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Emergent statistical mechanics of entanglement in random unitary circuits
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We map the dynamics of entanglement in random unitary circuits, with finite onsite Hilbert space dimension q,
to an effective classical statistical mechanics, and develop general diagrammatic tools for calculations in random
unitary circuits. We demonstrate explicitly the emergence of a “minimal membrane” governing entanglement
growth, which in 1+1 dimensions is a directed random walk in spacetime (or a variant thereof). Using the
replica trick to handle the logarithm in the definition of the nth Rényi entropy, Sn, we map the calculation of
the entanglement after a quench to a problem of interacting random walks. A key role is played by effective
classical spins (taking values in a permutation group) which distinguish between different ways of pairing
spacetime histories in the replicated system. For the second Rényi entropy, S2, we are able to take the replica limit
explicitly. This gives a mapping between entanglement growth and a directed polymer in a random medium at
finite temperature (confirming Kardar-Parisi-Zhang scaling for entanglement growth in generic noisy systems).
We find that the entanglement growth rate (“speed”) vn depends on the Rényi index n, and we calculate v2 and
v3 in an expansion in the inverse local Hilbert space dimension, 1/q. These rates are determined by the free
energy of a random walk and of a bound state of two random walks, respectively, and include contributions of
“energetic” and “entropic” origin. We give a combinatorial interpretation of the Page-like subleading corrections
to the entanglement at late times and discuss the dynamics of the entanglement close to and after saturation. We
briefly discuss the application of these insights to time-independent Hamiltonian dynamics.
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I. INTRODUCTION

To understand nonequilibrium dynamics in generic quan-
tum many-body systems, we need models that are analytically
tractable but which are not integrable. Randomness is a key
tool for constructing such models, even if our aim is ultimately
to learn about systems that are not random. This philosophy
is familiar from random matrix theory [1–3], as well as more
recent examples like the Sachdev-Ye-Kitaev model [4,5]. Ran-
dom unitary circuits [6–14] are minimal models for chaotic
quantum evolution. They retain two fundamental features of
realistic systems, namely unitarity and spatial locality, but
dispense with any other structure: The interactions (between
spins or qubits) are taken to be random in both space and
time. Randomizing the interactions yields models that are
analytically tractable to a large extent despite being nonin-
tegrable. These models offer the hope of revealing universal
hydrodynamic structures that are shared by a broad class of
many-body systems.

The entanglement entropy is a fundamental quantity whose
dynamics remains nontrivial even in the absence of any con-
ventional hydrodynamic modes [10,11,15–26]. Spatially local
random circuits have led to long-wavelength dynamical equa-
tions for entanglement production [11,25] and also for oper-
ator spreading [12,13], i.e., for the “quantum butterfly effect”
[27–40] in spatially local systems. They have also elucidated
effects of conserved quantities [41,42] and quenched disorder
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[43] on the spreading of quantum information. Very recently,
exact results have also been obtained for the dynamics of
random Floquet circuits and related models [44–46]. Here we
will be interested in universality associated with the propa-
gation of information through space, so we consider spatially
local circuits, but we note that interesting lessons have been
learned even from zero-dimensional random circuits in which
any qubit can couple with any other [47–52].

In this paper, we establish general tools for calculating
dynamical observables in random unitary circuits and apply
these tools to the Rényi entanglement entropies after a quench.
We construct mappings between dynamical observables and
a hierarchy (labelled by a replica-like index) of effective
classical models involving permutations as effective spins
(generalizing the mapping of Ref. [12]). In particular, we
show how the entanglement membrane [11,25] emerges from
these classical models under coarse graining. These mappings
go beyond previous simplifying limits (in particular, the limit
of infinite local Hilbert space dimension, q = ∞). They reveal
new universal phenomena, such as a phase transition in the
entanglement membrane, and new combinatorial structures.

The coarse-grained picture for the growth of entangle-
ment conjectured in Refs. [11,25] involves a minimal mem-
brane in spacetime. (This picture has now been shown to
apply in holographic conformal field theories [26].) In 1+1
dimensions (1+1D), the membrane is a one-dimensional
path in two-dimensional spacetime that is characterized by
a velocity v(t ) = dx/dt (its slope in spacetime). It has an
entanglement line tension E (v) that depends on this veloc-
ity [25]. Leading-order entanglement calculations reduce to
a classical optimization of the line tension for this path,
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|ψ(t) e−S2 = TrA ρ2
A

FIG. 1. Left: the time-evolved wave function represented as a
unitary circuit (schematic). Time runs vertically. The circles at the
bottom represent an initial product state. The legs on the top carry
the wave function’s spin indices. Right: the quantities we study (e.g.,
the second Rényi entropy, shown) are contractions of powers of the
circuit (blue) and its conjugate (red). The replica trick requires k
copies of this stack (not shown).

which can be thought of as minimizing the free energy of a
polymer.

In the simplifying limit q → ∞ for the local Hilbert space
dimension q (and in a certain model), the polymer can be
identified [11] with a coarse-grained minimal cut [20,53–55]
through the unitary circuit generating the dynamics. For finite
q, the computation of the circuit-averaged purity, e−S2 , leads to
a related directed walk problem [12]. However, for finite q, the
minimal cut formula is no longer accurate, and the calculation
of Sn is complicated by the need for a replica limit to handle
the logarithm in the definition of the entropy (since, e.g.,
S2 �= − ln e−S2 ). It is important to tackle this in order to derive
the membrane picture from explicit microscopic calculations
at finite local Hilbert space dimension q.

Concretely, we take the time evolution operator (quantum
circuit) to be a regular array of Haar-random two-site unitaries
as shown in Fig. 1 (left). This is quantum evolution with no
conserved quantities, which equilibrates locally to the infinite
temperature state.

In our mappings, the minimal membrane arises from do-
main walls between two kinds of permutations. These per-
mutations appear in the average over the random unitaries in
the circuit: Similar permutational degrees of freedom appear
for random tensor networks that are not made of unitaries
[55,60]. Mathematically, the permutations represent different
patterns of index contractions. For unitary dynamics, these
permutations can be understood more physically as distinct
ways of pairing spacetime trajectories in the path integral for
(say) the Rényi entropy, which involves multiple copies of the
system (Fig. 2) [12]. We expect this idea to be more generally
applicable.

The domain walls between permutations can be viewed
as a collection of interacting, directed random walks, with
interactions of several kinds. The entanglement is related to
the free energy of these walks (in the language of the classical
problem) and has both energetic and entropic contributions.
We obtain the time dependence of the entropies in systematic
expansions in 1/q (accounting for both the mean behavior
and fluctuations) and we show how the late-time saturation
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J

FIG. 2. By averaging a stack with N layers of U (t ) and N layers
of U (t )∗ (left), we obtain an effective classical model of interacting
spins (right) with three-body interactions. These spins take values
in the permutation group SN . The important configurations involve
domain walls between different spin values; see, e.g., Fig. 3.

can be understood in the minimal curve picture. We also
briefly discuss the operator entanglement of the time evolution
operator itself [56–59].

In more detail, for computing e−S2 it is sufficient to con-
sider a single walk which represents an elementary domain
wall (Fig. 3, left). Collections of multiple interacting walks
appear for two reasons, which we describe below. In this
paper, we focus largely on the Rényi entropies with n � 2.

First, if we consider a higher Rényi entropy, the relevant
domain wall is in fact a composite of (n − 1) elementary
domain walls, i.e., (n − 1) walks (see also a similar picture
in a Floquet circuit [44]). These attract each other strongly
through a combinatorial mechanism and can form a bound
state (Fig. 3, right). In the continuum, this bound state forms
the minimal membrane. There is also an unbinding phase
transition for these walks as a function of their velocity:
This unbinding is important in allowing general constraints
conjectured in Ref. [25], relating entanglement growth to the
butterfly velocity vB, to be satisfied.

Second, to compute, say, Sn or the fluctuations in Sn, we
must employ the replica trick. We consider a k-fold replicated
system and take the limit k → 0 at the end of the calculation.
There are then k sets of domain walls, one for each replica.
Distinct sets interact with a weak interaction that we compute
by expanding in 1/q.

This replica treatment allows us to pin down universal
fluctuations in the entanglement that are due to random-
ness in the circuit. It was argued that for dynamics that
is random in time these fluctuations are governed by the

t
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FIG. 3. In the calculation of S2 for n = 2 (diagram on left), each
replica contains a single elementary walk (domain wall). For n > 2,
e.g., n = 3 (right), each replica contains multiple walks, which can
form a bound state with a finite typical width. To calculate averages
involving Sn, we must use k replicas (which multiplies the number of
elementary walks by k) and take k → 0 at the end of the calculation.
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Kardar-Parisi-Zhang (KPZ) universality class [61,62] and
have a magnitude that grows in time as t1/3 [11]. (These
fluctuations are therefore subleading at large time compared
to the leading-order deterministic growth.) We confirm these
universal properties by an explicit mapping between the dy-
namics of the Rényi entropies and a problem that is equivalent
to KPZ, namely the problem of a directed polymer in a
random medium (at finite temperature [61–65]).

Strikingly, the replica limit needed to handle the logarithm
in the definition of the entanglement entropy is transmuted
by this mapping into the replica limit associated with the
disorder in the classical polymer problem. As a result, the
mapping to the directed polymer in a random medium can
be carried through exactly on the lattice when q is large but
finite. This polymer can be coarse grained to give the exact
leading q dependence of the constants in the continuum KPZ
equation describing the entanglement growth. At large q, there
are several early-time crossovers in the entanglement growth.
In fact, the timescale required to see KPZ fluctuations is
numerically large even at q = 2: We suggest that this is why
quantum simulations of this model at short times did not show
signatures of KPZ [13], resolving an apparent paradox.

II. OVERVIEW OF RESULTS

An appealing feature of random circuits is the possibility of
useful quantum-classical mappings for real time (as opposed
to imaginary time) dynamics. The Rényi entropies illustrate
these mappings.

Let us discuss the generation of entanglement after a
quench from an initial product state (we will discuss some
other setups later on). For simplicity, take the chain to be
infinite. The dynamics is generated by a random circuit. The
time evolution operator U (t ) is made up t layers of two-
site random unitaries, each independently Haar random, with
unitaries applied to even bonds in even layers and odd bonds
in odd layers; see Fig. 4.

Let A denote the half-chain with x > 0, and let Sn(t ) be the
nth Rényi entropy of this region at time t . We define

Zn ≡ Tr ρn
A = e−(n−1)Sn , (1)

where the t dependence is implicit.
The physical quantities of interest to us are averages such

as Sn—where the average is over the random unitaries in

A A

x

t

FIG. 4. The structure of the random circuit. Each two-site ran-
dom gate is shown as a four-leg block. x > 0 corresponds to region
A. Time evolution is going upward.

the circuit—and also fluctuations around these averages. To
obtain Sn, we must average the logarithm of Zn, since in
general exp(−αSn) �= exp(−αSn). For this, we will use the
replica trick, studying the average of the kth power of Zn for
an arbitrary integer number of replicas k and then taking the
formal limit k → 0.

The average entanglement is given by

Sn = − 1

n − 1

∂Zk
n

∂k

∣∣∣∣∣
k=0

(2)

and higher terms in the expansion about k = 0 yield higher cu-
mulants which quantify the fluctuations in the entanglement,

ln Z k
n = −k(n − 1) Sn + k2(n − 1)2

2
(Sn − Sn)2 + · · · . (3)

We will give a brief overview of the general features of
this replica calculation of the entropies in Sec. II A. Then, in
the remainder of this section, we summarize our basic results
for the entanglement. We divide these into two classes. First
is the leading order dynamics of the entanglement entropy
at large times (Sec. II B). This leading order dynamics is
deterministic, despite the randomness in the circuit. Second is
subleading fluctuations arising from randomness in the circuit
(Sec. II C). Although these fluctuations are subleading at large
time, they have interesting universal structure.

To clarify the distinction, consider the above example of
Sn(t ) for an initial product state. When t � 1, the leading
order behavior is deterministic growth at a rate set by an
entanglement speed vn; we find this rate to be n dependent.
Randomness consists in subleading fluctuations, which obey
KPZ scaling [11], and are on the parametrically smaller scale
t1/3.

We may write Sn(t ) as

Sn(t ) � seq [vnt + Bnt1/3χ (t )]. (4)

The first factor is the equilibrium entropy density seq: Since
the models we study have no conservation laws, they equili-
brate locally to the infinite temperature state, and seq is set by
the local Hilbert space dimension,

seq = ln q. (5)

The first term inside the brackets in (4) is the deterministic
leading order growth (the deterministic growth will have
nontrivial time dependence for, e.g., a more general initial
state, or for the entanglement of a finite region). The sec-
ond term includes the KPZ fluctuations of size t1/3. Bn is
the nonuniversal constant governing their strength. χ (t ) is a
random variable whose magnitude is of order 1 at late times,
whose probability distribution is universal and given by the
Tracy-Widom distribution F1 [66–79].

We will obtain Eq. (4) by explicit calculations at large but
finite q (therefore, modulo the fact that the replica calcula-
tion is nonrigorous, we confirm the conjectures of Ref. [11]
for the universal properties, also fixing various nonuniversal
constants) and we will discuss various extensions.
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FIG. 5. Zk
2 maps to k directed walks on the tilted square lattice,

with attractive interactions of order 1/q4 (vertical direction is phys-
ical time). The figure shows k = 2. Left: This configuration of the
walks has no interaction contribution at this order. Right: In this
configuration, there is an interaction contribution from the square
with a star; see Sec. VI.

A. General features of the mappings

We map Zk
n to an effective classical statistical mechanics

problem for interacting random walks which has some strik-
ing features, including nontrivial Feynman rules for allowed
fusions of paths. This significantly extends the mapping of
Ref. [12] for the case Z2. We will use an expansion in powers
of 1/q to obtain analytical control on the interaction constants
in the effective classical problem, but we expect the resulting
universal results to hold for all q, including the minimal
value q = 2. In fact, even our large q results for various
nonuniversal constants should be reasonably close for small
q, because of the numerical smallness of various constants.

The mapping involves several steps. We first map Zk
n to

a partition function for a classical magnet. The spins in this
magnet take values in a permutation group, as in work on
random tensor networks [55]. The group relevant to us is SN

for N = n × k, as a result of the replica limit. Eventually we
must consider the limit k → 0.

The interactions in the classical magnet are initially rather
complicated but permit simplifications. In Ref. [12], it was
shown that in the special case n = 2, k = 0 the partition func-
tion could be radically simplified by integrating out half of
the spins. We extend this idea to general n and k. This allows
a much richer set of configurations, and the Boltzmann weight
for a general configuration in the effective classical model re-
mains complicated. However, these Boltzmann weights obey
crucial simplifying constraints, due to the unitarity of the
underlying quantum dynamics, which imply that many spin
configurations do not contribute to the partition function. We
exploit these constraints, together with a large q expansion, to
reduce the partition function to one for multiple directed paths
with interactions of various kinds.

These paths arise as domain walls in the classical magnet.
They may be viewed as living on a rotated square lattice,
and they are directed in the time direction. Each domain wall
carries a label, analogous to a particle type. This label is an
element of SN , which in the simplest case (an elementary
domain wall) is a transposition such as (12). We explain this
structure in Sec. III.

For Zk
2 , which yields the second Rényi entropy, we obtain a

partition function for k-directed paths, one for each replica;
see Fig. 5. There is an effective local attractive interaction

between different replicas (different paths). This attraction is
parametrically small when q is large (of order q−4).

The problem of k directed paths or polymers with attractive
interactions, in the replica limit k → 0, is a well-known one
[65–67,72,80]. It is the replica description of a single directed
polymer in a random potential [62–64], a model which can
be mapped to KPZ. Therefore, this sequence of mappings
relates the universal properties of the entanglement to those
of the directed polymer in a random potential. At large but
finite q, it is even possible to make an explicit microscopic
correspondence with a specific lattice model for directed
polymer in a random medium.

The entanglement S2(t ) is the free energy of the polymer:
The growth rate of the entanglement has both energetic and an
entropic contributions. In addition to addressing the universal
properties, we calculate some nonuniversal growth rates as-
sociated with S2 by applying exact Bethe ansatz results for
directed polymers in the continuum [65,72].

The statistical mechanics problem becomes more intricate
when n > 2. Each replica now contributes n − 1 polymers.
Within each replica, there are interactions which are not small
at large q. These interactions have an appealing combinatorial
origin. We give some exact results for n = 3 and a schematic
picture for general n. For n > 2, the interactions lead to the
formation of a bound state of multiple walks; see Fig. 3 for a
diagram.

