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We study the nonequilibrium dynamics of random spin chains that remain integrable (i.e., solvable via
Bethe ansatz): because of correlations in the disorder, these systems escape localization and feature ballistically
spreading quasiparticles. We derive a generalized hydrodynamic theory for dynamics in such random integrable
systems, including diffusive corrections due to disorder, and use it to study nonequilibrium energy and spin
transport. We show that diffusive corrections to the ballistic propagation of quasiparticles can arise even in
noninteracting settings, in sharp contrast to clean integrable systems. This implies that operator fronts broaden
diffusively in random integrable systems. By tuning parameters in the disorder distribution, one can drive this
model through an unusual phase transition, between a phase where all wave functions are delocalized and a
phase in which low-energy wave functions are quasilocalized (in a sense we specify). Both phases have ballistic
transport; however, in the quasilocalized phase, local autocorrelation functions decay with an anomalous power
law, and the density of states diverges at low energy.
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I. INTRODUCTION

The study of the dynamics of isolated, many-body quantum
systems far from thermal equilibrium has attracted a lot of
attention recently, fueled by recent experimental develop-
ments on ultracold atoms [1–3], trapped ions [4–6], nitrogen-
vacancy centers [7,8], and superconducting qubits [9] plat-
forms. Addressing questions about nonequilibrium transport,
thermalization, and far-from-equilibrium dynamics poses no-
table challenges for theory as they are not susceptible to the
general principles and methods that govern the physics of
low-energy, equilibrium systems.

With the notable exception of many-body localized sys-
tems [10–12], generic many-body systems are expected to be
“chaotic” and to thermalize under their own dynamics [13].
This process can be understood as the scrambling of quantum
information as it becomes nonlocal and inaccessible to phys-
ical, local measurements. After a local equilibration regime,
thermalizing systems can be well described by classical hy-
drodynamic equations associated with conserved quantities—
typically, energy, particle number, and momentum. These
hydrodynamic equations describe the evolution of the system
from local to global equilibrium. Another class of systems that
escapes thermalization in the traditional sense is quantum in-
tegrable systems, including experimentally relevant examples
such as the Heisenberg antiferromagnet and the Lieb-Liniger
Bose gas in one dimension [2,3,14]. Such systems have stable
quasiparticle excitations even at high temperature and they
possess an extensive number of conserved quantities which
strongly constrain their dynamics and prevent them from
thermalizing like generic chaotic systems [15–25]. However,
contrary to many-body localized systems, integrable systems
do thermalize in a generalized sense, as they eventually reach

a maximum entropy steady state described by a generalized
Gibbs ensemble (GGE) [3,26–28]. Such steady states can
exhibit nonzero currents and are commonly referred to as
nonequilibrium steady states (NESS) in the literature [11,29],
even though they are natural equilibrium states for integrable
systems.

A major step in understanding the nonequilibrium dy-
namics of quantum integrable systems was the formula-
tion of what is now known as “generalized hydrodynamics”
(GHD) [30,31], which are Euler hydrodynamics equations
(zeroth-order hydrodynamics) obtained in the large space-
time limit where the system is locally in equilibrium. While
the prospect of solving infinitely many hydrodynamic equa-
tions (one for each conserved quantity in the system) orig-
inally appeared daunting, GHD can be conveniently formu-
lated in the basis of quasiparticle excitations: in that language,
they can be naturally interpreted as describing a semiclassical
gas of solitons (quasiparticles) [32–35]. The key ingredient
of GHD is the effective group velocity veff of the quasi-
particles [30,31,36], which depends on the density of all
the other quasiparticles in the presence of interactions: at
the semiclassical level, quasiparticle wave packets pick up a
phase shift when they collide, leading to a Wigner time de-
lay. This approach was successfully applied to two-reservoir
setups [30,31] and, more generally, to locally equilibrated
inhomogeneous initial states [37–39], and has helped address-
ing a number of key questions in the field concerning Drude
weights [34,40–43], external potentials and traps [44–46],
correlation functions [47], entanglement dynamics [48], or
even large-deviation functions [49].

