ab initio data, using the GNU Octave software package
with the NLOPT optimization module [54,55], which in turn
drove a LAMMPS session with trial parametrizations of the
model, and consisted of three stages. First, the function value
at the electronic density of a vacancy site, ρv , was set so
that the electron-phonon coupling strength matches the target
values for each case. Next, a cubic spline with six knot points
was fitted to reproduce simultaneously the incommensurate
and center-channel TDDFT data. Finally, the high-density re-
gion of the coupling parameter model was suppressed with an
exponential cutoff function. Although intuitively the coupling
seems to be an increasing function of the local density, in a
physical atomistic system (and also reflected by TDDFT) the
electronic excitations in high-density region are suppressed
because of the large binding energy of core electrons.

The dissipation functions so obtained are shown in Fig. 6
for the elements of interest in this paper. These figures show
that the main difference between the effective coupling and
the ab initio data is that the former is a function, with absence
of loops, i.e., at each density value corresponds a given
dissipation (single valued).

V. DISCUSSION AND CONCLUSIONS

In our objective of modeling the nonadiabatic processes
involved in energetic ion-solid interactions, we used TDDFT,
an ab initio technique, to study the energy transferred from
moving ions to electrons in a solid both, in the electron-
phonon regime (low-energy motion in regions of very low
host electronic density), and in the stopping power regime,
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where ions come to close contact and overlap large electronic
densities. These results show a complex behavior related
to the evolution of the electronic structure as electrons are
excited. Since our model is to be used in classical MD, with
only GS electronic density available in the form of tables, we
established a relation between the first-principles result and a
simplified model in which the host electronic density seen by
the projectile is simply the superposition of atomic densities,
and the resulting dissipation is given by a dissipation function
that, based on the spherical atom densities, gives the result
closest to the ab initio one.

The strength and limitations of our model are represented
by the similarity between the actual TDDFT dissipation
and that predicted by the model, Figs. 1 and 3. We see
there that the model is able to predict quite accurately the
energy transferred after each collision along the trajectory,
but not point by point along the trajectory. This feature was
to be expected since we are forced to use frozen, spherical
atomic densities and not actual, time-dependent ones. This
limitation is the price to pay to have a model that can easily be
implemented in classical MD codes at no significant increase
in computational cost.

The functions shown in Fig. 6 are the main input for a
nonadiabatic MD simulation of collision cascades on alloys
and since they provide the coupling strength at all relevant
densities, i.e., densities visited by moving atoms at all energies
of interest, they will allow the first calculation of the entire
collision process, from the ballistic to the thermal phases of
a cascade, giving a detailed picture of the energy exchange
between ions and electrons till their final thermalization. Such
calculation is the goal of our second paper, “Role of electrons
in collision cascades in solids. Part II: Molecular dynamics.”
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