Above we have focused on the mapping for the entan-
glement of quenched state. However, many other quantities
can be studied using our lattice magnet mapping. We briefly
discuss the operator entanglement entropy [57–59,81–84] of
the time-evolution operator (i.e., of the whole unitary random
tensor network). This is obtained from the same lattice mag-
net partition function, just with slightly different boundary
conditions. This quantity may also be used to obtain the
entanglement line tension Sec. V.

B. Entanglement: Leading scaling at large t

The leading order dynamics of Sn(t ) at large t is deter-
ministic, regardless of the value of q—this is why random
circuits are reasonable minimal models for entanglement
dynamics in realistic many-body systems with nonrandom
Hamiltonians. This deterministic dynamics extends beyond
the simple linear-in-t growth in Eq. (4): For example, we also
expect universal deterministic scaling forms for the saturation
of the entanglement of a large finite region [11], and for
entanglement growth starting from a state with a nontrivial
entanglement pattern [25].

The entanglement speeds vn may be calculated in a large q
expansion for n = 2 and n = 3. For v2, we find

v2 = 1

ln q

(
ln

q2 + 1

2q

)
+ 1

ln q

(
1

384q8
+ · · ·

)

= 1 + 1

ln q

[
− ln 2 + 1

q2
− 1

2q4

+ 1

3q6
− 95

384q8
+ O

(
1

q10

)]
. (6)
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FIG. 6. Outcome of a splitting event. Left: Two commutative
domain walls have two ways to split: exchange or passing through.
Right: Two noncommutative domain walls have three ways to split.
Red (dashed) represents (12), blue (solid) represents (23), and green
(dot-dashed) represents (13).

For v3, we are only able to go to a lower order:

v3 = 1 −
ln
(
2 + 3√

2

)
2 ln q

+ 3
√

2

4

1

q2 ln q
+ O

(
1

q4 ln q

)
. (7)

This shows that the entanglement speed depends in general
on n, which resolves a question left open in Ref. [11]; see also
Ref. [44].

The above entanglement speeds may be compared with the
growth rates defined by averaging Zn instead of its logarithm,
which we denoteevn:

− 1

n − 1
ln Zn ∼ seqevnt . (8)

evn does not include effects due to interactions between repli-
cas. These interactions are suppressed at large q, so the
difference between ev and v is parametrically small at large
q, and for v2 is numerically quite small even when q = 2. The
average of the purity Z2 gives the purity speedev2 (called vP in
Ref. [12]), which has been obtained previously in a variety of
ways [8,11–13]

ev2 = 1

ln q

[
ln

(
q2 + 1

q

)
− ln 2

]
. (9)

In the random walk picture, Z2 is the partition function for
a single random walk, and seqev2 is its free energy per unit
length in the time direction [12]: In the above expression, the
first term is the energetic contribution to this free energy and
the second term is the entropic one. The difference between
ev2 and v2 is

v2 −ev2 � 1

384q8 ln q
+ O

(
1

q10 ln q

)
(10)

at large q and arises from interactions between replicas that
are of order q−4.

When we consider S3, each replica contributes two walks,
and these walks have effective interactions that are different
from the interactions between replicas. At the leading non-
trivial order in 1/q, the interaction arises for combinatorial
reasons. In the simplest case, Z3, the walks are labeled by
transpositions in the permutation group S3: either (12), (23),
or (13). Further, the labels on the two walks must multiply
to give the 3-cycle (123). This leaves three possibilities for
how the walks are labeled, corresponding to the three ways to
decompose the three cycle:

(123) = (12) × (23) = (23) × (13) = (13) × (12). (11)

Each time the two walks meet, the labeling can change,
as in the diagram in Fig. 6. For a given spatiotemporal
configuration of the domain walls, we must therefore sum over

all the consistent labelings. The resulting factor in the partition
sum may be reinterpreted as a local attractive interaction
between the two walks. This causes them to form a bound
state; see Fig. 3 for a diagram. (This phenomenon is similar to
one appearing in the replica treatment of directed paths with
random-sign weights [80,85].) The attraction means that the
constant ln 2 appearing in Eq. (9) is replaced with the constant
(1/2) ln(2 + 3/

√
2) in Eq. (7). As a result, the growth rate of

S3 is not the same as that of S2. This combinatorial factor has
also been obtained in the Floquet model of Ref. [44].

In the next order, O( 1
q2 ), there is a weaker interaction

arising from the noncommutativity of the constituents of
the composite walk (123). Taking it into consideration gives
Eq. (7) for the growth rate v3.

The entanglement speeds vn are in fact special cases of the
more general quantities En(v) which determine the entangle-
ment dynamics for more general initial states, in which the en-
tanglement is different across spatial cuts at different positions
x [25]. For a detailed discussion of E (v), see Ref. [25], where
it is argued that for typical initial states with a given initial
entanglement profile S(x, 0), the leading order dynamics is

Sn(x, t ) = min
v

(Sn (x − vt, 0) + seqt × En(v)). (12)

The quantity En(v) has a transparent meaning in the present
approach. seqE2(v) is the coarse-grained free energy (per unit
length) of a walk when its coarse-grained speed is equal to
v (in the replica limit). For higher n, (n − 1) × En(v) is the
analogous free energy for a bound state of n − 1 walks. We
refer to En as the slope-dependent line tension.

The line tension of a walk which is vertical in the coarse-
grained sense is En(0), which is simply vn. As noted in
Ref. [25], the random walk picture gives an explicit form for
E2 at large q. We quantify the size of the corrections to this
large q result, and we also give explicit formulas for E3(v).
These forms are consistent with the general constraints [25]
En(vB) = vB, E ′(vB) = 1.

We also find an interesting phenomenon for the Rényi
entropies Sn with n > 2; there is a nonanalyticity in the line
tension En(v) at the value v = vB. This is associated with an
unbinding phase transition for the (n − 1) walks that appear
in the calculation of Sn. This phase transition is crucial in
allowing the constraint En(vB) = vB to be satisfied.

So far we have discussed the entanglement of an infinite
subsystem, which grows indefinitely. We also consider the sat-
uration of the entanglement for a finite subsystem (Sec. VIII).
At asymptotically late times, the entanglement saturates to a
value given by Page’s formula and its generalizations [86,87].
We show that the universal constants appearing in this formula
have an appealing combinatorial interpretation in terms of
domain walls. We also confirm conjectured scaling forms for
entanglement saturation [11], and we show that at the moment
of saturation there are subleading corrections to these scaling
forms with a similar combinatorial origin to the constant in
the Page formula.

C. Entanglement: KPZ fluctuations

The statistical mechanics problem becomes more interest-
ing when interactions between replicas are considered. These
interactions encode the fluctuations in the entanglement due
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to circuit randomness.1 They also determine subleading (in q)
corrections to vn and other constants.

Above we reviewed the basic features of KPZ scaling of
fluctuations [Eq. (4)] with their characteristic t1/3 growth. It
was conjectured, on the basis of analytic results in particular
limits2 and numerical results on some more generic circuits,
that KPZ scaling should hold in any generic random circuit
[11]. However, until now there has not been an explicit ana-
lytic derivation of KPZ scaling in a generic circuit that does
not have the simplifying feature of either q = ∞ or Clifford
structure.

The need for such a demonstration is pressing in the light
of the recent numerics for the second Rényi entropy in regular
Haar random circuits. Numerical results for q = 2, for times
up to t = 20, in Ref. [13] showed no obvious sign of fluctua-
tions growing with time, and it was conjectured there that KPZ
fluctuations were absent. Here we find that KPZ fluctuations
are indeed present, and the reason for their apparent absence
at small times is that they are (numerically) surprisingly small.

We focus on S2, where a quantitative calculation is possible
for large but finite q. We argue that a similar logic implies
KPZ fluctuations also for the higher Rényi entropies, but with
an additional coarse-graining step (we comment briefly on
S1). This gives an analytic demonstration of KPZ scaling in a
random circuit that is not Clifford and which has finite (albeit
large) q.

For S2, we find that the prefactor B2 in Eq. (4) governing
the strength of fluctuations at asymptotically late times is (at
large q)

B2 � − 1

4 × 21/3 × q8/3
. (13)

We obtain this using the directed polymer mapping together
with the fact that at large q the weakness of the interactions
between replicas can be used to justify a continuum treatment.
In this continuum treatment, each polymer is interpreted as
the world line of a boson, so we have a problem of k → 0
interacting bosons [65]. The constants in their Hamiltonian
are

H = k ln
q2 + 1

2q
− 1

2

k∑
α=1

∂2

∂x2
α

− 1

4q4

∑
α<β

δ(xα − xβ ), (14)

where the interaction arises from certain domain wall con-
figurations that are absent in the q = ∞ limit. These con-
figurations involve a “Feynman diagram” (in spacetime, not
momentum space) whose combinatorial structure is shown
schematically in Fig. 7.

We use numerical simulations for small t to check various
diagramatic calculations that go into the directed polymer
mapping. While Eq. (13) is valid at asymptotically late times,
these small t simulations are consistent with the weakness
of interactions between replicas being the reason why KPZ

1In the absence of interactions between replicas, Zk
n would be equal

to (Zn)k , so that the generating function exp[−k(n − 1)Sn] would be
trivial and equal to exp[−k(n − 1)Sn].

2Haar random circuits with a random geometrical structure at
q = ∞ and Clifford circuits at q = 2.

t

∼ 1
q4

(14) (23) (24) (13)

(12) (34)

(12) (34)
x

FIG. 7. At leading order in q, interactions between replicas arise
from a particular real-space “Feynman diagram” in which the world
line’s particle types have the combinatorial structure shown. (This
continuum figure is only a diagram: In our calculation, the “Feynman
diagram” is a particular local configurations of paths on the lattice.)

growth of fluctuations cannot be seen, even for q = 2, on
timescales accessible using MPS techniques.

So far we have discussed only the Haar random quantum
circuit with a fixed regular geometry. Perhaps the simplest
modification of this circuit is to draw each local unitary from
a modified probability distribution, which returns a Haar ran-
dom two-site unitary with probability 1 − p and the two-site
identity with probability p. That is, we punch a density p of
holes in the circuit. In the limit of small 1 − p, this gives (after
an appropriate rescaling of time) the model in which unitaries
are applied in continuous time in a Poissonian fashion [11].
The strength of attraction between replicas—the strength of
disorder in the directed polymer language—varies with p. If
p is nonzero, there are nontrivial KPZ fluctuations even in the
strict q = ∞ limit [11].

III. MAPPING TO A ‘LATTICE MAGNET’

In this section, we map the average of multiple copies of
the circuit (and its conjugate) to a lattice magnet. We will
focus on the quantity

Zk
n = (

Tr ρn
A

)k
, (15)

where ρA = ρA(t ) is the reduced density matrix for a region
A in a chain that is globally in a pure state. However, the
mappings below can be applied to many other dynamical ob-
servables (for example, various types of correlation functions)
simply by modifying the boundary conditions.

Writing the right-hand side in terms of the circuit, we see
that each local unitary U as well as its complex conjugate U ∗
appear N times, with

N ≡ nk. (16)

Specifically, each local unitary U gives rise to the tensor
product U ⊗ U ∗ ⊗ · · · ⊗ U ∗. This tensor product is shown
graphically in Fig. 9, left (there is one such block for each
unitary in the circuit). Next, we perform the Haar average over
the unitaries to obtain

Zk
n = (

Tr ρn
A

)k
, (17)
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δi1i1
δi2i2

δi3i3
I|

δi1i2
δi2i3

δi3i1
∼ |123

I|123

FIG. 8. Contraction of the permutation states by counting the
number of cycles (loops).

where each unitary is averaged independently. Taking the
replica limit k → 0 in this quantity gives averages of the nth
Rényi entropy, as described in Sec. II. In this section, we set
up the necessary machinery, and in the following sections, we
use it to calculate the entropies in various regimes.

A standard result gives this single-unitary average in terms
of a sum over two elements, σ and τ , of the permutation group
on N elements [88,89]:

U ⊗ U ∗ ⊗ · · · ⊗ U ∗ =
∑

σ,τ∈SN

Wg(τσ−1) |ττ 〉 〈σσ | . (18)

Because we have N ≡ nk copies of the circuit and N = nk
copies of its conjugate, at each physical site we now have the
tensor product of N factors of the physical Hilbert space and
N factors of its dual. The state |σσ 〉 = |σσ 〉i,i+1 is a product
of identical states |σ 〉i and |σ 〉i+1 on each of the two sites that
the unitary acts on. The state |σ 〉 is labeled by the permutation
σ ∈ SN . In the natural basis, its components are

〈a1, ā1, . . . , aN , āN |σ 〉 =
∏

j

δ(a j, aσ ( j) ). (19)

Two examples of such states and their inner products are
shown in Fig. 8.

Finally, Eq. (18) contains the Weingarten function,
Wg(τσ−1). At this point, we only need to know that it is a
function of the cycle structure of the permutation τσ−1. We
reserve Appendix D to discuss its properties and perturbative
expansion in 1/q.

Graphically, Eq. (18) can be represented as in Fig. 9. We
will refer to σ and τ as spins. Each unitary gives rise to an
independent σ spin and an independent τ spin living on the
vertices connecting the vertical link.

= τ,σ Wg(τσ−1)
σ

τ

FIG. 9. Graphical representation of the unitary averages in
Eq. (18). Each blue square with four legs is the two site local unitary
gate and each red square is its complex conjugate. The ellipsis
represents a total of N = nk copies of each. On the right, the two
top legs are |τ 〉i|τ 〉i+1 and the two bottom legs are i〈σ |i+1〈σ |. We
associate spins σ and τ with the vertices.

〈I| 〈I| 〈I| 〈τ̃ | 〈τ̃ | 〈τ̃ |

FIG. 10. Left: tr(ρn
A) represented as a lattice magnet. The upper

boundary is contracted with the boundary state 〈τ̃ | = 〈τn,k | for region
A and 〈I| for region B, the bottom boundary is identical to the top
for the operator entanglement and free for the state entanglement.
Each four-leg block is the tensor in Eq. (18). Right: The domain
wall representation on the triangular lattice after integrating out the
τ spins in each center of the down-pointing triangle (green).

The full expression for Zk
n is obtained by contracting the

tensors (blocks) defined in Eq. (18) in accordance with the
spatiotemporal structure of the circuit. Each nonvertical link
connecting two blocks yields a power of q:

〈σ |τ 〉 = qN−|τσ−1|. (20)

The exponent N − |τσ−1| is simply the number of cycles in
the permutation τσ−1, which is at most N . The term |τσ−1|
is the distance between σ and τ , which is minimized when
σ = τ . It is given by the minimal number of transpositions
required to construct τσ−1.

After including these inner products, Zk
n becomes a parti-

tion function for the σ and τ degrees of freedom, with one
σ and one τ associated with each unitary in the circuit. This
structure is shown in Fig. 10 (left).

At the time 0 (bottom) boundary, we obtain contractions
with the initial density matrix. If the initial physical state is
taken to be a product state

∏
i |e〉i, then at the time 0 boundary

we have N copies of this state and N copies of its dual, giving
at each site |e ⊗ ē ⊗ · · · ⊗ ē〉i. This is then contracted with
a state |σ 〉 associated with one of the unitaries in the lowest
layer. This gives

〈σ |e ⊗ ē ⊗ · · · ⊗ ē〉i = |〈e|e〉i|2N = 1. (21)

At the final time (top) boundary, there are contractions which
come from the traces in Eq. (15). This gives a weight which
depends on the τ s for the top row of unitaries. For each
link, this is the inner product between that τ and another
permutation which is determined by the structure of the trace.
Outside region A, we contract row and column indices of ρ,
which corresponds to contracting with the state 〈I|. Inside
region A, we first take the product of n copies of ρ before
taking the trace. This corresponds to contracting with the state

〈τn,k| ≡ 〈(1, 2, 3, . . . , n) (n + 1, . . . , 2n) . . . | , (22)

given by a product of n cycles, one for each power of Zn in Zk
n .

Thus, we have converted Zk
n to a partition function for τ

and σ spins on the honeycomb lattice. Each nonvertical link
has weight specified by the inner product in Eq. (20), and each
vertical link has a weight given by the Weingarten function.
The boundary conditions are illustrated in Fig. 10 (left). We
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σ σμμ

(12) (34)

I (12)(34)

(12)

(12)(34)

FIG. 11. Definition of domain walls. Left: Domain wall labeling
convention. Right: σ spins on the triangular lattice and domain walls
on the dual lattice. The figure shows the splitting of two commutative
elementary domain walls.

will discuss the Boltzmann weight in terms of the domain wall
picture in the following subsection.

A. Domain walls on triangular lattice

Now let us discuss the weight for a given spin config-
uration. At this point, the weight is complicated because
the Weingarten function in Eq. (18) leads to a profusion of
nonzero and also negative weights. (For example, if δ is an
elementary transposition of two elements, Wg(δ) is negative,
while if δ = I it is positive.)