The GHD framework was recently generalized to in-
clude diffusive effects in interacting integrable models
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[50–53]—corresponding to “first-order” or Navier-Stokes hy-
drodynamics, with important consequences for the nature
of spin transport in XXZ spin chains [52,53]. In particular,
Ref. [50] provided a general exact expression of the “diffusion
matrix” of the quasiparticles using a form factor expansion
of the Kubo formula. Intuitively, diffusive corrections can
be seen to arise as follows [51]: the effective velocity of a
given quasiparticle depends on the density of quasiparticles in
a mean-field fashion that ignores fluctuations; reintroducing
thermal fluctuations naturally leads to a diffusive broadening
of quasiparticle trajectories in a generic GGE state. Two key
ingredients are needed for such diffusive corrections to be
present: density-dependent velocities and thermal fluctuations
(nonzero entropy states). This immediately implies that in
noninteracting integrable models where the group velocity
is obtained from band theory and is independent of density,
there should be no diffusion [54]. For noninteracting systems,
it is thus natural to expect that the lowest-order correction
to ballistic GHD comes from higher-order derivative terms,
which lead to t1/3 spreading governed by the Airy kernel (see
Ref. [55] and references therein). Clearly, such higher-order
corrections are subleading in the presence of diffusive t1/2

spreading.
In this paper, we study a class of integrable random spin

chains which support diffusive corrections even in the absence
of interactions. These spin chains are a special limit of a
more general class of random interacting spin chains that
remain integrable. In one-dimensional free-particle problems,
disorder generically leads to Anderson localization. Though
Anderson localized systems are “integrable” in a sense, here
we will use the term “integrability” exclusively to refer to
Bethe-ansatz solvable systems with stable ballistically propa-
gating quasiparticles. There are examples of integrable models
with impurities [56–58] where disorder is correlated in such a
way that integrability in this sense is preserved. Such systems
were recently shown to exhibit ballistic transport even at
strong disorder in Ref. [58]. It is natural to expect such
random systems to exhibit diffusive corrections to ballistic
transport even without interactions, as quasiparticles scatter
off random static impurities and thus undergo biased random
walks. These models illustrate that whereas noninteracting
systems are often said to be always integrable, integrability for
a random system leads to correlated disorder that can allow
one-dimensional random systems to escape Anderson local-
ization. Correlated disorder can then lead to ballistic transport
and diffusive corrections, even in the absence of interactions.
Although most states in these models are only weakly affected
by the disorder, quasiparticle states near energy |E | = 0 have
properties that are sensitive to the tails of the disorder distribu-
tion. We find disorder distributions for which these quasipar-
ticles have vanishing velocities, so that the behavior of local
autocorrelation functions is anomalous—neither ballistic nor
diffusive. We find that the onset of anomalous behavior in
the disorder-averaged autocorrelation functions is associated
with the onset of a divergence in the density of states at zero
energy, as well as a form of quasilocalization of the low-
energy wave functions that we discuss below. We compute
this anomalous relaxation exponent using GHD. There are
strong local correlations between the density of states and the
quasiparticle velocity, as both are dominated by rare regions;

our work shows how GHD can be adapted to incorporate these
rare region effects.

In this work, we propose a hydrodynamic theory to de-
scribe such random integrable spin chains, including diffusive
corrections due to disorder. The plan of this paper is as fol-
lows: in Sec. II, we recall the definition of a family of random
integrable spin chains recently studied in Ref. [58] and we
briefly review their thermodynamics. We then formulate a
coarse-grained GHD theory for the dynamics of such systems
in Sec. III, with an emphasis on diffusive corrections due to
disorder in noninteracting settings (for which disorder is the
only possible source of diffusive corrections). This framework
is applied to study nonequilibrium spin and energy transport,
and the predictions are compared to numerical results in
Sec. IV. Transport is dominated by fast quasiparticles with
energies well away from |E | = 0. We turn, in Sec. V, to
a more careful discussion of states near |E | = 0. For these
states, we find a quasilocalization transition; in the quasilo-
calized regime, low-energy wave functions consist of a few
local peaks, quasiparticle velocities vanish, and the density
of states diverges in the |E | → 0 limit. Consequences for
operator spreading and scrambling are briefly discussed in
Sec. VI, and a discussion and outlooks for future works are
gathered in Sec. VII.

II. RANDOM INTEGRABLE SPIN CHAINS

In this section, we introduce a family of random integrable
spin chains, closely following Ref. [58], and we briefly review
their thermodynamic Bethe-ansatz solution.