Remarkably, the partition function simplifies if we sum
over the τ degrees of freedom [12] associated with every
unitary, giving a partition function for the σ s only. Each τ

couples to three σ s, as can be seen in the green down-pointing
triangles in Fig. 10, so integrating it out gives a three-spin in-
teraction. These σ s form down-pointing triangles. We denote
the weight for this triangle by

σa

σb σc

= J(σb, σc; σa) (with σa, σb, σc ∈ SN ).

(23)

We will specify J below for the cases of interest. For many
values of {σa, σb, σc}, the weight J (σb, σc; σa) vanishes, and
this leads to considerable simplifications. Formally, we have

J (σb, σc; σa) =
∑

τ

Wg(σaτ
−1)q2N−|σ−1

b τ |−|τ−1σc|. (24)

From Eq. (24), we can explicitly verify that J is invariant
under left and right multiplication on all the spins,

J (σb, σc; σa) = J (σσb, σσc; σσa) = J (σbσ
′, σcσ

′; σaσ
′),

(25)

as required from symmetries of the multilayer circuit under
permutations of the U layers and of the U ∗ layers. Unitarity
constraint can reduce the independent weights further; see
Sec. III B. This weight defines a partition function for spins
on the vertices of the triangular lattice. At the top boundary,
we have triangles whose upper spins are fixed to be τn,k inside
region A and I outside region A (the slightly slimmer triangles
at the top of Fig. 10, left); the equation above also applies for
their weights. At the lower boundary, the spins are free.

It is easiest to visualize the weights in terms of the domain
walls. Each domain wall is itself labeled by a permutation μ,
as in Fig. 11. To fix the labeling, we must assign a direction
to the domain wall, going either up or down. This choice is
arbitrary: a down-going domain wall with label μ is equivalent

to an up-going domain wall with label μ−1. In our figures, we
take domain walls to be up going. Our convention is that if an
up-going domain wall labeled by μ has a domain of type σ to
the left, then the domain to the right is σμ; see Fig. 11.

If a domain wall corresponds to a single transposition, for
example, (12), we refer to it as an elementary domain wall.
When |μ| = m, meaning that μ can be written minimally as
the product of m transpositions, we will refer to a μ domain
wall as a composite of m elementary domain walls. However,
we must be careful to distinguish between, e.g., μ = (123)
and μ = (12)(34). Both of these have |μ| = 2 but they are
not equivalent as they have different cycle structure.

For simplicity, let us take A to be the region x > 0 in a finite
or infinite chain so that there is a single entanglement cut.
Then for Zk

n the top boundary has a single domain wall of type
τn,k , which enters the system at the link of the entanglement
cut.

We will show that Zk
n can be regarded as a partition function

for k sets of (n − 1) elementary domain walls in τn,k , with
nontrivial interactions both within sets and between sets.
These domain walls start at the top of the system at the
position of the entanglement cut and undergo random walks
downward toward the bottom, where the boundary condition
on the spins is free.

B. Triangle weights

In Eq. (26), we give the exact results for the weights of the
simplest configurations of a triangle, which involve at most 1
incoming elementary domain wall at the top of the triangle:

= 1, = =
q

q2 + 1

μ μ−1
= 0

μ μ−1

= 0 (μ �= I).

(26)

For a given triangle, we describe a domain wall at the top of
the triangle as incoming and domain walls at the bottom left
and right as outgoing.

The formula (24) involves a sum over N! elements of
the permutation group, with nontrivial weights. Remarkably,
the final results for the weights above are independent of N .
The nonvanishing diagrams are the ones that conserve the
number (either 0 or 1) of incoming elementary domain walls.
For example, it is not possible for the incoming elementary
domain wall (12) to split into (12)μ and μ−1 with μ �= I,
despite the fact that this splitting is consistent with the domain
wall multiplication rule. Similarly, if the number of incoming
domain walls is zero, there are no outgoing domain walls:
Generation of domain wall pairs out of the “vacuum” is
forbidden.

We can summarize these rules algebraically as

J (σb, σb; σa) = δσa,σb,

J (σb, (12)σb; σa) = q

q2 + 1
(δσa,σb + δσa,σb(12)). (27)

We also give exact weights for the case N = 3 in Appendix F.
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τ

σ

σ

σ

FIG. 12. Spins on the spatial boundary. Left: The leftmost legs of
the unitary gates act on the same boundary site, so they are effectively
connected, as shown by the dashed line. The τ spin on the boundary
still connects to 3 σ spins, and form a tilted triangle. Right: The
boundary triangle on the triangular lattice. The red line is the top link;
the blue lines are the bottom left and right links of the down-pointing
triangle.

For a general configuration at large N , it is hard to evaluate
the exact weights of the diagrams. However, we conjecture
that, as in the example above, J does not depend directly
on N , i.e., on the number of additional unused elements
in permutations σa, σb, σc. For example, we may evaluate
J (I, (123); I) for any N � 3, and we conjecture that the result
is independent of N . We have checked the conjectured N
independence of weights by explicitly evaluating all Js for N
up to 4. However, for most of our purposes it will be sufficient
to evaluate triangle weights in a large q expansion, where we
can obtain coefficients for all N .

Finally, we specify the weights in the presence of spatial
boundaries. These involve identical three-spin weights, but
now the corresponding triangles are tilted; see Fig. 12.

C. The q = ∞ limit

The partition function Zk
n simplifies in the limit q = ∞, and

this limit is a useful starting point for thinking about finite q.
When q → ∞, the terms that survive in the partition function
Zk

n are those with the minimal total length of elementary
domain walls. This means that domain walls cannot split:
For each down-pointing triangle, the number of elementary
domain walls entering from the top is equal to the number
leaving from the bottom.

At leading order in q, the weight of a triangle with m
elementary domain walls passing through it is just q−m, for
example (using doubled or tripled lines to represent composite
domain walls),

� � � � 1
q3

. (28)

This simplification of the weights means that at q = ∞
distinct replicas decouple:

ln Zk
n ∼ k ln Zn at leading order in q. (29)

This means that in this limit the fluctuations in Sn are negligi-
ble (i.e., we must go to higher order to see them) and also that

Sn ∼ − 1

n − 1
ln Zn at leading order in q. (30)

Therefore, leading order results in q can be obtained by
studying the partition function for a single replica, Zn. In fact,
this is sufficient to obtain not just the first term but the first few
nontrivial terms in a large q expansion for various quantities
such as the growth rate of entanglement after a quench. We do
this in the next section.

IV. ENTANGLEMENT PRODUCTION RATES

In this section, we consider the partition functions Z2 and
Zn>2 for a single replica. These suffice to obtain the first few
orders in a large q expansion of the Rényi entropy growth
rates v2 and v3, as well as the entanglement line tension that
generalizes these growth rates when the initial state is not a
product state (Sec. V). Later on, we will address the effects of
interactions between replicas.

Let us first consider only the leading order contributions
to the partition function at large q. Zn is then the partition
function for n − 1 elementary domain walls making up the
permutation (12 . . . n), and the entanglement entropy Sn is
proportional to the free energy for this random walk problem.

Since the number of domain walls is conserved at each
time step, each layer in the triangular lattice contributes a
factor of q−(n−1) to Zn. The logarithm of these factors gives
the (negative of the) ‘energy’ of each configuration. There is
also an entropy term, coming from counting the number 
n(t )
of distinct configurations:

Zn ∼ 
n(t )q−(n−1)t , Sn ∼ t ln q − ln 
n(t )

n − 1
. (31)

To go beyond this leading order result, we use the more
detailed weights in Eq. (24). Let us now consider various
cases.

A. Second Rényi entropy

The case n = 2 has been treated in Ref. [11]. There is only
a single domain wall (12) starting from the entanglement cut
at the final time. In this case, the mapping of Z2 to the partition
function for a single simple walk is exact for any q if we
replace the approximate energy ln q with the logarithm − ln K
of the exact weight for a single triangle in Eq. (26),

K = q

q2 + 1
. (32)

The number of configurations is 2t . Therefore,

S2 ∼ seqv2t, v2 �ev2 (33)

with seq = ln q and the purity speed [8,11–13,56]

ev2 = 1

ln q
ln

(
q2 + 1

2q

)
. (34)

Once interactions between replicas are taken into account, this
growth rate is corrected at the relatively high order 1/q8 ln q,
as we discuss in Sec. VI.

B. Higher Rényi entropies

For general Sn, we must consider the composite domain
wall (12 . . . n). We may write this as a product of (n − 1)
elementary domain walls labeled by transpositions. These
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transitions are noncommuting, which gives rise to nontrivial
combinatorial interactions.

To see this, consider the case n = 3. There are three ways
to split a domain wall labeled (123) into a product of two
elementary domain walls, one on the left and one on the right:

(123) = (12) × (23) = (23) × (13) = (13) × (12). (35)

This may be contrasted with the two ways to split a product of
commutative transpositions:

(12)(34) = (12) × (34) = (34) × (12). (36)

The partition function for (123) involves a nontrivial sum
over how the elementary walks are labeled. Each time the
walks meet, the labeling can change from one of the possi-
bilities in Eq. (35) to another. At first sight, we must now keep
track of the label on each domain wall, but in fact we can
absorb the combinatorial factors associated with the labeling
into a simple effective interaction.

If two independent random walks A and B (for example,
two “commuting” elementary domain walls in the present
problem) meet at a given time step, there are two possibilities
for the configuration subsequently: Either A is on the left
or B is on the left [corresponding to the two terms on the
right-hand side of Eq. (36)]. For noncommuting domain walls
such as (12) and (23), there are instead three possibilities for
the subsequent configuration. These are listed above in (35).
This relative factor of 3/2 means that Z3 maps to a partition
function for a pair of (distinguishable) directed random walks
with an attractive interaction. In a given configuration, let the
number of splitting events be the number of times the walks
meet and split. (When they meet, they may either split again
immediately, or they may form a section of composite domain
wall which extends for a finite period of time.) Then,


3(t ) =
∑

configs of
2 walks

(
3

2

)# splitting events

. (37)

The attraction means that the free energy is smaller than
that of a pair of independent random walks. This means that
Z3 = e−2S3 is larger than Z2

2 = e−2S2 , so that the entanglement
velocity v3 is smaller than v2.

Interestingly, an effective combinatorial interaction be-
tween paths also arises in the replica treatment of directed
polymers with Boltzmann weights of random signs, by a
different mechanism [80,85].

By a combinatorial computation in Appendix A, we obtain
the exact asymptotic expression for 
3(t ):


3(t ) ∼
(

2 + 3√
2

)t

. (38)

This constant was also obtained independently in a related
Floquet model in Ref. [44], where it arises from essentially
the same combinatorial mechanism.

The constant 
3 gives the first nontrivial term in the expan-
sion of v3 at large q. We can go to one higher order by taking
into account subleading repulsive interactions of strength
O(1/q2) between the walks which appear when we go beyond
the leading order expression for the triangle weights (exact

results are in Appendixes F and G). For example, if the
composite domain wall on the left-hand side below is (123),

� × ×
[
1 − 1

q2

]
, (39)

corresponding to a reduction in the weight for noncommuta-
tive elementary walks that are on top of each other compared
to walks that are separate. The calculation is performed in
Appendix A and yields the growth rate

v3 � 1 −
ln
(
2 + 3√

2

)
2 ln q

+ 3
√

2

4

1

q2 ln q
. (40)

For larger n, the combinatorial factors can no longer
be absorbed into a simple effective attraction. It appears
to be necessary to keep track of the labeling of the
walks explicitly. This is because different decompositions
of (12 . . . n) can be inequivalent. For example, the de-
composition (1234) = (14)(13)(12) and the decomposition
(1234) = (13)(12)(34) are inequivalent: In the former case,
none of the adjacent domain wall pairs commute, while in the
latter case, one adjacent pair commutes.

The above shows that different Rényi entropies grow at
different rates following a quench (see also Ref. [44]).

V. THE ENTANGLEMENT LINE TENSION En

Above, v2 is the coarse-grained line tension, or free energy
per unit length of the elementary domain wall that appears in
the calculation for S2 (up to a factor of seq = ln q; “length”
here is in the t direction). To be more precise, this is the line
tension of a domain wall which is vertical on large scales.
As argued in Ref. [25] (see also Ref. [11]), it is useful to
define a more general line tension E2(v) which is a function of
the coarse-grained velocity of the domain wall. The velocity
v(t ) of the domain wall is its inverse slope, dx(t )/dt , at a
given value of t . The free energy of the domain wall scales
as seqt × E2(v) if its average velocity is fixed to be v; i.e., if
its total displacement over time t is vt .

Here, we briefly review the role of the line tension E2 and
its generalization En. In Sec. V A, we discuss the meaning
of En for higher n in more detail and calculate E3. This will
introduce the concept of the bound state of domain walls,
which will be important to understand nonanlyticities in En>2

and later how Page’s formula arises (Sec. VIII) and the
fluctuations of the higher Rényi entropies (Sec. VI E).

It was conjectured that the line tension En determines
the time dependence of the entanglement entropy Sn, in an
appropriate scaling limit,3 for more general initial states that
are not necessarily product states [25]:

Sn(x, t ) = min
v

[Sn(x − vt, 0) + seqEn(v)]. (41)

3This limit is where the length and timescales of interest are
parametrically large and of the same order. Since S is also of this
order, ∂S/∂x can be order 1 in this regime, but higher derivatives
such as ∂2S/∂x2 are subleading.
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Consider first S2. The above formula arises from the random
walk picture when we consider only the leading behavior
at large time. In this scaling limit, the walk’s fluctuations
are negligible, and it forms a straight line connecting (x, t )
to (y, 0). The position y is determined by minimizing the
free energy. This gives the above, if we assume that the
initial state at t = 0 simply contributes an energy equal to its
entanglement across y. This will not be true for all possible
initial states but may hold for states that are typical in some
sense.

Reference [25] conjectured the general constraints

En(vB) = vB, E ′
n(vB) = 1, En(v) � v. (42)

In the next section, we give a nontrivial check on these
constraints. By definition, we also have En(0) = vn.

Considering the free energy of a random walk with a fixed
slope gives [25]

E2(v) = 1 +
ln q2+1

q2 + 1+v
2 ln 1+v

2 + 1−v
2 ln 1−v

2

ln q
. (43)

This function satisfies the relations (42) above. If the free
energy is defined using the replica limit, as is appropriate
for calculating S2, then Eq. (43) will be modified at order
1/(q8 ln q).

The function E2(v) is analytic for all |v| < 1, i.e., for all
speeds up to the light-cone speed, including speeds greater
than vB. In fact, the minimum in Eq. (41) is always in the range
[−vB, vB]. However, the mapping of Ref. [12] shows that the
function E2(v) is relevant to the scaling of the exponentially
small tail of the out-of-time order correlator beyond the light
cone [90].

A. Higher Rényi entropies: The bound state phase transition

As we saw above, the calculation of S3 yields a pair of ele-
mentary domain walls with an attractive interaction. In 1+1D,
two walks with an attractive interaction form a bound state:
The typical separation between the walks, in the x direction,
is of order 1 even in the limit t → ∞. Therefore, at large
scales the two walks are paired and can be regarded as a single
composite domain wall. (The “bound state” terminology is
natural if we think of the walks as world lines of fictitious
particles.)

The line tension E3(v) is defined as 1/(2seq) times the free
energy per unit length of this composite domain wall, when its
coarse-grained velocity is fixed to be v. The factor of 1/(2seq)
is to compensate the 2seq in Z3 = e−2seqS3 . For higher n, the
combinatorial interactions between walks are much harder to
treat, but we expect that the walks will again form a bound
state with a spatial extent of order 1. Then En(v) is 1/[(n −
1)seq] times the free energy per unit length of this composite
domain wall, when its coarse-grained velocity is v.

We find that the line tension for n = 3 has interesting
structure that is not present in E2(v). This is due to a phase
transition that is driven by varying v. As v is increased toward
a critical value vc, the extent of the bound state (in the x
direction) diverges. For v < vc, the binding energy of the
bound state means that E3(v) is smaller than E2(v). But for
v � vc, the walks are unbound and their free energy is simply

that of two independent walks: This means that in this regime
E3(v) = E2(v).

We conjecture, and check explicitly to leading nontrivial
order, that the critical speed associated with this unbinding
transition is precisely vB:

vc = vB. (44)

This mechanism is how the conjectured constraint E3(vB) =
vB in Eq. (42) is satisfied. We conjecture that a similar
mechanism applies for higher n also, with the (n − 1) walks
becoming unbound at vB.

We now give explicit formulas for E3. First, we show in
Appendix B that to order 1/ ln q the line tension for S3 is

E3(v) = 1 −
ln
(
φ−1 + φ + 3√

2

)− v ln φ

2 ln q
, (45)

with

φ = 3v + √
8 + v2

√
8(1 − v)

. (46)

The functional form differs nontrivially from that for E2.
However, the bound state phase transition cannot be seen
at this order in q. Therefore, in Appendix C we perform a
separate expansion for speeds close to the light cone, writing

v = 1 − α

q2
, with α of order 1. (47)

v close to −1 is, of course, equivalent.
First, let us consider how the phase transition can occur

in principle. Recall that each time the walks merge and split,
they gain a weight 3/2 for combinatorial reasons. This is an
effective attraction that encourages them to bind together.

However, examining the exact weights for the walks (Ap-
pendix F), we find that there is also a weak repulsion, of
order 1/q2, for time steps in which the two walks are on top
of each other (combined into a composite walk). For generic
values of v, this weak repulsion is negligible compared with
the O(1) attraction arising from the combinatorial effect. But
for walks moving at speeds very close to unity, this repulsion
is magnified as follows.

For a walk moving at the speed in Eq. (47), almost every
step is to the right: Only an O(1/q2) fraction of steps are
to the left. This means that when the two walks meet, they
typically remain together for a long time, of order q2 (both
taking rightward steps) before one of them takes a leftward
step and they split. Therefore, the total repulsion energy for
the time interval between the merging and splitting is O(1)
and can compete with the O(1) combinatorial attraction. For
sufficiently small 1 − |v|, the repulsion dominates and the
bound state disappears.

In Appendix C, we find that the critical speed for disap-
pearance of the bound state is

vc = 1 − 2

q2
+ · · · . (48)

This is consistent with vc = vB. For v > vc, we have E3(v) =
E2(v). For v < vc, we find

E3(v) = 1 − α

q2
+ A3(α)

q2 ln q
+ · · · (49)
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with

A3(α)

=
9−
√

9+4α2
[
2+
√

4+ 9
α2

]+2α ln
[

α2

18

(
2+
√

4+ 9
α2

)]
8

.

(50)

In this regime, E3(v) < E2(v), which is necessary for Eq. (41)
to be consistent with the general constraint S3 � S2.

Note that A3(2) = 0 and A′
3(2) = 0, showing that the line

tension E3(v) obeys the general constraints in Eq. (42) at least
up to order 1/(q2 ln q).

VI. FLUCTUATIONS AND THE REPLICA LIMIT

In this section, we treat interactions between replicas in
the replicated partition function Zk

n . We study S2 in detail,
mapping it explicitly to the free energy of a directed polymer
in a classical random medium and to the height field in a
continuum KPZ equation. The extension to n > 2 is discussed
more briefly in Sec. VI E.

The Kardar-Parisi-Zhang equation was proposed to model
universal scaling in classical surface or interface growth [61].
In that context, there is a time-dependent function h(x, t ),
representing the height of the interface, which obeys the
nonlinear stochastic equation

∂t h = ν∂2
x h + λ

2
(∂xh)2 + η(x, t ) + const. (51)

The first term represents diffusive relaxation. The nonlinear
term is a relevant perturbation of the linear theory that must
be included in order to capture the generic universal behavior
of the interface growth problem. The η term is white noise
(uncorrelated in space and time).

There is a simple and important connection between this
nonequilibrium growth problem in one spatial dimension plus
time, and the equilibrium statistical mechanics of a directed
polymer (or a domain wall), subjected to a disordered poten-
tial energy, in two spatial dimensions. As a result, there are
several equivalent ways to think about the universal properties
of the KPZ universality class [61,62,65]: (i) in terms of the
KPZ equation; (ii) in terms of the directed polymer in a dis-
ordered medium of spatial extent t in the vertical dimension;
and (iii) in terms of a replicated system of k → 0 polymers
with attractive interactions arising from integrating out the
disorder. These polymers can also be viewed as world lines
of bosons in imaginary time, so (iii) is equivalent to a system
of k → 0 mutually attracting bosons in one spatial dimension.
We will use all of these languages.

In brief review, the relation between (i) and (ii) is given
by the Cole-Hopf transformation [61]. Defining Z (x, t ) =
e

λ
2ν

h(x,t ), this satisfies

∂t Z =
(

ν∂2
x + λ

2ν
η(x, t ) + const.

)
Z. (52)

This is a recursive equation for the partition function of
a continuum polymer in a spatial sample of height t ,
in terms of the partition function for an infinitesimally
shorter sample. As a path integral, the partition function is

Z (x, t ) ∝ ∫
Dx′(t ′)Z (x′(0), 0)e− ∫ t

0
dt ′
2ν

[
1
2

(
dx′
dt ′
)2

+λη(x′,t ′ )
]
, and the

argument x sets the position of the polymer’s endpoint at the
top of the sample: x′(t ) = x.

Equation (52) is also the imaginary time Schödinger equa-
tion for boson in a random potential. Using the replica trick
and integrating out the disordered potential leads to a problem
of k → 0 bosons with pairwise attractive interactions (see
Ref. [65]). This is description (iii).

In the following, we will work backward, mapping the
calculation of S2(t ) to a replicated problem of type (iii) and
using the above mappings to determine the coefficients in the
KPZ equation (i) satisfied by S2(t ). Some of the universal
consequences of the KPZ description for entanglement growth
in noisy systems have been reviewed in Sec. II; see Ref. [11]
for more details.

For n = 2, each replica in Zk
2 gives only one domain wall,

so that there are k elementary walks in total. A diagrammatic
calculation shows that these k walks have an effective pairwise
attraction at order 1

q4 . This ultimately leads to KPZ fluctua-

tions of the entanglement of order q− 8
3 t

1
3 .

Because of the replica limit, we have k → 0 directed
walks with a pairwise interaction, corresponding to (iii) above.
Because the interaction is parametrically small at large q,
we can make a controlled continuum approximation. Let us
think of the coarse-grained walks as world lines of bosons in
1+1D Euclidean spacetime, with attractive contact potentials
between the bosons. In this language, the partition function Zk

n
is the imaginary time path integral amplitude for the bosons
(and the entanglement growth rate is proportional to their
ground-state energy). The resulting boson Hamiltonian is in-
tegrable [65,72] and this is one way to obtain the fluctuations
of the entanglement.

But also, having applied the replica trick to Tr ρ2
A in our

original many-body quantum system and mapped the result-
ing expression to an effective classical partition function for
k → 0 random walks, we can alternatively undo the replica
limit to obtain a classical model with randomness. This can be
done both in the continuum and on the lattice. We will discuss
this in Sec. VI B.

In the continuum, it is convenient to think in terms of the
KPZ equation. Remarkably even the nonuniversal constants
in this equation can be fixed. At large but finite q, the second
Rényi entropy S ≡ S2 obeys4

∂t S = c + 1
2∂2

x S − 1
2 (∂xS)2 + η(x, t ) (53)

for a weak Gaussian noise

〈η(x, t )η(x′, t ′)〉 = 1

4q4
δ(x − x′)δ(t − t ′). (54)

Above, c is a constant which contributes to the entanglement
growth rate v2 [given in Eq. (6)], which we fix using the boson
mapping. The large-time scaling of S2, for a cut across a given

4The sign of the nonlinear term in Eq. (53) is opposite to that of
Eq. (51) because in the correspondence with the directed polymer, S
is proportional to the free energy, while h is proportional to minus
the free energy. The sign of the nonlinear term can be changed by a
change of variable h → −h so it does not affect the exponents.
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bond may be written in terms of a fluctuating random variable
χ (t ) whose size is of order 1 at large times (below seq = ln q):

S2(t ) � seq[v2t + B2t1/3χ (t )]. (55)

Using the exact results in Ref. [72], the magnitude of the
fluctuations are controlled by the constant

B2 � − 1

4 × 21/3 × q8/3
. (56)

The cumulative probability distribution of the random vari-
able χ (t ) is the Tracy-Widom distribution F1. The mean and
standard deviation are

mean(χ ) = −1.20653 . . . , std(χ ) = 1.26798 . . . . (57)

On the lattice, undoing the replica limit on the classical side
of the mapping gives a well-defined lattice directed polymer
problem with a short-range correlated random potential. We
make this mapping explicitly for large but finite q.

With the bound state concept introduced in Sec. V, we can
generalize the above pictures to Sn with n > 2. The composite
domain walls in Sn for n > 2 first form a bound state due to the
leading order combinatorial interaction in Sec. V A. Then, by
a similar mechanism as for S2, the weak pairwise interaction
between the bound states from different replicas gives rise
to the KPZ fluctuations, showing that such fluctuations are
present in all Rényi entropies with n � 2. We discuss this
further in Sec. VI E.

A. Interactions between replicas

In this section, we focus on the n = 2 case where the
leading order picture involves k independent commutative
elementary domain walls.

First of all, the exact partition function for a single elemen-
tary domain wall (k = 1) is

Z2 = 2t Kt , K = q

q2 + 1
, (58)

where 2t is the number of random walk configurations and
Kt is the product of weights of t down-pointing triangles,
cf. Eq. (26). Compared with the leading order result 1/q, we
see that the more accurate weight K for each down-pointing
triangle is

= K =
1
q

(
1 − 1

q2
+

1
q4

+ · · ·
)

. (59)

These corrections determine the finite q corrections to the
energy per unit length, or the line tension, of a single walk.

Similarly, we may consider the higher order corrections
to the weights of triangles that host � > 1 walks. At leading
order, the weight of such a triangle is q−�. At first sight,
we might expect corrections to this leading order result to
be the dominant source of interactions between the replicas.

However, we find that to order 1
q4 , we have

= × ×
[
1 + ,

.

O( 1
q6)

]

[
1 + O( 1

q6)
]

= × ×
(60)

This kind of decomposition also holds for all � � 2 up to
O( 1

q4 ) order; see the perturbative calculation in Appendix G.

Consequently, if there is an interaction at order 1
q4 it must

come from additional domain wall configurations which are
absent in the q = ∞ limit. This is indeed the case.

What are the lowest order (in 1/q) modifications to the
domain wall configurations described above? By Eq. (26), we
cannot add isolated bubbles, i.e., closed domain wall loops
that are not attached to any of the k walks: Such configurations
have weight zero. Similarly, the last formula in Eq. (26)
prevents us from modifying an isolated walk. However, when
two walks meet, additional configurations are possible.

As mentioned in Sec. IV, the naive order in 1/q of a
down-pointing triangle is equal to the number of elementary
domain walls that pass through its lower edges. [The actual
order may be higher, as a result of cancellations in the sum
defining J (σa; σb, σc).] There are two possibilities allowed by
Eq. (26) that are naïvely of relative order 1/q4 compared to the
leading order configurations. The first corresponds to adding
a hexagonal bubble of the transposition α to a configuration
of two walks, say (12) and (34):

(12) (34).

(12)(34)

α α−1

(61)

However, the relative order of this configuration is in fact
1/q6, as the result of a cancellation between two values of the
Weingarten function in Eq. (26); see Appendix G.5

The second possibility relies on the following decomposi-
tions of the product (12)(34),

(12)(34) = (14)(23) × (24)(13) = (24)(13) × (14)(23).

(62)

Each of these decompositions leads to a Feynman diagram:

(12)(34)

(12)(34)

(14)(23) (24)(13)

(12)(34)

(12)(34)

(24)(13) (14)(23). (63)

5The two values correspond to τ = σa and τ = σaα
−1 in Eq. (26).
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Each such configuration has relative weight, compared to the
dominant configurations, of 1/q4 (plus higher order correc-
tions).

These special hexagons are the only source of interactions
in the bulk of the sample at order 1/q4. We may add the weight
of these configurations to the weights of the leading order
configurations to obtain a “dressed” weight for a pair of walks
which both visit a pair of triangles that are vertically adjacent
as shown below:

...

...

= + + +

+ 2 × + O( 1
q6),

(64)

The factor of two indicates the two possibilities in Eq. (63).
This gives the total weight (recall K ≡ q/[q2 + 1])

...

...

= 4K4 +
1
q4

2
q4

+ O
(

1
q10

)

= 4K4

(
1 +

1
2

1
q4

+ O
(

1
q6

))
.

(65)

This is an interaction of order 1/q4, and it is attractive, because
it increases the Boltzmann weight for configurations in which
two walks collide. Furthermore, it is a pairwise interaction—
we can insert a special hexagon for any pair of (commutative)
domain walls, and to leading order this insertion is not seen
by any of the other k − 2 walks. In Sec. VII, we also check
these properties of the interaction numerically.

The fact that the attraction is small at large q allows an
analytical treatment which we discuss next (Secs. VI B, VI C,
VI D). It should be noted, however, that for other random
circuits, in which the microscopic probability distribution of
gates is different, the interaction strength can remain of order
one even in the limit q → ∞. The simplest way to obtain an
interaction of O(1) strength in the q → ∞ limit is to allow
the local unitaries to be equal to the identity with a nonzero
probability p.

These identity gates create holes in the circuit through
which the domain walls can pass without costing any energy
at all. Averaging over the locations of these holes gives
an effective attractive interaction between replicas. This has
similar effects to the attractive interaction described above,
but the strength of the attraction remains finite at q = ∞ and
can be controlled by varying p. This is essentially a model
considered in [11] where KPZ behavior was obtained in the
limit q → ∞.

FIG. 13. Reduction from triangular lattice to square lattice. Pairs
of consecutive steps are combined into a single step on the square
lattice. Each blue (red) step on the left corresponds to a blue (red)
step on the right. We also refer in the text to “visits” to vertical bonds
like the one indicated by the dashed line. According to our definition,
the vertical bond indicated here is only visited by the blue walk and
not the red (so there is no special hexagon interaction between these
two walks).

B. Mapping to polymer in random medium

For a circuit with regular structure, the attractive interac-
tion between replicas is small at large q. This allows both a
controlled continuum description and an explicit mapping to
a classical disordered model.

Let us simplify the lattice structure. Above, each random
walk lives on the honeycomb lattice which is dual to the trian-
gular lattice. Each honeycomb site corresponds to a triangle,
either up or down pointing. However, it is sufficient to draw
only the sites corresponding to the down triangles, as shown in
Fig. 13. That is, we can view the walks as living on a square
lattice (rotated by 45◦). Adjacent sites of this square lattice
differ by (�x,�t ) = (±1,±1). For an isolated walk, each
step along a bond of this lattice is weighted by K .

It is useful to think of pairs of sites (x, t ) and (x, t + 2)
as connected by vertical bonds, even though the walks cannot
occupy such bonds. One such vertical bond is illustrated in
Fig. 13, right.

If two walks both visit both of the sites (x, t ) and
(x, t + 2), then the associated weight is not 4K4 but rather
4K4 exp

(
1/2q4

)
, by Eq. (65). When any one walk visits both

(x, t ) and (x, t + 2), we say that the vertical bond from (x, t )
to (x, t + 2) is visited by that walk. Two walks therefore
interact if they both visit the same vertical bond.

For each vertical bound b, let the number of walks which
visit it be nb. If nb � 2 walks visit bond b, there is an inter-
action between each of the nb(nb − 1)/2 pairs, as discussed
below Eq. (65). The weight associated with the interactions is
thus exp[1/2q4 × nb(nb − 1)/2].

Using D to denote the tilted square lattice, we find the
effective partition function is

Zk
2 = Kkt

∑
k directed

walks on D

exp A, (66)

where, neglecting boundary effects (which are discussed in
Sec. VI D),

A =
∑

vertical
bonds b

1

2q4

nb (nb − 1)

2
. (67)
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Remarkably, this form means that we can interpret Zk
2 as the

average of a replicated classical partition function for a single
walk or polymer. Let us define the partition function for this
fictitious classical polymer by

Z = Kt
∑

polymer
on D

exp

⎛
⎜⎜⎜⎝−

∑
vertical
bonds b

nbVb

⎞
⎟⎟⎟⎠ . (68)

Since this partition function is for a single polymer, nb is either
0 or 1. On each vertical bond b, the polymer experiences a
Gaussian random potential Vb. We take these random poten-
tials to be independent, with mean and variance

mean(Vb) � 1

4q4
, var(Vb) � 1

2q4
. (69)

With these choices, averaging Z over the random potentials
Vb yields precisely the expression for Zk

2 in Eq. (66). Writing
the average over Vb as [. . .]V gives

Zk
2 ∼ [Zk]V . (70)

The identity above implies that the statistics of S2 in
the quantum problem map onto the statistics of a classical
polymer in a random potential that is specified by Eqs. (68)
and (69). Note that this makes the dynamics of the entropy
efficiently simulable (modulo the large q approximation used)
for large t that would be beyond the reach of a direct compu-
tation as in Sec. VII.