A. Hamiltonian

Let us consider a random XXZ spin- 1
2 chain H =∑

i Ji[�σi.�σi+1]�i
, where [�σ j .�σk]

�i
is a shorthand notation for

σ x
j σ

x
k + σ

y
j σ

y
k + �i(σ z

j σ
z
k − 1). In the clean (homogeneous)

case, this model is integrable, but the introduction of disorder
immediately breaks integrability and leads to a model that is
either chaotic or many-body localized [59,60]. However, it is
possible to preserve integrability [56–58] by introducing next-
to-nearest-neighbor interactions and by carefully choosing the
inhomogeneous couplings,

H =
L/2∑
j=1

J (1)
2 j

(
[�σ2 j−1.�σ2 j]�2 j + [�σ2 j .�σ2 j+1]�2 j

)
+ K2 j

{
[�σ2 j .(�σ2 j−1 × �σ2 j+1)]�−1

2 j
+ �−1

2 j

}
+ J (2)

2 j (�σ2 j−1.�σ2 j+1 − 1). (1)

The first line of the Hamiltonian corresponds to an XXZ
interaction, while the last line is an isotropic Heisenberg
interaction. The middle line is more unusual, as it involves
three spins. The parameters in the Hamiltonian are given by

J (1)
2 j = sin2η coshξ2 j

sin2η + sinh2ξ2 j
, J (2)

2 j = cos η sinh2ξ2 j

sin2η + sinh2ξ2 j
,

K2 j = sin η cos η sinhξ2 j

sin2η + sinh2ξ2 j
, �2 j = cos η

cosh ξ2 j
, (2)
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with ξ2 j a random coupling, while η is an overall global
parameter that parametrizes the interaction strength. For ξ2 j =
0, one recovers the usual XXZ spin chain. A remarkable
feature of this model is that it remains integrable for any
choice of the inhomogeneous couplings ξ2 j . Away from the
zero-energy limit, the properties of this model are insensitive
to details of the disorder distribution. Therefore, except as
specified below (i.e., in Sec. V and subsequently), we will
take the ξ2 j couplings to be random variables drawn from the
Gaussian distribution,

P(ξ ) = 1√
2πW 2

e−ξ 2/2W 2
. (3)

Later, we will also consider the exponential distribution,

P(ξ ) = φ

2
e−φ|ξ |, (4)

for which a sharp quasilocalization transition exists.
We will be especially interested in the special point η =

π/2. For this value of η, the XXX part of the Hamiltonian
is set to zero, leaving behind a random XX model with three
spin interactions,

H =
L/2∑
j=1

{
1

cosh ξ2 j

∑
α=x,y

[
σα

2 j−1σ
α
2 j + σα

2 jσ
α
2 j+1

]

+ tanh(ξ2 j )
[
σ

y
2 j−1σ

z
2 jσ

x
2 j+1 − σ x

2 j−1σ
z
2 jσ

y
2 j+1

]}
. (5)

The above Hamiltonian can be diagonalized via Jordan-
Wigner transformation, reducing it to a free-fermion model:

H = −
L∑

j=1

2

cosh(ξ j )
(c†

j c j+1 + H.c.)

+
L/2∑
j=1

2itanh(ξ2 j )(c
†
2 j−1c2 j+1 − H.c.), (6)

where the ξ j’s are random parameters used in Eq. (1), ex-
tended to odd sites via relation ξ2 j−1 = ξ2 j . We use periodic
boundary conditions for the fermions for an even number of
sites. While noninteracting and disordered, this model was
shown to escape Anderson localization, in Ref. [58], and to
exhibit ballistic transport of conserved quantities. It is then
natural to ask if transport properties of this model can be
captured using generalized hydrodynamic equations, properly
adapted to deal with the quenched disorder. If so, it is natural
to expect disorder to lead to new hydrodynamic effects, such
as diffusion. In the following, we will mostly focus on the
special point η = π/2 [Eqs. (6) and (5)], though we expect
our approach to generalize to any value of η. This will be
convenient as the free-fermion representation of this model
allows one to easily simulate numerically the nonequilibrium
dynamics of this system and, more importantly, the absence
of interactions will allow us to isolate the effect of disorder on
diffusion.

B. Thermodynamics

The model introduced above admits an exact solution by
Bethe ansatz. In the following, we very briefly review the

thermodynamic Bethe-ansatz (TBA) approach to integrable
systems, with the main goal of introducing some notation and
language that will be used in the remainder of this paper [61].