C. Continuum description

Next, we discuss the continuum limit. Consider first Z2,
i.e., k = 1. In the continuum, the walk becomes a Brownian
path characterized only by its free energy per unit time,
f = − ln 2K , and its diffusion constant, which is easily seen
to be D = 1/2.6 Viewing the walk as the Feynman path of a
boson in Euclidean spacetime, with spatial coordinate x, the
Hamiltonian for this boson is

H = − ln 2K − 1

2

∂2

∂x2
. (71)

The scaling of the partition function is given by the ground-
state energy E0 of this system of bosons: Z2 ∼ e−E0t . For the
above Hamiltonian, E0 is simply − ln 2K .

For k �= 1, we must take into account the attractive interac-
tions between bosons. The continuum Hamiltonian contains
only a δ-function interaction and is solvable by Bethe ansatz
in the k → 0 limit [65]:

H = −k ln 2K − 1

2

k∑
α=1

∂2

∂x2
α

− λ
∑
α<β

δ(xα − xβ ). (72)

6The mean squared displacement in the x direction, for a section of
duration t , is simply 2Dt = t .

TABLE I. When q is large, there are three time regimes for
fluctuations in S2. Here, the initial state is a product state.

√
Var(S2) t

Boundary dominated ∼q−1t−1/4 t � q2

Edwards-Wilkinson ∼ q−2t1/4 q2 � t � q8

KPZ ∼ q−8/3t1/3 t � q8

Since λ � 1 at large q, we can fix it explicitly using the lattice
results above (see Appendix H):

λ � 1

4q4
. (73)

Standard mappings [65] relate the coefficients in Eq. (80) to
those in the KPZ equation (53).

The energy of the system of bosons as k → 0 gives the
average free energy density f of the polymer in the random
medium, or equivalently the growth rate of the averaged
entropy: f = seqv2. Using the result of Ref. [65],

v2 = 1

ln q
ln

(
q2 + 1

2q

)
+
(

1

384 q8 ln q
+ · · ·

)
. (74)

The first term is the “purity speed” ev2 (Sec. II), and the
second is a correction from replica interactions. The Bethe
ansatz results in Ref. [72] also fix the prefactor of the KPZ
fluctuations, Eq. (56).

The above results apply in the limit of large times. Since
at large q the interaction is weak (but renormalization-group
relevant), there is a large crossover scale. The crossover length
scale (in the spatial x direction) is in the notation of Ref. [65]:

ld = 2

λ
� 8q4. (75)

This corresponds to a timescale of order l2
d . For t � l2

d , the
polymer of the previous subsection resembles a random walk,
with diffusive scaling between x and t . For t � l2

d , its confor-
mation is strongly affected by the quenched randomness, and
KPZ scaling exponents govern its statistics and the statistics
of S2. It is notable that in the present model the crossover
timescale l2

d is large even for q = 2. We discuss crossovers
in more detail in the next section.

D. Early-time crossovers for large q

So far we have considered KPZ scaling at asymptotically
long times, which we expect to hold for any q. However, when
q is large, there are interesting early and intermediate time
regimes, while fluctuations in S2 remain small, i.e., before the
onset of KPZ scaling at times of order l2

d . In total there are
three regimes, shown in Table I.

We first note that when two walks from different replicas
meet at the t = 0 boundary, there is an interaction that cor-
responds to half of the special hexagon in Sec. VI A. This
is shown in Fig. 14. This interaction is of order 1

q2 . Since

this is parametrically larger than the O(1/q4) bulk interac-
tion, it dominates at early times. In the polymer language,
it corresponds to a boundary disorder potential of strength
≈1/q. For times 1 � t � q2, as we show below, this leads
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(12)(34)

(14)(23) (24)(13)

FIG. 14. An example of the half special hexagon interaction at
the boundary. (Left) The special hexagon in the bulk gives an inter-
action of order 1

q4 , while the half hexagon at the bottom boundary

gives an interaction of order 1
q2 . Hence the boundary interaction

will dominate the early time fluctuation. (Right) A domain wall
configuration of the half special hexagon. Since there are only two
extra legs, it is of order 1

q2 .

to fluctuations which decrease with time as√
Var(S2) ∼ 1

(4πt )
1
4

1

q
, 1 � t � q2. (76)

The reason for the decrease of the fluctuations is that a
polymer of length t explores, through thermal fluctuations, a
length of the boundary of size ≈t1/2. It is therefore effectively
subject to the disorder potential averaged over this region. The
average of O(t1/2) local potentials with mean zero and typical
magnitude ≈1/q gives the 1/(qt1/4) scaling above.

More precisely, an exact combinatorial counting, involving
pairs of walks from different replicas which meet at the t = 0
boundary, gives

Var(S2) = 2

q24t

(
2(t − 1)
(t − 1)

)
(77)

and hence Eq. (76). We calculate the early time fluctuations of
S2 numerically for various q; see Fig. 15. The largest q values
agree fairly well with the lowest order result in Eq. (77) for
larger t .

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6

t

S2
2 − S2

2

q = 2
q = 3
q = 4
q = 5
q = 6

FIG. 15. Fluctuations of S2 for different q and number of layers
of network. Depending on the position of the entanglement cut, the
entanglement increases either in odd or even time steps. For each
t , we have placed the cut so that the final layer of unitaries can
create entanglement. The lines are the analytic lowest order result

1
q

√
2
4t

(
2(t − 1)
(t − 1)

)
.

When t � q2, the bulk contribution to fluctuations domi-
nates, and fluctuations grow with time. However, they are not
immediately governed by KPZ exponents. From the contin-
uum description in (53) and (54), the rescaled entropy eS =√

4q4S satisfies

∂teS = 1

2
∂2

x
eS − 1

4q2
(∂xeS)2 +eη(x, t ) +ec (78)

subject to the normalized noise

〈eη(x, t )eη(x′, t ′)〉 = δ(x − x′)δ(t − t ′). (79)

At early times, the nonlinear term in (78) may be neglected
due to its small coefficient. The resulting noisy linear equa-
tion (note that all coefficients are order 1) is known as the
Edwards-Wilkinson equation and gives fluctuations in eS of
order t1/4 [91] or of order q−2t1/4 for S. These begin to
dominate over the boundary fluctuations at time tEW ∼ q2.

However, the nonlinear term is RG relevant, and it can no
longer be neglected at times t � tKPZ, where tKPZ ∼ q8 [61].
This is also the time at which fluctuations are of order 1. Since
tKPZ � tEW � 1 at large q, there are three regimes (Table I).

E. KPZ for Rényi entropies Sn with n �= 2

S2 is the simplest entropy to calculate because each replica
gives rise to only one elementary domain wall. However, we
can use the concept of the bound state (Sec. IV) to outline a
generalization to larger n. For concreteness, consider the case
n = 3, with q large. This limit simplifies the analysis by giving
a clear separation of scales between two kinds of interactions.

First, within each replica there is a pair of walks, or
equivalently quantum particles, with an attractive interaction
between them of order 1 strength [Eq. (37)]. Then, at a
parametrically smaller energy scale of order q−4, there is
the attractive interaction between walks in different replicas
which we have discussed in the previous section.

Therefore, in the first step of RG—at length scales of order
1—the walks form independent bound states within each
replica. On larger scales, each bound state can be treated as a
walk (or particle) with a single position coordinate xα for α =
1, . . . , k. The bound states have a well-defined coarse-grained
line tension and diffusion constant. Finally, there are weak
attractive interactions between bound states arising from the
weak interactions between the microscopic walks. Therefore,
the next stage of the RG flow can again be described by
a Hamiltonian like Eq. (80), but with different numerical
constants. As a result, we again expect KPZ scaling. We
expect that a similar two-step RG picture applies for any n > 2
when q is large.

For each n, the continuum Hamiltonian for the bound states
generalizing (80) is characterised by three constants,

H = −kεn − Dn

k∑
α=1

∂2

∂x2
α

− λn

∑
α<β

δ(xα − xβ ), (80)

and the magnitude of the KPZ fluctuations in Sn is propor-
tional to λ2/3

n /[D1/3
n (n − 1)].
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If it was possible to compute these constants for arbitrary
n, we could hope to analytically continue to n = 1 to compute
the fluctuations of the von Neumann entropy.7

VII. NUMERICAL CHECKS USING THE
OPERATOR ENTANGLEMENT

In this section, we perform numerical checks on some of
the analytical arguments in Sec. VI. We argued that the dom-
inant interaction between replicas, for large q, arose from a
special hexagon diagram and that this is a pairwise interaction
between replicas.

Here, we check this result for the interactions by comparing
numerics with the analytic form for

exp (−kS2[U (t )]), (81)

where S2[U (t )] is the operator entanglement of the time
evolution operator. Recall that we may regard the tensor
network defining U (t ) as a tensor network state for 2L spins,
L at the top boundary and L at the bottom boundary. S2[U (t )]
is then the entanglement of a subsystem containing the L/2
spins on the left part of the bottom boundary together with the
L/2 spins on the left part of the top boundary. This may be
mapped to a lattice magnet by a simple extension of the above
formulas. The only change compared to the calculation of Zk

2
is the boundary condition at the bottom boundary. Since the
top and bottom boundaries are treated on equal footing, the
bottom boundary condition will be the same as the top one:
There will be a composite domain wall τn,k at the bond of
the entanglement cut. The configurations of incoming domain
walls on the top and outgoing domain walls on the bottom are
exactly the same as in Eq. (63).

We check the analytic result for t = 1 and t = 3. For t =
1, we must consider a single unitary gate and the associated
special hexagon interaction in Eq. (63). This gives

ln tr(ρ2[U (1)])k − k ln(tr(ρ2[U (1)]) � k(k − 1)

2

1

2q4
. (82)

The subtraction on the left-hand side is to isolate the interac-
tion contribution. For t = 3, we must sum over six configura-
tions. At leading order in 1/q, this gives

ln tr(ρ2[U (3)])k − k ln tr(ρ2[U (3)]) � k(k − 1)

2

5

9q4
. (83)

In Figs. 16 and 17, these results are compared against
numerical results for k = 2, . . . , 6 and for various values of
q. (We average over 4000 and 100 realizations for t = 1 and
t = 3, respectively.) In both cases, the agreement is good at
large q. This confirms that the special hexagon is indeed the
interaction between replicas, at order 1

q4 , in the bulk of the
system.

7The scaling as n → ∞ may be more easily tractable and is also
interesting (−S∞ is the logarithm of the largest eigenvalue of the
reduced density matrix).
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FIG. 16. Bipartite operator Rényi entanglement entropy for two-
site gate. This is the simplest one-layer random tensor network. The
domain wall diagrams correspond exactly to those in Eq. (64). We
verified the strength 1

2q4 in Eq. (64) as well as the pairwise nature of
the interaction.

VIII. SATURATION AT LATE TIME
AND PAGE’S FORMULA

For a finite system of even size L, when t is far greater than
the saturation time, we expect the half-chain entanglement to
saturate to the value given by the generalized Page formula for
Rényi entropy [86,87]:

SPage
n = L

2
ln q − ln Cn

n − 1
. (84)

In this formula, L
2 ln q is the maximal possible entanglement

for the half-chain and Cn is the nth Catalan number: C1 = 1,
C2 = 2, C3 = 5, C4 = 14, etc. This formula is valid for all q
if L is large, and the corrections are exponentially small in L.
Fluctuations about the Page value are also exponentially small
in L.

We show that the constants Cn have a simple and appealing
explanation in terms of the domain walls. We first discuss
the limit of large q and then give a sketch (which is partly
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FIG. 17. Bipartite operator Rényi entanglement entropy of four
sites. The tensor network has three layers: The first and last layers
have one gate and middle layer has two gates. The interaction still fits
k(k−1)

2
5

9q4 , which is predicted by only considering the special hexagon
interaction.
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A Bτn,1 Aτn,1 τ−1
n,1

FIG. 18. Domain wall paths for t � L/2v2. Left: entanglement
of half of a chain with two boundaries. There are two possible paths
at the leading order in q. They exit the system through a tilted triangle
on the boundary. Right: entanglement of half of a chain with periodic
BCs. The two entanglement cuts give two domain walls, τn,1 and its
inverse. They meet at a down-pointing triangle either in region A or
in B again giving two possibilities.

conjectural) for how the domain wall picture allows the result
to survive when q is not large.

Consider the finite system with two spatial boundaries
shown in Fig. 18 (left). For a single elementary domain wall,
as appears in the calculation for Z2 = e−S2 , there are two
possibilities at late time: It must exit the system via either the
left or right spatial boundary. These possibilities are shown in
red and blue respectively in the figure. At large q, the optimal
slope for each domain wall (minimizing its total energy) is
approximately unity, and the energy of such a domain wall is
(L/2) ln q. The two possibilities lead to a factor of 2: Z2 =
2q−L/2.

Now consider Zk
n . At leading order in q, the replicas

decouple, so Zk
n � (Zn)k . This is equivalent to the statement

that at leading order in q there are no fluctuations in the
entanglement. The boundary condition for Zn introduces a
domain wall of type τn,1 = (12 . . . n) at the top boundary.
This domain wall can split into two domain walls μ and ν,
satisfying

τn,1 = μ × ν, (85)

with the μ domain wall exiting to the left and the ν wall
to the right. The blue and red paths in Fig. 18 both cross
L
2 down-pointing triangles, so Zn � cnq−(n−1) L

2 . The number
of configurations cn is the number of ways to factorize τn,1

into a product μ × ν. There are precisely Cn such choices
(see Appendix B of Ref. [57]), so cn = Cn. This reproduces
Eq. (84).

The case of a finite interval (thus two cuts) of size L/2 in a
chain with periodic boundary conditions is similar. Here, we
have boundary condition changes which insert domain walls
τn,1 and its inverse τ−1

n,1 at the two cuts. The two optimal paths
correspond to domain walls that meet either inside A or B
(Fig. 18, right). Otherwise, the discussion is as above. (Note
that if the two subsystems contain different numbers of sites,
the energies of the different domain wall configurations will
no longer be degenerate.)

This gives a combinatorial interpretation of the O(1) cor-
rection in the Page value as an entropy associated with the
large-scale configurations of the random walks.

For finite q, Eq. (84) remains true so long as L is large
[86,87]. For this result to emerge from the random circuit,
two things must happen. First, at finite q, the replicas must

effectively decouple in the configurations that obtain at late
time to ensure that fluctuations about the Page value are
parametrically small in L. Second, all of the ways of splitting
τn,1 into μ × ν must have the same free energy.

This is closely connected to the conjectured constraints
on En(v) in Eq. (42) [25]. Consider a domain wall that exits
the boundary of the system (as in Fig. 18). Approximately
speaking, Eq. (42) ensures that the preferred velocity of this
domain wall, selected by free energy minimization, is ±vB

(rather than ±1, as at q = ∞), and that the line tension (free
energy per unit time) per elementary walk is independent of
how the composite walk τn,1 is split into smaller composites
μ and ν. At a more microscopic level, what allows this to
happen is the unbinding transition which we demonstrated for
the case of two walks in Sec. V A. To be more accurate, we
must also assume that different replicas, and more generally
commuting domain walls, also decouple by a similar mecha-
nism: a vanishing of the effective attractive interaction when
the coarse-grained speed is fixed to vB.

A. The moment of saturation

So far in this section we have discussed the asymptotic
value of the entanglement at very late times. We may address
the moment of saturation in a similar way. For definiteness,
consider the entanglement of the first � sites in a chain of size
L, with � � L/2, so that the saturation time is approximately8

tsat,n � �/vn. Let us assume L/2 − � � 1, so that we can
neglect walks which travel to the right-hand spatial boundary.

The leading order scaling picture for the moment of satu-
ration is a sharp crossover in free energy, as a function of t ,
between vertical domain wall configurations which reach the
t = 0 boundary and domain wall configurations which travel
to the left spatial boundary. Let us consider how this sharp
transition is rounded out.

We must split τn,1 into μ, a composite walk which travels to
the left boundary, and ν, which travels to the t = 0 boundary.
We will consider only the cases S2 and S3, i.e., τn,1 = (12)
and τn,1 = (123). In the first case, we have, if we make the
further simplification of neglecting fluctuations due to circuit
randomness (this is controlled at large q),

e−S2(t ) � e−seq� + e−seqv2t = e−seq�(1 + e−seqv2[t−tsat] ), (86)

where the first term represents the domain wall exiting at the
left boundary and the second term is the domain wall going
vertically as in the infinite system case.

For S3, we at first sight have more terms, because we can
choose ν = 1 or ν = (123), or take ν to be an elementary
domain wall. However, because v2 > v3, the latter option is
always exponentially subleading, so we have

e−2S3(t ) � e−2seq�(1 + e−2seqv3[t−tsat] ). (87)

8The time at which the crossover happens will fluctuate by O(�1/3),
due to KPZ fluctuations in the growth over this period. However,
these fluctuations are between realizations and should not be con-
fused with the rounding of the Sn(t ) profile within a realization which
we discuss here.
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Saturation is sharper for S3 than for S2. It is straightforward to
extend these expressions to similar situations, e.g., to the case
� � L/2 by including configurations with walks that travel to
the right spatial boundary.

IX. DYNAMICS IN REALISTIC MODELS

The microscopic models we have studied here include
randomness both in space and time. The corresponding effec-
tive directed polymer partition function involves both thermal
fluctuations and quenched disorder. It is natural to expect
that in realistic models without randomness, a mapping to a
coarse-grained directed polymer problem will still be possi-
ble, and that this effective description will still include thermal
fluctuations of the polymer. The quenched disorder will, of
course, be absent in that case. In fact, this is very similar to
what we have at large q, since as we have seen the effects
of randomness are suppressed by a high order in 1/q. This
picture is supported by the results of Ref. [44], which derived
a domain wall picture for Zn in a model with large q unitaries
that are random in space but not in time. At leading order in q,
this picture coincides with that for the random circuits here.

The concept of local pairing of spacetime histories that we
find in random circuits is likely to be useful also in nonrandom
models. The basic point is that paired histories (one from a U
evolution and one from a U ∗ evolution) contribute canceling
phases to the path integral, i.e., appear with positive weight.
This suggests that paired configurations, with domain walls
between pairings that are enforced by boundary conditions,
dominate the path integral for quantities such as e−(n−1)Sn even
in the absence of any disorder average. We will discuss this
further elsewhere.

It would be interesting to consider models in which the
dynamics is time independent but spatially random in more
detail. A coarse-grained description for entanglement growth
in such models was discussed in Ref. [43], in terms of a
directed polymer subjected to randomness that depends on
space but not on time. In the replicated language, this corre-
sponds to interactions between replicas that are local in space
but nonlocal in time. In the case where the spatial randomness
allows for weak link locations where the entanglement growth
rate is arbitrarily small, a Gaussian average over disorder is
not sufficient since the weakest links, which are rare events,
are important at late times. It would be interesting to search
for these phenomena by applying the replica trick to the model
of Ref. [44] or extensions thereof.

X. SUMMARY AND OUTLOOK

We have shown that the minimal membrane picture for
Sn makes sense beyond the q = ∞ limit, in a regime where
it can no longer be identified with a minimal cut through
the unitary circuit. There is an emergent statistical mechanics
governing the entanglement, in which the Rényi entropy is
the free energy of an emergent domain wall. The interac-
tions and thermal fluctuations of the domain walls play an
important role in determining the entanglement velocities and
entanglement line tensions En(v), which differ for different
Rényi entropies. For example, a domain-wall unbinding phase
transition (due to a delicate balance between interactions and

thermal fluctuations) allows the general constraint En(vB) =
vB to be satisfied for n = 3. Additional fluctuations associated
with quenched disorder in the circuit are responsible for
universal KPZ scaling at late times. A different type of large-
scale fluctuation also governs the Page-like corrections to the
entropies at late times. For random circuits, many properties
are computable analytically in a power series expansion in
1/q, where q is the local Hilbert space dimension (and in some
cases exactly).

The fact that entanglement entropies can be visualized in
terms of domain walls can be understood heuristically as
follows. The domain walls are between permutations that
represent pairings of the forward and backward evolutions
in the multilayered path integral. When phase coherence is
negligible, it is natural to guess that these paired config-
urations will dominate the path integral, since the pairing
suppresses phase cancellation. This picture also applies to
other quantities involving multiple-layer path integrals, for
example, the out-of-time-order correlator.

A lacuna in this work is an explicit treatment of the von
Neumann entropy, as opposed to the higher Rényi entropies.
This requires an additional replica limit (n → 1), which is
likely to be more complicated than the one we used here
to average the Rényi entropies (k → 1). Computing the von
Neumann entropy for finite q is a task for the future. It is
important to ask whether by focusing on n > 1 we are missing
important phenomena specific to S1.

Another intriguing task is to obtain explicit numerical or
analytical results for the entropies Sn with n > 3, extending
the schematic picture above in terms of the bound state. This
would require us to understand the combinatorics associated
with the labeling of the paths (by transpositions).9 This would
shed light on the structure of the evolving entanglement
spectrum. More detailed treatment of Sn>3 would also be
interesting in the context of the bound-state phase transition
which we have argued occurs in E (v) at v = vB.

For S2, our explicit mapping to a lattice directed polymer
in a random medium problem means that the dynamics of the
entanglement could be simulated, classically, over timescales
which interpolate between the short times accessible in quan-
tum simulations and the large times required to see KPZ in the
present model, at least for reasonably large q (we have argued
that a large crossover time is responsible for the apparent
absence of KPZ scaling in short-time simulations).

In future work, we will extend these mappings to related
phenomena including light-cone effects in correlation func-
tions, as well as entanglement growth for more general initial
states.
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APPENDIX A: COMBINATORIAL CALCULATION
OF Z3(t ) AT ORDER 1

q2

In this section, we use a combinatorial technique to calcu-
late the partition function Z3 and the entanglement velocity v3

to order 1
q2 . In doing this, we define and calculate a slightly

more general function 
3(t, q) which takes the 1
q2 correction

into account.
According to the exact result in Appendix F, the two walks

in Z3 have weight K2 � q−2e
− 2

q2 when they are separate.
When they meet, there are two types of interactions:

(1) The leading order attractive interaction resulting from
the three ways instead of two ways to split in Eq. (35).

(2) A weak repulsive interaction when the two walks are

overlapping. Such a step has weight q−2e
− 3

q2 .
Taking this into account, we can write the partition function

as

Z3(t ) = q−2t e
− 2t

q2 
3(t, q), (A1)

where 
3(t, q) is the following partition function for two
walks


3(t, q) =
∑

configs of
2 walks

(
3

2

)# splitting (
e
− 1

q2

)# overlapping steps
.

(A2)
The entanglement velocity is

v3 = 1 + 1

q2 ln q
− lim

t→∞
ln 
3(t, q)

2t ln q
. (A3)

Instead of counting 
3(t, q), we consider the partition func-
tion where each step is assigned a fugacity

√
x


3(
√

x, q) =
∞∑

t=0


3(t, q)x
t
2 . (A4)

1. q = ∞
If we neglect the weak repulsive interaction at 1

q2 order,

3(t, q) becomes 
3(t ) defined in Eq. (37). The correspond-
ing partition function is


3(
√

x, q = ∞) =
∑

t

∑
configs of
2 walks

(
3

2

)r √
x

t
, (A5)

where r is the number of splittings.
It is simpler to consider the relative motion of the two

walks. There are three possible displacements in a single
time step: 0,±2. A displacement of � = 0 means that the
two walks move in the same direction (left or right), while a
displacement � = ±2 means moving in opposite directions.

Let t0 be the number of time steps in which � = 0 and t ′
be the number of time steps in which � = ±2. We can imme-
diately perform the sum over t0 by noting that, in between

one � = ±2 step and the next, there can be an arbitrary
number of � = 0 steps. The subpartition function for these
steps is

∞∑
n=0

(2
√

x)n = 1

1 − 2
√

x
, (A6)

where the 2 represents the two choices of the center of mass,
left or right. This leaves a partition function for a single
random walk (with steps of ±2) representing the relative
displacement


3(
√

x, q = ∞) =
∑

t ′

∑
r

(
3

2

)r ( √
x

1 − 2
√

x

)t ′ ′∑
one walk

1,

(A7)

where the prime indicates that the walks can now only take
� = ±2 steps and where we sum over configurations with the
specified t ′, r.

To simplify, we assign 3
2 to the meeting event (when the

single walk returns to the origin) and assume the two walks
meet at the end. This does not affect the asymptotic behavior.
The final sum in the above equation is the number of such
single walks that return to the origin r times, which we denote
Z (t ′, r). This is [92]

Z (t ′ = 2n, r) = r2r

2n − r

(
2n − r

n − r

)
. (A8)

This has a generating function

∞∑
n=r

Z (t ′ = 2n, r)yn = [ f (y)]r, (A9)

where

f (y) = 1 −
√

1 − 4y. (A10)

Therefore,


3(
√

x, q = ∞) =
∑

r

(
3

2

)r [
f

(
x

(1 − 2
√

x)2

)]r

(A11)

= 1

1 − 3
2 f
(

x
(1−2

√
x)2

) . (A12)

We read off the smallest pole
√

x∗ = 3
√

2 − 4 which deter-
mines the asymptotic behavior


3(t ) ∼
(

1√
x∗

)t

=
(

2 + 3√
2

)t

. (A13)

2. q large but finite

The analysis is the same except that the subpartition func-
tion for a given string of consecutive � = 0 steps is different
depending on whether the relative coordinate is zero or not. If
it is, the subpartition function is modified to

∞∑
n=0

(
2e

− 1
q2

√
x
)n = 1

1 − 2e
− 1

q2
√

x
. (A14)
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The modification to Eq. (A7) is that there are r of these factors
and t ′ − r of the factors we had before:


3(
√

x, q = ∞)

=
∑

t ′

∑
r

(
3

2

1 − 2
√

x

1 − 2e
− 1

q2
√

x

)r ( √
x

1 − 2
√

x

)t ′ ′∑
one walk

1

= 1

1 − (
3
2

1−2
√

x

1−2e
− 1

q2 √
x

)
f
(

x
(1−2

√
x)2

) . (A15)

The pole satisfies(
1 + 4

q2

)
x +

(
8 − 2

q2

)√
x − 2 = 0. (A16)

The smaller pole
√

x∗ = 3
√

2 − 4 + (3 − 2
√

2)2 1
q2 deter-

mines the asymptotic behavior


3(t, q) ∼
(

1√
x∗

)t

=
(

2 + 3√
2

− 1

2q2

)t

. (A17)

This gives the partition function Z3(t ) and velocity to order
O( 1

q2 ln q )

v3 = 1 −
ln
(
2 + 3√

2

)
2 ln q

+ 3
√

2

4

1

q2 ln q
. (A18)

APPENDIX B: SLOPE-DEPENDENT LINE TENSION E3(v)

In this section, we derive the slope-dependent line tension
E3(v) of the n = 3 bond state, which generalizes the partition
function 
3(t ) in Appendix A. To this end, we must obtain the
free energy of the walks as a function of their coarse-grained
velocity.

Let x be the total displacement of the bound state, i.e., the
mean displacement of the two walks, and let 
3(x, t ) be the
partition function with a fixed displacement. We expect


3(vt, t )q−2t ∼ e−2 ln qE3(v)t . (B1)

In other words,

E3(v) ∼ 2 ln q − ln 
3(vt, t ). (B2)

Consider the generating function of 
3(x, t ),


̃3(φ, t ) =
∑

x


3(x, t )φx, (B3)

where we assign weight φ for the mean displacement to go
one step right and φ−1 for one step left.

We break up the sum according to the number t0 of time
steps where the relative displacement is 0. The steps with
relative displacement 0 can change the mean displacement
by φ±1, while the steps with relative displacement ±2 do not
change the mean displacement. We therefore have


̃3(φ, t ) =
t∑

t0=0

(
t

t0

)
(φ + φ−1)t0 Z (t − t0) (B4)

∼
t∑

t0=0

(
t

t0

)
(φ + φ−1)t0

(
9

2

) t−t0
2

(B5)

∼
(

φ + φ−1 + 3√
2

)t

. (B6)

If we regard 
̃3(φ, t ) as the partition function for a modified
ensemble, the total displacement of the bound state, i.e., the
mean displacement of the two walks, is

∂

∂ ln φ
ln 
̃3(φ, t ) = t

φ − φ−1

φ + φ−1 + 3√
2

. (B7)

Then, the mean velocity is

v(φ) = φ − φ−1

φ + φ−1 + 3√
2

, (B8)

which we can solve for the fugacity

φ = 3v + √
8 + v2

√
8(1 − v)

. (B9)

By saddle-point reasoning,


̃3(φ, t ) ∼ 
3[v(φ)t, t]φv(φ)t . (B10)

Therefore,

E3(v) = 1 − 1

2 ln q

[
ln

(
3√
2

+ φ−1 + φ

)
− v ln φ

]

= 1 − 1

2 ln q

[
3v2 + √

v2 + 8√
2(1 − v2)

+ 3√
2

− v ln
3v + √

8 + v2

√
8(1 − v)

]
. (B11)

APPENDIX C: LINE TENSION E3(v) CLOSE
TO LIGHTCONE

In this section, we calculate E3(v) for v very close to
the light cone v = 1. Writing v = 1 − α

q2 , with α of order
1 and q large, we obtain E3(1 − α

q2 ) up to terms of order

1/q2 ln q; see Eqs. (48), (49), and (50) in the main text. This
allows a nontrivial check on the relation E3(vB) = vB and
reveals an unbinding transition for the two walks appearing
in the partition function Z3 when the boundary conditions are
modified so that their coarse-grained speed exceeds a critical
value vc � 1 − 2/q2. This is consistent at this order with
vc = vB, which we conjecture is true to all orders.

To the order at which we are working we can neglect
interactions between replicas. Then

E3(v) = lim
t→∞

− ln Z (vt ; t )

2 ln q × t
, (C1)

where Z (vt ; t ) is a partition function for two walks with the
constraint that the displacement of their center of mass is vt .
For definiteness, we can take their relative coordinate � (the
difference in the coordinates of the two walks) to be zero at
the initial and final times.

From the exact triangle weights in Appendix F, to relative
order 1/q2, the weight is

q−2e−2/q2
(C2)

for a time step in which the walks are separate and

q−2e−3/q2
(C3)
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for a time step in which the walks are in a composite walk.
Finally, for a time step in which the walks either split or
merge, we may take the weight to be√

3

2
q−2e−2/q2

. (C4)

Here we have shared the statistical weight 3/2 for each merge-
split event (see Sec. III B) equally between the splitting event
and the merging event. We neglect boundary terms, which are
unimportant in the t → ∞ limit.

In order to fix the velocity v, we introduce a fugacity φ

for leftward steps. Since v is close to 1, almost all steps
are rightward, and the fugacity φ will be small. If Z (φ; t )
is the partition function with fugacity φ but with no con-
straint on the total displacement of the center of mass, and
if v(φ) = 1 − α(φ)/q2 is the average speed in the ensemble
with fixed φ, then

Z (φ; t ) ∼ Z (v(φ); t )φα(φ)t/q2
. (C5)

In the present regime, only an O(1/q2) fraction of the time
steps involve a walk taking a step to the left. We can neglect
configurations in which both walks take a step to the left in
the same time step, since such an event occurs only once in
every O(1/q4) time steps.

The configuration is then determined entirely by the rela-
tive displacement � as a function of time, and we can write
Z (φ, t ) in terms of a transfer matrix T�,�′ . This transfer matrix
contains a factor of φ for each time step in which � �= �′,
since in such a time step one of the walks takes a step to the
left:

Z (φ; t ) = q−2t e−2t/q2
(T t )0,0 (C6)

with (expanding in 1/q2)

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

1 φ

φ 1 φ
√

3/2
φ
√

3/2 1 − q−2 φ
√

3/2
φ
√

3/2 1 φ

φ 1
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(C7)

Let us define the O(1) quantities

� = q2φ. (C8)

For � > 1, the largest eigenvalue of the transfer matrix,
determining the scaling of the partition function, is

λ = 1 + 3
√

1 + 8�2 − 1

4q2
, (C9)

corresponding to the bound state wave function ψ� with

ψ0 = 1, ψ� �=0 =
√

3

2
μ|�|, with μ = 1 + √

1 + 8�2

4�
.

(C10)

The bound state exists for μ < 1, i.e., for � > 1. At � = 1,
the bound state disappears. For the range of velocities where
� < 1, when the walks are unbound, their typical separation

is
√

t at large t . They are therefore effectively independent
and their free energy is twice that of a single walk, leading
to E3(v) = E2(v). It is straightforward to check that � = 1
corresponds to αc = 2: For � � 1, the walks can be treated as
independent, and v is simply related to the weight φ = �/q2

for a left step by v = 1 − 2φ.
For the range of velocities where � > 1, Eqs. (C5) and

(C9) together with ln(T t )00 ∼ t × ln λ give

E3(v) � 1 − α

q2
+ 1

q2 ln q

(
9

8
− 3

√
1 + 8�2

8
+ α

4
ln �2

)
.