The solutions of the Bethe equations are expressed in
terms of quasimomenta or rapidities, and as one takes the
thermodynamic limit, one introduces a density of allowed
quasimomenta ρT (λ), corresponding to a total density of
states. In general, we will also introduce an additional discrete
quasiparticle label j; for XXZ-like spin chains, j is known as
the string index. Each allowed quasimomentum state can be
occupied or not in a given macrostate, so one defines the hole
density ρh

j and the density of occupied states (quasiparticle
density) ρ j , and we have ρT (λ) = ρ j (λ) + ρh

j (λ) by defini-
tion. The particle density together with hole density fully
characterize the state of the system. The expectation value
of a conserved quantity in such a state can be written as
Q = ∫

ρ j (λ)q j (λ)dλ, where q(λ) is the single-particle charge
eigenvalue of the string of type j with quasimomentum λ.

Thermodynamic equilibrium properties can be computed
by writing the entropy and energy in terms of ρ and ρh,
and then maximizing the free energy as usual for a given set
of Lagrange multipliers corresponding to a GGE. This leads
to the so-called Yang-Yang equation [62]. The Yang-Yang
equation together with the Bethe equation are enough to fully
determine the quasiparticle densities ρ j and ρh

j , corresponding
to a given GGE state. In the following, we will promote these
variables locally by assuming local (generalized) equilibrium.

III. GENERALIZED HYDRODYNAMICS APPROACH

We now formulate a hydrodynamic description of such
random integrable systems. The evolution of chaotic quantum
systems from local to global equilibrium is described by the
framework of hydrodynamics. In that regime, one imagines
chopping off the system into hydrodynamic cells that are big
enough to assume equilibrium within each cell, but very small
compared to the total system size. This separation of scales
allows one to assume local equilibrium, where Lagrange mul-
tipliers such as temperature or chemical potential are allowed
to depend on position and time.

There is one hydrodynamic equation per conserved quan-
tity in the system—any other information about the system is
“scrambled” by the quantum dynamics into nonlocal entan-
glement that is not measurable by local observables. For each
conserved quantity Qn = ∑

x qn(x), we can write a continuity
equation,

∂t qn(x, t ) + ∂x jn(x, t ) = 0, (7)

where we restricted ourselves to one spatial dimension.
Assuming local equilibrium then leads to a relation jn =
Fn[{qm}] between the currents jn and the conserved charges qm

at a given position x: this relation is an equilibrium property
and gives rise to Euler hydrodynamic equations that govern
ballistic transport properties. More generally, one can perform
a gradient expansion of the (expectation value of the) currents
in terms of the charges, where contributions to the currents
coming from gradient terms Dnm∂xqm correspond to diffusive
contributions to hydrodynamics (see, e.g., [63]). The diffusion
constants Dnm are not entirely given by equilibrium proper-
ties and have to be determined by other means such as the
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Kubo formula or by using kinetic theory calculations. Once
the transport coefficients characterizing the relation between
currents and charges are known, hydrodynamics provides
a simple set of classical, partial-differential equations that
govern the nonequilibrium dynamics of the system.

A. Generalized hydrodynamics

The hydrodynamic framework summarized above is com-
pletely general and it was successfully applied to integrable
systems [30,31]: the resulting framework is now known
as generalized hydrodynamics (GHD), as it describes sys-
tems in local GGE equilibrium. There, local equilibrium is
characterized by the densities ρ j,λ(x, t ), ρh

j,λ(x, t ), with the
charges qn(x) = ∑

j

∫
qn, j,λρ j,λ(x)dλ and currents jn(x) =∑

j

∫
veff

j,λ(x)qn, j,λρ j,λ(x)dλ [ignoring gradient (diffusive) cor-
rections]. veff

j is interpreted as a group velocity which is a
functional of the quasiparticle density in general. The con-
tinuity equations for the conserved charges then imply a
continuity equation for the quasiparticle density [30,31],

∂tρ j,λ + ∂x
(
veff

j,λρ j,λ
) = 0. (8)

For a noninteracting system, veff
j is independent of ρ j . In that

case, in clean systems, diffusive corrections to (8) are believed
to be absent.