(C11)

We still need to relate � and v.
In the bound region, we note that v is equal to the probabil-

ity that in a given time step the change in � is zero. The sum
over such configurations is obtained by replacing T with Tdiag

for the given time step, where Tdiag is the diagonal part of T .
This leads to

v = 1

λ

〈ψ | Tdiag |ψ〉
〈ψ | ψ〉 . (C12)

Using Eq. (C10) gives

v = 1− 1

q2

6�2(1 + √
1 + 8�2)

1 + 8�2 + √
1 + 8�2

, �2 = α2

18

(
2+
√

4 + 9

α2

)
.

Together with Eq. (C11), this gives Eqs. (49) and (50) in the
main text.

APPENDIX D: THE WEINGARTEN FUNCTION

In this section, we introduce the properties of the Wein-
garten function (Wg) used in the main text.

We begin with the general formula for the average of the
tensor product of a Haar random unitary [88,89]∫

[dUd×d ]Ui1, j1Ui2, j2 . . .Uin, jnU
∗
i′1, j′1

U ∗
i′2, j′2

. . .U ∗
i′n, j′n

=
∑

σ,δ∈Sn

δi1i′τ (1)
. . . δini′τ (n)

Wg(d, σ τ−1)δ j1 j′σ (1)
. . . δ jn j′σ (n)

.

(D1)

In the main text, d = q2 and we pack formula compactly in the
bracket notation [Eq. (18)], where the products of δ functions
are identified as components of the permutation states |σ 〉
and |τ 〉.

The Weingarten function Wg(σ ) ≡ Wg(q2, σ ) is a func-
tion of the conjugacy class of the permutation. Its defining
property can be obtained from the left-right invariance of the
Haar ensemble,

= . (D2)

Translating this into algebra, we have∑
τ1σ1

Wg(στ−1
1 )dN−|τ−1

1 σ1|Wg(σ1τ
−1) = Wg(στ−1). (D3)
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If we regard Wg(στ−1) as an invertable matrix with σ and τ

as its row and column indices, then∑
τ

Wg(σaτ
−1)dN−(τ−1σb) = δσaσb . (D4)

Therefore, Wg(σaσ
−1
b ) is the inverse of dN−(σ−1

a σb). This is the
key to all the exact weights; see Appendix E.

The Weingarten function can be expanded perturbatively,
and the leading order term for each permutation is [89]

Wg(σ ) = 1

dN

[
Moeb(σ )

d |σ | + O

(
1

d |σ |+2

)]
, (D5)

where the Möbius function for a permutation with cycle
decomposition σ = c1c2 · · · ck is defined as

Moeb(σ ) =
k∏

i=1

Catalan|ci|−1(−1)|ci|−1. (D6)

Some elementary examples are

Moeb(I) = 1, Moeb((12)) = −1, (D7)

Moeb((12)(34)) = 1, Moeb((123)) = 2. (D8)

For the convenience of the perturbative calculation, we
define

wg(σ ) = dN Wg(σ ). (D9)

Up to 1
d2 ( 1

q4 ) order, the only nonvanishing wg functions are

wg(I) = 1 +
(N

2

)
d2

+ O

(
1

d3

)
,

wg((12)) = − 1

d
+ O

(
1

d3

)
,

(D10)

wg((123)) = 2

d2
+ O

(
1

d3

)
,

wg((12)(34)) = 1

d2
+ O

(
1

d4

)
,

where the particular permutations inside, like (12), are repre-
sentatives of their conjugacy classes. The last three relations
come from the leading term expansion of wg. The first one
can be worked out by subtracting all the other 1

d2 terms from
the sum [93]

∑
σ

wg(σ ) = dN (d − 1)!

(d + N − 1)!
. (D11)

APPENDIX E: EXACT WEIGHTS WITH
� 1 INCOMING DOMAIN WALL

In this section, we derive the exact wight of some down-
pointing triangles by using the orthogonality relation in
Eq. (D4). We will denote the number of cycles in a permu-
tation by χ (σ ) = N − |σ |.

First, according to the definition in Eq. (24)

J (σb, σb; σa) =
∑

τ

Wg(σaτ
−1)q2N−2|σ−1

b τ |. (E1)

Comparing this with the orthogonality relation in Eq. (D4) and
setting q2 = d , we obtain

J (σb, σb; σa) = δσa,σb . (E2)

Next, we consider the weight of a single domain wall

=
∑
τa

Wg(τa)qχ(τa)+χ(τa(12)). (E3)

We define

�± =
∑

χ (τa(12))=χ (τa )±1

Wg(τa)qχ (τa )+χ (τa ) (E4)

and then

K = = qΣ+ +
1
q
Σ−. (E5)

By taking σ = I and (12) in the variant of the orthogonality
relation ∑

δ

Wg(δ)dχ (δσ ) = δI,σ , (E6)

we have

�+ + �− = 1,

d�+ + 1

d
�− = 0. (E7)

The solution is

�+ = −1

d2 − 1
, �− = d2

d2 − 1
. (E8)

Therefore,

K = −q

q4 − 1
+ q3

q4 − 1
= q

1 + q2
. (E9)

Further, we consider a single domain wall that creates a
pair of new (possibly composite) domain walls

K∧ =
μ μ−1

=
∑
τa

Wg(τaμ)qχ(τa)+χ(τa(12)). (E10)

We define

�± =
∑

χ (τa(12))=χ (τa )±1

Wg(τaμ)qχ (τa )+χ (τa ), (E11)

and then

K∧ = q�+ + 1

q
�−. (E12)

On the other hand, from the orthogonality relation∑
τa

Wg(τaμ)qχ (τa )+χ (τa )

=
∑
τa

Wg(τaμ)qχ (τa (12))+χ (τa (12)) = 0, (E13)
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we have

�+ + �− = 0, d�+ + 1

d
�− = 0 ⇒ �± = 0. (E14)

Hence,

K∧ = 0. (E15)

We conclude that

J (I, (12); σa) = q

q2 + 1
(δI,σa + δ(12),σa ). (E16)

APPENDIX F: EXACT WEIGHTS FOR N = 3

This section presents the exact weights J (σb, σc; σa) for Z3
1

(the single replica of S3).
There are six elements in the order 3 permutation group:

I, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2). The relevant Wein-
garten functions are (see, for example, Ref. [94]; d = q2)

Wg(d, [1, 1, 1]) = q4 − 2

q2(q4 − 1)(q4 − 4)
,

Wg(d, [1, 2]) = −q2

q2(q4 − 1)(q4 − 4)
, (F1)

Wg(d, [3]) = 2

q2(q4 − 1)(q4 − 4)
,

where the numbers inside the square brackets are the cycle
sizes of the permutation. Then J (σb, σc; σa) becomes

J (σb, σc; σa)

= Wg(d, I )〈σa|σb〉〈σa|σc〉
+ Wg(d, [1, 2]){〈(1, 2)−1σa|σb〉〈(1, 2)−1σa|σc〉
+ 〈(1, 3)−1σa|σb〉〈(1, 3)−1σa|σc〉
+ 〈(2, 3)−1σa|σb〉〈(2, 3)−1σa|σc〉}
+ Wg(d, [3]){〈(1, 2, 3)−1σa|σb〉〈(1, 2, 3)−1σa|σc〉
+ 〈(1, 3, 2)−1σa|σb〉〈(1, 3, 2)−1σa|σc〉}. (F2)

The computation in Eq. (F2) gives the same results for the
exact weights in Appendix E, and also additional nontrivial

weights

I

I (123)
=

q4 − 2q2 − 2
(q2 + 1)(q4 − 4)

I

(12) (23)
=

q2(q2 − 1)
(q2 + 1)(q4 − 4)

I

(123) (132)
=

−2(q2 − 1)
(q4 − 4)(q2 + 1)

.

(F3)

APPENDIX G: PERTURBATIVE CALCULATION
OF THE TRIANGLE WEIGHTS

In this section, we present the perturbative calculation of
the weight of a down-pointing triangle.

The weight of the down-pointing triangle is obtained by
integrating out the τ spin. Formally,

J (σb, σc; σa) =
∑
τ∈SN

wg(τ−1σa)q−|σ−1
b τ |−|τ−1σc|. (G1)

To represent this in diagrams, we put the τ spin in the center
of the triangle and use dashed lines to connect the τ spin and
the three neighboring σ s. The links between τ and σc or σb

give an exact factor 1
q for each elementary domain wall, and

the link between τ and σa gives wg(τ−1σa).
First, consider K (which we know exactly). The leading

order diagram is the one where τ = σa, and we have

K = = + O(
1
q2

) =
1
q

+ O(
1
q2

). (G2)

Now, using the higher order series expansion of wg in
Eq. (D10), we can obtain a more accurate value of K :

K = = + + +

=
1
q
wg(d, I) +

1
q
wg(d, (12)) +

N
2

) − 1
q3

wg(d, (13)) + O( 1
q7)

O( 1
q6)

O( 1
q7)

O 1
q6 .

=
1
q

⎡
⎣

(
1 +

N
2

)
q4

)
− 1

q2
− 1

q2

(
N
2

) − 1
)

q2

⎤
⎦ +

=
1
q

(
1 − 1

q2
+

1
q4

+
))

) (G3)

Here, we see that the number of choices for the elementary domain wall on the vertical link in the last diagram cancels the N
dependence in the expansion of wg(I) from the first diagram, generating an N independent weight, which is consistent with the
exact result in Eq. (E9).
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Now we consider two commutative incoming and outgoing domain walls (12) and (34), which are relevant to evaluating Zk
2 ,

= + 2 + +

=
1
q2

wg(d, I) + 2
1
q2

wg(d, (12)) +
1
q2

wg(d, (12)(34))

+
1
q4

wg(d, (12))
((

N

2

)
− 2

)
+

=
1
q2

[(

[(1 +
N
2

)
q4

− 2
q2

)

)+
1
q4

− 1
q2

N
2

) − 2
q2

+ O 1
q6

=
1
q2

[
1 − 2

q2
+

3
q4

+
]

=
1
q2

[
1 − 1

q2
+

1
q4

+
]2

= × ×
( (

1 + O 1
q6

))
(

O 1
q6

) (
O 1

q6

)

(
O 1

q8

)

.

(G4)

The calculation for the outgoing domain walls exiting in the
opposite directions is similar. We thus obtain the factorization
condition in Eq. (60).

The factorization fails if the incoming domain wall is a
product of noncommutative transpositions. We take it to be
(123), which is relevant to S3. There are now three ways to
assign one elementary domain wall to the vertical link, and
the weight wg(d, 123)) is 2/q4. Taking these into account, we
have

= + 3 + +

=
1
q2

wg(d, I) + 3
1
q2

wg(d, (12)) +
1
q2

wg(d, (123))

+
1
q4

wg(d, (12))
((

n

2

) )
−

( (
3
2

))
+ O 1

q8

)(
O 1

q6

=
1
q2

[(
1 +

n
2

)
q4

)
+

(
− 1

q2

)
× 3 +

2
q4

+
1
q2

(
− 1

q2

) ((
n

2

)
− 3

)
+] )(

O 1
q6

]
)(

O 1
q6

]=
1
q2

[
1 − 1

q2
+

1
q4

+
2

1 − 1
q2

+

= × ×
[
1 − 1

q2
+

(G5)

We see that the factor of
[
1 − 1

q2 + O( 1
q6 )
]

gives rise to a
repulsive interaction between the domain walls.

Next, we turn to corrections from adding bubbles to the
domain wall configurations as in Fig. 19. Many such bubble
configurations vanish due to the exact results in Eqs. (E2) and
(E15). The leading nontrivial diagrams corresponds to con-
figurations (e) and (f) in Fig. 19. Naïve domain wall number
counting suggests a bubble is a 1

q4 correction to the diagram

without the bubble. It is, however, at most a 1
q6 correction

if the bubble is created simply by adding a closed loop of
a given domain wall type. For example, consider the bubble
corrections to the leading diagram for K∧. Let the incoming
domain wall be (12) and the outgoing ones be (12)(34) and
(34). We can always choose a vertical link carrying (34) to
cancel the leading order diagram

= + +O = O(
(1

q5(
(1

q5

(G6)

so that it is consistent with the exact result K∧ = 0 in
Eq. (E15). The cancellation mechanism also exists for two
commutative incoming domain walls in Eq. (61):

= + + = O( 1
q6)O( 1

q6) . (G7)

(a) (c) (e)

(b) (d) (f)

FIG. 19. Possible bubble diagrams. Each line represents an el-
ementary domain wall. Configurations (a), (b), (c), and (d) have
0 weight: (a) and (b) vanish because the tip of the hexagon is
J (I, I; (12)) = 0; (c) and (d) vanish because on the top K∧ = 0.
Configuration (e) is an order 1

q6 correction. Configuration (f) can be

an order 1
q6 correction if the dashed loop is an elementary domain

wall. It is an order 1
q4 correction if it is a special hexagon as in

Eq. (63).
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When the newly generated domain wall pair annihilates in the
time step immediately below, this gives a 1

q6 correction in the
bulk [Fig. 19(f)]. In contrast, the special hexagons in Eq. (63)
do not suffer from the cancellation mechanism. As a result,
they are 1

q4 corrections in the bulk and lead to the dominant

pairwise attraction in Zk
2 .

APPENDIX H: CONTINUUM INTERACTION CONSTANT

Continuing from the discussion in Sec. VI C, we use Z (k) to
denote the partition function for k bosons on a ring, or equiva-
lently k walks on a torus. (Note that these boundary conditions
(BCs) are not related to the entanglement calculation.) To
fix λ, we take L and t large enough that the continuum
approximation is valid but small enough that the interaction
may be treated as as a perturbation: This is possible when
λ � 1. If �E is the change in the ground-state energy of a
pair of bosons when the small interaction is switched on, then
Z (2)/[Z (1)]2 = e−t�E . Since in the noninteracting problem the
ground-state wave function is spatially constant,

�E = − λ

L2

∫
dx1dx2δ(x1 − x2) = −λ

L
. (H1)

On the other hand, on the lattice

Z (2)

[Z (1)]2
=
˝

exp
∑

vertical
bonds b

(
1

2q4

nb (nb − 1)

2

)̨
, (H2)

where the expectation value is taken for a pair of nonin-
teracting walks on D. Expanding the exponential and using
translational invariance in both dimensions,

Z (2)

[Z (1)]2
� 1 + tL

2

1

2q4
Pmeet. (H3)

Here tL/2 is the number of vertical bonds on the square
lattice D, and Pmeet is the probability that a given bond is
visited by both walks. Using the independence of the walks,
this is Pmeet = 1/L2. Matching Eqs. (H3) and (H1) gives λ =
1/(4q4), as stated in the main text.
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[7] M. Žnidarič, Exact convergence times for generation of random
bipartite entanglement, Phys. Rev. A 78, 032324 (2008).

[8] A. Hamma, S. Santra, and P. Zanardi, Quantum Entanglement in
Random Physical States, Phys. Rev. Lett. 109, 040502 (2012).

[9] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, Local
random quantum circuits are approximate polynomial designs,
Commun. Math. Phys. 346, 397 (2016).

[10] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Chaos in
quantum channels, J. High Energy Phys. 02 (2016) 004.

[11] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum Entan-
glement Growth Under Random Unitary Dynamics, Phys. Rev.
X 7, 031016 (2017).

[12] A. Nahum, S. Vijay, and J. Haah, Operator Spreading in Ran-
dom Unitary Circuits, Phys. Rev. X 8, 021014 (2018).

[13] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and S. L.
Sondhi, Operator Hydrodynamics, OTOCs, and Entanglement
Growth in Systems Without Conservation Laws, Phys. Rev. X
8, 021013 (2018).

[14] L. Banchi, D. Burgarth, and M. J. Kastoryano, Driven Quan-
tum Dynamics: Will it Blend? Phys. Rev. X 7, 041015
(2017).

[15] P. Calabrese and J. Cardy, Evolution of entanglement entropy
in one-dimensional systems, J. Stat. Mech. (2005) P04010.

[16] H. Kim and D. A. Huse, Ballistic Spreading of Entanglement in
a Diffusive Nonintegrable System, Phys. Rev. Lett. 111, 127205
(2013).

[17] H. Liu and S. J. Suh, Entanglement Tsunami: Universal Scaling
in Holographic Thermalization, Phys. Rev. Lett. 112, 011601
(2014).

[18] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, Quantum thermalization through
entanglement in an isolated many-body system, Science 353,
794 (2016).

[19] C. T. Asplund, A. Bernamonti, F. Galli, and T. Hartman, En-
tanglement scrambling in 2d conformal field theory, J. High
Energy Phys. 09 (2015) 110.

[20] H. Casini, H. Liu, and M. Mezei, Spread of entanglement and
causality, J. High Energy Phys. 07 (2016) 077.

[21] W. W. Ho and D. A. Abanin, Entanglement dynamics in
quantum many-body systems, Phys. Rev. B 95, 094302
(2017).