We now turn to our specific example (5), which is nonin-
teracting in the fermionic language. Recall that in the non-
interacting limit, η = π/2 in Eq. (2). In this limit, there are
two strings j = 1, 2, and their group velocity is simply given
by [30,31,36]

veff
j,λ = e′

j (λ)

p′
j (λ)

= q j

e′
j (λ)

2πρT
j,λ

, (9)

where e j is the quasiparticle energy given by

e j (λ) = 4JAj (λ), (10)

p j is the quasiparticle momentum, and the total density of
states ρT

j,λ = ρ j,λ + ρh
j,λ is given [58,64] by the Bethe equation

(which is particularly simple since the model is noninteract-
ing),

ρT
j,λ = q j

1

N

[
N/2∑
k=1

Aj

(
λ + 4

π
ξ2k

)
+ N

2
Aj (λ)

]
, (11)

for a system of size N , with the function Aj (λ) defined as

Aj (λ) = π

4

q j

cosh(πλ/2)
. (12)

In these equations, q1 = 1, q2 = −1. In the interacting case,
all of these quantities would be “dressed” and would become
a functional of the quasiparticle densities ρ j .

As expected, since the model is noninteracting, the group
velocity does not depend on the density ρ of the other quasi-
particles. However, it does depend on the inhomogeneous
variables ξi. It is thus clear that some kind of averaging over
these random variables needs to be done in order to formulate
a hydrodynamic theory of this random quantum spin chain.

B. Averaging and coarse graining

In order to average the random variables ξi, we go back to
the physical picture of hydrodynamics and divide the system
into mesoscopic hydrodynamic cells large enough to be in the
thermodynamic limit. Let the system length be L and let it be
divided in N � 1 subcells of size �x = L/N � a, with a the
lattice spacing. For a given disorder realization, the velocity
in each hydrodynamic cell is given by (9). These velocities
depend on our choice of subcell division, but as we will see
this dependence drops out of the final result.

Given these velocities, we can easily construct the trajec-
tory of a given quasiparticle from its initial position x = 0.
Let us find the time required for a quasiparticle of type j with
rapidity λ, initially at x = 0, to reach x = M�x. It is given
by [65]

tx = �x
M∑

i=1

1

vi
, (13)

with vi the velocity of the ith cell. We then have, using (9),

tx = �x
2π

e′

M∑
i=1

ρT
i . (14)

Since ρT is a sum of random variables, we can use the
central limit theorem to deduce that both ρT and tx are
Gaussian distributed (provided the hydrodynamic cells are
large enough, and M � 1). This also shows that the result is
largely independent of the distribution chosen for the random
parameter ξ , as long as the central limit theorem is applicable,
as is the case for the distributions considered in this paper.

Thus we have following result: the time taken for a quasi-
particle to move over a distance x is Gaussian distributed, with
the average time being given by

tx = x
2πρT

e′ , (15)

where ρT is the disorder average of ρT . This quantity is
clearly independent from our choice of hydrodynamic cells—
it only depends on x, not M, or �x. The standard deviation
reads

σ [tx] =
√

�x

2Nsub

√
x

2πσ
[
A
(
λ + 2

η
ξ
)]

e′ ,

where Nsub is the number of lattice sites inside a cell and
σ [A(λ + 2

η
ξ )] is the standard deviation of the function defined

in Eq. (12). Note that
√

�x
2Nsub

= √ a
2 with a the lattice spacing,

implying that the standard deviation of tx is also independent
of our choice of hydrodynamic cells. Thus we conclude that
the distribution of tx does not depend on the partition of
hydrodynamic cells and is well defined.

We define the average velocity v� via the relation v�tx = x.
This yields

v� = e′

2πρT
= (veff )−1

−1
. (16)

Note that this is not the average of veff over disorder.
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The probability distribution of the time it took for the
quasiparticle to move over a distance x thus reads

Px(t ) = 1√
2πx

e−(t−x/v� )2/2x, (17)

(λ) ≡
{

2πσ
[
A
(
λ + 2

η
ξ
)]

e′

}2
a

2
. (18)

This process is called temporal diffusion [66,67], as it looks
like an usual diffusion process where the roles of space and
time are exchanged. However, in the hydrodynamic limit, the
spreading of the distribution is confined to region (x/v� −
t )2 = O(x) or x = v�t[1 + O(

√
v�

t )]. Thus, in the limit
v�

t � 1, we can replace x by v�t and get

P(x, t ) ≈ 1√
2π(v�)3t

e−(x−v�t )2/2(v� )3t , (19)

which corresponds to a biased random walk. A similar tem-
poral diffusion equation recently appeared in the context of
energy transport in a random conformal field theory [67].
In all the numerical results below, we have checked that
the difference between the temporal and ordinary diffusion
descriptions is negligible in the hydrodynamic limit.