[22] M. Mezei and Douglas Stanford, On entanglement spreading in
chaotic systems, J. High Energy Phys. 05 (2017) 065.

[23] M. Mezei, On entanglement spreading from holography,
J. High Energy Phys. 05 (2017) 064.

[24] Y. Gu, A. Lucas, and X.-L. Qi, Spread of entanglement in
a Sachdev-Ye-Kitaev chain, J. High Energ. Phys. 09 (2017)
120.

[25] C. Jonay, D. A. Huse, and A. Nahum, Coarse-grained dynamics
of operator and state entanglement, arXiv:1803.00089.

[26] M. Mezei, Membrane theory of entanglement dynamics from
holography, Phys. Rev. D 98, 106025 (2018).

174205-26

https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevLett.98.130502
https://doi.org/10.1103/PhysRevLett.98.130502
https://doi.org/10.1103/PhysRevLett.98.130502
https://doi.org/10.1103/PhysRevLett.98.130502
https://doi.org/10.1103/PhysRevA.78.032324
https://doi.org/10.1103/PhysRevA.78.032324
https://doi.org/10.1103/PhysRevA.78.032324
https://doi.org/10.1103/PhysRevA.78.032324
https://doi.org/10.1103/PhysRevLett.109.040502
https://doi.org/10.1103/PhysRevLett.109.040502
https://doi.org/10.1103/PhysRevLett.109.040502
https://doi.org/10.1103/PhysRevLett.109.040502
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1007/JHEP02(2016)004
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1007/JHEP09(2015)110
https://doi.org/10.1007/JHEP09(2015)110
https://doi.org/10.1007/JHEP09(2015)110
https://doi.org/10.1007/JHEP09(2015)110
https://doi.org/10.1007/JHEP07(2016)077
https://doi.org/10.1007/JHEP07(2016)077
https://doi.org/10.1007/JHEP07(2016)077
https://doi.org/10.1007/JHEP07(2016)077
https://doi.org/10.1103/PhysRevB.95.094302
https://doi.org/10.1103/PhysRevB.95.094302
https://doi.org/10.1103/PhysRevB.95.094302
https://doi.org/10.1103/PhysRevB.95.094302
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)064
https://doi.org/10.1007/JHEP05(2017)064
https://doi.org/10.1007/JHEP05(2017)064
https://doi.org/10.1007/JHEP05(2017)064
https://doi.org/10.1007/JHEP09(2017)120
https://doi.org/10.1007/JHEP09(2017)120
https://doi.org/10.1007/JHEP09(2017)120
https://doi.org/10.1007/JHEP09(2017)120
http://arxiv.org/abs/arXiv:1803.00089
https://doi.org/10.1103/PhysRevD.98.106025
https://doi.org/10.1103/PhysRevD.98.106025
https://doi.org/10.1103/PhysRevD.98.106025
https://doi.org/10.1103/PhysRevD.98.106025


EMERGENT STATISTICAL MECHANICS OF … PHYSICAL REVIEW B 99, 174205 (2019)

[27] E. H. Lieb and D. W. Robinson, The finite group velocity
of quantum spin systems, in Statistical Mechanics (Springer,
Berlin, 1972), p. 425.

[28] A. Kitaev, Hidden correlations in the Hawking radiation and
thermal noise, talk given at the Fundamental Physics Prize
Symposium, 2014 (unpublished).

[29] S. H. Shenker and D. Stanford, Black holes and the butterfly
effect, J. High Energy Phys. 03 (2014) 067.

[30] S. H. Shenker and D. Stanford, Multiple shocks, J. High Energy
Phys. 12 (2014) 046.

[31] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on
chaos, J. High Energy Phys. 08 (2016) 106.

[32] D. A. Roberts and D. Stanford, Two-Dimensional Conformal
Field Theory and the Butterfly Effect, Phys. Rev. Lett. 115,
131603 (2015).

[33] D. A. Roberts, D. Stanford, and L. Susskind, Localized shocks,
J. High Energy Phys. 03 (2015) 051.

[34] D. A. Roberts and B. Swingle, Lieb-Robinson and the Butterfly
Effect, Phys. Rev. Lett. 117, 091602 (2016).

[35] I. L. Aleiner, L. Faoro, and L. B. Ioffe, Microscopic model
of quantum butterfly effect: Out-of-time-order correlators and
traveling combustion waves, Ann. Phys. 375, 378 (2016).

[36] A. A. Patel and S. Sachdev, Quantum chaos on a critical Fermi
surface, Proc. Natl. Acad. Sci. USA 114, 1844 (2017).

[37] D. Chowdhury and B. Swingle, Onset of many-body chaos in
the O(N ) model, Phys. Rev. D 96, 065005 (2017).

[38] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap, Scrambling
and thermalization in a diffusive quantum many-body system,
New J. Phys. 19, 063001 (2017).

[39] J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng,
and J. Du, Measuring Out-of-Time-Order Correlators on a
Nuclear Magnetic Resonance Quantum Simulator, Phys. Rev.
X 7, 031011 (2017).

[40] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.
Bollinger, and A. M. Rey, Measuring Out-of-Time-Order Cor-
relations and Multiple Quantum Spectra in a Trapped-Ion Quan-
tum Magnet, Nat. Phys. 13, 781 (2017).

[41] T. Rakovszky, F. Pollmann, and C. W. von Keyserlingk, Diffu-
sive Hydrodynamics of Out-of-Time-Ordered Correlators with
Charge Conservation, Phys. Rev. X 8, 031058 (2018).

[42] V. Khemani, A. Vishwanath, and D. A. Huse, Operator Spread-
ing and the Emergence of Dissipation in Unitary Dynamics with
Conservation Laws, Phys. Rev. X 8, 031057 (2018).

[43] A. Nahum, J. Ruhman, and D. A. Huse, Dynamics of entangle-
ment and transport in 1d systems with quenched randomness,
Phys. Rev. B 98, 035118 (2018).

[44] A. Chan, A. De Luca, and J. T. Chalker, Solution of a Minimal
Model for Many-Body Quantum Chaos, Phys. Rev. X 8, 041019
(2018).

[45] P. Kos, M. Ljubotina, and T. Prosen, Many-Body Quantum
Chaos: The First Analytic Connection to Random Matrix The-
ory, Phys. Rev. X 8, 021062 (2018).

[46] A. Chan, A. De Luca, and J. T. Chalker, Spectral Statistics
in Spatially Extended Chaotic Quantum Many-Body Systems,
Phys. Rev. Lett. 121, 060601 (2018).

[47] P. Hayden and J. Preskill, Black holes as mirrors: Quantum
information in random subsystems, J. High Energy Phys. 09
(2007) 120.

[48] Y. Sekino and L. Susskind, Fast scramblers, J. High Energy
Phys. 10 (2008) 065.

[49] A. W. Harrow and R. A. Low, Random quantum circuits are
approximate 2-designs, Commun. Math. Phys. 291, 257 (2009).

[50] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact and
approximate unitary 2-designs and their application to fidelity
estimation, Phys. Rev. A 80, 012304 (2009).

[51] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P.
Hayden, Towards the fast scrambling conjecture, J. High
Energy Phys. 04 (2013) 022.

[52] S. H. Shenker and D. Stanford, Stringy effects in scrambling,
J. High Energy Phys. 05 (2015) 132.

[53] B. Swingle, Entanglement renormalization and holography,
Phys. Rev. D 86, 065007 (2012).

[54] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Holo-
graphic quantum error-correcting codes: Toy models for the
bulk/boundary correspondence, J. High Energy Phys. 06 (2015)
149.

[55] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, and
Z. Yang, Holographic duality from random tensor networks,
J. High Energy Phys. 11 (2016) 009.

[56] P. Zanardi, C. Zalka, and L. Faoro, Entangling power of quan-
tum evolutions, Phys. Rev. A 62, 030301(R) (2000).

[57] T. Zhou and D. J. Luitz, Operator entanglement entropy of the
time evolution operator in chaotic systems, Phys. Rev. B 95,
094206 (2017).

[58] T. Prosen and I. Pižorn, Operator space entanglement entropy
in a transverse Ising chain, Phys. Rev. A 76, 032316 (2007).

[59] J. Dubail, Entanglement scaling of operators: A conformal field
theory approach, with a glimpse of simulability of long-time
dynamics in 1+1d, J. Phys. A: Math. Theor. 50, 234001 (2017).

[60] X.-L. Qi and Z. Yang, Space-time random tensor networks and
holographic duality, arXiv:1801.05289.

[61] M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic Scaling of
Growing Interfaces, Phys. Rev. Lett. 56, 889 (1986).

[62] D. A. Huse, C. L. Henley, and D. S. Fisher, Huse, Henley, and
Fisher Respond, Phys. Rev. Lett. 55, 2924 (1985).

[63] D. A. Huse and C. L. Henley, Pinning and Roughening of
Domain Walls in Ising Systems Due to Random Impurities,
Phys. Rev. Lett. 54, 2708 (1985).

[64] M. Kardar, Roughening by Impurities at Finite Temperatures,
Phys. Rev. Lett. 55, 2923 (1985).

[65] M. Kardar, Replica Bethe ansatz studies of two-dimensional
interfaces with quenched random impurities, Nucl. Phys. B 290,
582 (1987).

[66] P. Calabrese, P. Le Doussal, and A. Rosso, Free-energy distri-
bution of the directed polymer at high temperature, Europhys.
Lett. 90, 20002 (2010).

[67] V. Dotsenko, Bethe ansatz derivation of the Tracy-Widom
distribution for one-dimensional directed polymers, Europhys.
Lett. 90, 20003 (2010).

[68] T. Sasamoto and H. Spohn, One-Dimensional Kardar-Parisi-
Zhang Equation: An Exact Solution and its Universality, Phys.
Rev. Lett. 104, 230602 (2010).

[69] T. Sasamoto and H. Spohn, Exact height distributions for the
KPZ equation with narrow wedge initial condition, Nucl. Phys.
B 834, 523 (2010).

[70] T. Sasamoto and H. Spohn, The crossover regime for the weakly
asymmetric simple exclusion process, J. Stat. Phys. 140, 209
(2010).

[71] G. Amir, I. Corwin, and J. Quastel, Probability distribution
of the free energy of the continuum directed random polymer

174205-27

https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1007/JHEP03(2015)051
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1073/pnas.1618185114
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1103/PhysRevD.96.065005
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevB.98.035118
https://doi.org/10.1103/PhysRevB.98.035118
https://doi.org/10.1103/PhysRevB.98.035118
https://doi.org/10.1103/PhysRevB.98.035118
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.021062
https://doi.org/10.1103/PhysRevX.8.021062
https://doi.org/10.1103/PhysRevX.8.021062
https://doi.org/10.1103/PhysRevX.8.021062
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1007/s00220-009-0873-6
https://doi.org/10.1007/s00220-009-0873-6
https://doi.org/10.1007/s00220-009-0873-6
https://doi.org/10.1007/s00220-009-0873-6
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevA.62.030301
https://doi.org/10.1103/PhysRevB.95.094206
https://doi.org/10.1103/PhysRevB.95.094206
https://doi.org/10.1103/PhysRevB.95.094206
https://doi.org/10.1103/PhysRevB.95.094206
https://doi.org/10.1103/PhysRevA.76.032316
https://doi.org/10.1103/PhysRevA.76.032316
https://doi.org/10.1103/PhysRevA.76.032316
https://doi.org/10.1103/PhysRevA.76.032316
https://doi.org/10.1088/1751-8121/aa6f38
https://doi.org/10.1088/1751-8121/aa6f38
https://doi.org/10.1088/1751-8121/aa6f38
https://doi.org/10.1088/1751-8121/aa6f38
http://arxiv.org/abs/arXiv:1801.05289
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.55.2924
https://doi.org/10.1103/PhysRevLett.55.2924
https://doi.org/10.1103/PhysRevLett.55.2924
https://doi.org/10.1103/PhysRevLett.55.2924
https://doi.org/10.1103/PhysRevLett.54.2708
https://doi.org/10.1103/PhysRevLett.54.2708
https://doi.org/10.1103/PhysRevLett.54.2708
https://doi.org/10.1103/PhysRevLett.54.2708
https://doi.org/10.1103/PhysRevLett.55.2923
https://doi.org/10.1103/PhysRevLett.55.2923
https://doi.org/10.1103/PhysRevLett.55.2923
https://doi.org/10.1103/PhysRevLett.55.2923
https://doi.org/10.1016/0550-3213(87)90203-3
https://doi.org/10.1016/0550-3213(87)90203-3
https://doi.org/10.1016/0550-3213(87)90203-3
https://doi.org/10.1016/0550-3213(87)90203-3
https://doi.org/10.1209/0295-5075/90/20002
https://doi.org/10.1209/0295-5075/90/20002
https://doi.org/10.1209/0295-5075/90/20002
https://doi.org/10.1209/0295-5075/90/20002
https://doi.org/10.1209/0295-5075/90/20003
https://doi.org/10.1209/0295-5075/90/20003
https://doi.org/10.1209/0295-5075/90/20003
https://doi.org/10.1209/0295-5075/90/20003
https://doi.org/10.1103/PhysRevLett.104.230602
https://doi.org/10.1103/PhysRevLett.104.230602
https://doi.org/10.1103/PhysRevLett.104.230602
https://doi.org/10.1103/PhysRevLett.104.230602
https://doi.org/10.1016/j.nuclphysb.2010.03.026
https://doi.org/10.1016/j.nuclphysb.2010.03.026
https://doi.org/10.1016/j.nuclphysb.2010.03.026
https://doi.org/10.1016/j.nuclphysb.2010.03.026
https://doi.org/10.1007/s10955-010-9990-z
https://doi.org/10.1007/s10955-010-9990-z
https://doi.org/10.1007/s10955-010-9990-z
https://doi.org/10.1007/s10955-010-9990-z


TIANCI ZHOU AND ADAM NAHUM PHYSICAL REVIEW B 99, 174205 (2019)

in 1 + 1 dimensions, Commun. Pure Appl. Math. 64, 466
(2011).

[72] P. Calabrese and P. Le Doussal, Exact Solution for the Kardar-
Parisi-Zhang Equation with Flat Initial Conditions, Phys. Rev.
Lett. 106, 250603 (2011).

[73] S. Prolhac and H. Spohn, Height distribution of the Kardar-
Parisi-Zhang equation with sharp-wedge initial condition: Nu-
merical evaluations, Phys. Rev. E 84, 011119 (2011).

[74] P. Le Doussal and P. Calabrese, The KPZ equation with flat
initial condition and the directed polymer with one free end,
J. Stat. Mech (2012) P06001.

[75] T. Imamura and T. Sasamoto, Exact Solution for the Stationary
Kardar-Parisi-Zhang Equation, Phys. Rev. Lett. 108, 190603
(2012).

[76] T. Imamura and T. Sasamoto, Stationary correlations for the 1d
KPZ equation, J. Stat. Phys. 150, 908 (2013).

[77] T. Kriecherbauer and J. Krug, A pedestrian’s view on interact-
ing particle systems, KPZ universality, and random matrices,
J. Phys. A: Math. Theor. 43, 403001 (2010).

[78] I. Corwin, The Kardar-Parisi-Zhang equation and universality
class, Random Matrices: Theory Appl. 01, 1130001 (2012).

[79] T. Halpin-Healy and K. A. Takeuchi, A KPZ cocktail—shaken,
not stirred, J. Stat. Phys. 160, 794 (2015).

[80] M. Kardar, Directed paths in random media, arXiv:cond-
mat/9411022.

[81] P. Zanardi, Entanglement of quantum evolutions, Phys. Rev. A
63, 040304(R) (2001).

[82] J. N. Bandyopadhyay and A. Lakshminarayan, Entangling
power of quantum chaotic evolutions via operator entangle-
ment, arXiv:quant-ph/0504052.

[83] I. Pižorn and T. Prosen, Operator space entanglement entropy
in XY spin chains, Phys. Rev. B 79, 184416 (2009).

[84] T. Prosen, Chaos and complexity of quantum motion, J. Phys.
A 40, 7881 (2007).

[85] E. Medina, M. Kardar, Y. Shapir, and X. R. Wang, Interference
of Directed Paths in Disordered Systems, Phys. Rev. Lett. 62,
941 (1989).

[86] D. N. Page, Average Entropy of a Subsystem, Phys. Rev. Lett.
71, 1291 (1993).

[87] C. Nadal, S. N. Majumdar, and M. Vergassola, Statistical dis-
tribution of quantum entanglement for a random bipartite state,
J. Stat. Phys. 142, 403 (2011).

[88] D. Weingarten, Asymptotic behavior of group integrals in the
limit of infinite rank, J. Math. Phys. 19, 999 (1978).
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