For generic initial condition of the quasiparticles, ρ0(x, t =
0), the evolution should thus read

ρ(x, t ) =
∫

1√
4πDt

e−(x−x0−v�t )2/4Dtρ0(x0)dx0, (20)

with D = (v�)3/2 since the quasiparticles are noninteract-
ing. Reintroducing the string and rapidity labels, we find that
the quasiparticle density satisfies the following hydrodynamic
equation:

∂tρ j,λ(x, t ) + v�
j,λ∂xρ j,λ(x, t ) = Dj,λ∂

2
x ρ j,λ(x, t ), (21)

where Dj,λ ≡  j,λ(v�
j,λ )3

2 is a diffusion constant due to the dis-
order. We emphasize that the transport coefficients v� and D
in this equation do not depend on the details of our coarse-
graining procedure—in particular, they do not depend on the
size of the hydrodynamic cells �x as long as L � �x � a.
We emphasize that contrary to diffusive corrections due to
thermal fluctuations, the diffusive term in the above equation
is diagonal in the quasiparticle basis and occurs even in the
noninteracting case; in the interacting case, the off-diagonal
terms are nonzero due to scattering between different quasi-
particle species. For interacting random chains, we expect the
argument above to carry over for the average velocity (16),
but the diffusion matrix should be more complicated as it will
have contributions from interactions and disorder. We leave a
detailed analysis of the interacting case for future work.

IV. NONEQUILIBRIUM TRANSPORT

We now use the hydrodynamic equation derived above to
study nonequilibrium energy and spin transport in the random
spin chain (5). This will also allow us to benchmark and test
the validity of the hydrodynamic approach and investigate
the importance of the diffusive terms due to disorder. The

energy and spin densities can be expressed in terms of the
quasiparticle densities as

ε(x, t ) =
∑

j

∫
ρ j,λ(x, t )e j (λ) dλ, (22)

sz(x, t ) = 1

2
−

∑
j

n j

∫
ρ j,λ(x, t ) dλ, (23)

where nj is given, in our case, by n1 = n2 = 1.

A. Energy transport

We first discuss energy transport. We consider a lattice of
L = 200 sites prepared in a thermal state with β = 1, but with
an interval of 32 sites in the middle of the system prepared
in an infinite-temperature state (β = 0). The time evolution
of the energy density profile can then be straightforwardly
extracted from the free-fermion representation (6). We note
that due to next-to-nearest interactions, we have to define
energy density on two sites instead of one. We also empha-
size that since the initial condition has a mirror symmetry
about the middle of the lattice, one expects the evolution to
be symmetric as well. However, this is only guaranteed if
the sample of random variables ξi is symmetric about ξ =
0—this is due to the presence of imaginary interaction in
Hamiltonian (6) which breaks this mirror symmetry. To retain
the mirror symmetry exactly in the numerical data, we have
ensured that the samples taken for the random variables are
symmetric.

We then compare the numerical results from the solution of
the hydrodynamic equation (21), combined with formula (22).
Figure 1 show the hydrodynamic prediction for the energy
density (solid line) compared to lattice data, for different dis-
order strengths W = 0 (clean case), W = 0.6, and W = 2.0.
We also show the ballistic hydrodynamic prediction ignoring
diffusive corrections (dashed line)—formally setting D = 0
in the hydrodynamic equation. The agreement between the
numerics and hydrodynamics is excellent, and we find that
diffusive corrections are needed to accurately describe the
numerical data, especially at stronger disorder.

B. Spin transport

We also consider spin transport starting from an initial
domain-wall state |ψ0〉 = |↑↑ . . . ↑↓ . . . ↓↓〉 (see Ref. [43]
and references therein). This initial state has been considered
for clean XXZ spin chains in several recent works: it leads
to a steady state with zero entropy, where diffusive terms due
to interactions and thermal fluctuations are expected to vanish.
The hydrodynamic predictions for the local magnetization and
numerical data are compared in Fig. 2. Here, also, Eq. (21)
provides an excellent description of the numerics and our data
clearly show the presence of diffusion in this noninteracting
setting where no thermal fluctuations are present [68]. We
expect this initial state to also be useful to extend our approach
to interacting random spin chains, as it would allow one
to isolate diffusive terms due to disorder (since the diffu-
sion matrix coming from interactions vanishes). Comparing
the predictions from hydrodynamics to numerical results in
the interacting case would, however, be very numerically
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W = 0.6

ε(
x
,t

)

t = 70
t = 50
t = 40
t = 30

t = 20

t = 10
t = 0

x

W = 0

W = 2.0

ε(
x
,t

)
ε(

x
,t

)

FIG. 1. Nonequilibrium energy transport. The different panels
show the evolution of the energy density as a function of time for
different disorder strengths, for an initial state at temperature T = 1
with a small region of the system locally at infinite temperature. We
compare exact numerical results and the hydrodynamic prediction
from the solution of Eq. (21), with and without the diffusive term. As
disorder is increased, the diffusive effects become more pronounced
and diffusive corrections are needed to reproduce the numerical data.
The numerical data were averaged over ∼3 × 103 and ∼1.6 × 104

disorder realizations for W = 0.6 and W = 2.0, respectively.

demanding because of the average over disorder, and is left
for future work.

V. PROPERTIES OF LOW-ENERGY QUASIPARTICLES

So far, our discussion has focused on macroscopic energy
and spin transport, which is dominated by fast quasiparti-
cles. In addition to these typical, fast quasiparticles, however,
these models also have slow quasiparticles at energy |E | ≈ 0.
These are important, e.g., for low-temperature transport, as
well as for the behavior of local autocorrelation functions

Clean case

x

s z
(x

, t
)

t = 0

t = 10

t = 20

t = 30

t = 40

t = 50

t = 70

FIG. 2. Spin domain-wall initial state. Comparison of the hydro-
dynamic prediction (21) with numerical results for a spin domain-
wall initial state. The disorder strength is W = 0.6 and numerical
results are averaged over ∼2 × 103 disorder realizations. The hy-
drodynamic equation including diffusive terms (solid line) describes
the numerical results much more accurately than the purely ballistic
prediction (dashed line). This establishes the presence of diffusive
terms in the hydrodynamic description of this noninteracting system,
even for an initial state that does not incorporate thermal fluctuations.

at late times. We discuss the nature of these quasiparticles
here. We first explore the properties of wave functions, both
numerically and analytically, and find that these undergo a
quasilocalization transition for the exponential disorder dis-
tribution (4). We then apply the thermodynamic Bethe-ansatz
results in Sec. III to study the asymptotic behavior of the
velocity and density of states as |E | → 0. Our discussion here
is confined to the noninteracting model (5).

A. Spatial correlations of eigenstates

We first discuss the properties of single-particle eigen-
states. Because of the Bethe-ansatz integrability of the model,
eigenstates are never localized in the conventional sense and
most are completely delocalized [58]. However, the states
closest in energy to zero have anomalous properties, which
show up in the hydrodynamic framework as very slow veloc-
ities. We now address these properties more directly. Figure 3
shows that the inverse participation ratio (IPR)

∑
x |ψx|4 rises

steeply for states very near zero energy; thus, these are less
spread out than the rest of the spectrum, which is fully
delocalized. In the rest of this section, we will focus on the
few relatively localized states near zero energy.

Given the anomalously large IPRs of states near zero
energy, it is natural to investigate their spatial structure. It
turns out this structure is simple and striking. The upper
panel of Fig. 4 plots the spatial profile of each eigenstate
against the eigenstate index. States near |E | = 0 are halfway
up the y axis; they are evidently strongly peaked at certain
lattice sites and the peak locations are the same for each such
state. In other words, these states exhibit a very strong form
of Chalker scaling [69,70]. Further, the peak locations and
intensities follow a simple pattern (lower panel of Fig. 4):
the amplitude of each peak is ∝ cosh(ξ j ), where ξ j is the
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0.008
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IP
R

FIG. 3. Low-energy wave functions. Upper panel: IPR vs energy
for the noninteracting model (5) with Gaussian-distributed disor-
der with parameters W = 1, L = 2000 (single, typical realization).
Lower panel: Log-log plot of IPR vs energy for an exponential
disorder distribution, with φ = 0.5, binned over 500 realizations for
each system size.

nearest-neighbor hopping at the peak. These observations can
be qualitatively understood in terms of a simple picture in
which each eigenstate carries some nonzero current, which
(since the eigenstate is time invariant) must be the same at
every link. Since the tunneling rates vary drastically from one
link to the next, this uniform current is maintained by having
the density pile up near weak links. As one moves away
from zero energy, the states lose intensity first at the strongest
maxima (Fig. 4); higher-energy wave functions bypass these
weak links instead of piling up near them.

We find, numerically, that these anomalous states are
supported entirely on even sites (i.e., sites for which the
next-nearest neighbor coupling is absent). This is intuitively
plausible since no value of ξ j can simultaneously suppress
both the nearest-neighbor and next-nearest-neighbor hopping
out of an odd site.

B. Multifractality and quasilocalization

The eigenfunctions near zero energy are sharply peaked at
a few (even) sites, suggesting that they might be critical rather
than conventionally delocalized. The nature of these states is
highly sensitive to the tails of the disorder distribution. So far
we have considered Gaussian distributions of the ξ j ; numer-
ical extraction of the IPR at the accessible system sizes does
not settle whether the wave functions are localized or critical.
However, the relationship between the wave-function ampli-
tudes and cosh(ξ j ) allows us to address this question semi-
analytically. Among L Gaussian random variables, the largest

index
16
11
6
1

5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

cosh( j)

|
j|

FIG. 4. Spatial structure of low-energy wave functions. Upper
panel: density plot of eigenstate probability density in space for a
single eigenstate in a single realization at L = 100; y axis is the
eigenstate index, a proxy for the energy. All the states near zero
energy are concentrated at the same sites, i.e., they are perfectly
spatially correlated. Lower panel: scatterplot of eigenstate amplitude
vs inverse hopping matrix element cosh(ξ j ) for the anomalous eigen-
states for L = 2000. The figure shows four eigenstates; states with
the smallest |E | are shaded red, while those with larger |E | are shaded
blue.

value is likely to be exp(−ξ 2/W 2) � 1/L, so ξ = W
√

log L.
The (unnormalized) wave-function amplitude at this site is
therefore cosh(W

√
log L) ∼ exp(W

√
log L). Meanwhile, the

typical value of cosh(ξ j ) is of the order of unity, and occurs
O(L) times. Thus the weakest link in a typical sample does not
affect its properties overall. We therefore expect that the low-
energy wave functions in the Gaussian case are asymptotically
not multifractal.

This reasoning also suggests that to get multifractal wave
functions, it suffices to change the disorder distribution from
Gaussian to exponential, P(ξ ) ∝ exp(−φ|ξ |). In this case,
repeating the argument in the previous paragraph gives that
the largest typical peak has amplitude L1/φ . When φ < 2, the
wave function piles up at the weakest link and is “quasilo-
calized” in the sense that its IPR is independent of system
size. Numerical simulations clearly show this quasilocalized
behavior at small φ, as well as the expected multifractal
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φ = 0.5 φ = 2(a) (b)

(c) (d)

FIG. 5. Properties of the noninteracting model with an exponen-
tial distribution of ξ j . (a),(b) Spatial structure of single low-energy
eigenstates for φ = 0.5 (quasilocalized) and φ = 2 (multifractal), for
system size L = 2000. (c) Decay of the IPR with system size in the
two phases, averaged over 1000 samples at each size. (d) Multifractal
exponent Dq (where q labels moments of the wave function) for
φ = 2. The exponents are extracted for system sizes from L = 100
to L = 800 with 1000 samples per size. For conventional delocalized
states, such as the states away from zero energy, one would have
Dq = 1 for all q.

behavior at larger φ [Fig. 5(d)]. We characterize multifrac-
tality through the quantity [71]

Dq = 1

(1 − q) log L
log

∑
x
|ψx|2q, (24)

where O refers to the disorder average of the quantity O. For
each sample, we take the lowest-|E | state.

In the quasilocalized regime, Dq = 0 for q > 1. Strictly
speaking, this statement is asymptotically true in the following
sense: wave functions at any fixed energy away from zero
are delocalized, but as one approaches zero energy, their IPR
approaches a fixed, size-independent value (Fig. 3). Thus,
there is no mobility edge. Although the IPR is finite, unlike
an Anderson insulator, the quasilocalized phase has Dq > 0
for q < 1: although the wave function has a finite fraction of
its weight concentrated in a few peaks, the rest of the weight
is spread out evenly rather than falling off exponentially away
from the peaks (Fig. 6). Finally, we remark that although its
IPR is independent of system size, this does not imply that a
particular state will be unaffected by adding sites to one end of
the system: the wave function will remain very sharply peaked
at the weakest link, but the location of this link will move as
sites are added to the system.

C. GHD approach to quasilocalization

We now use the results in Sec. III to consider the behavior
of quasiparticles in the |E | → 0 limit. From Eq. (10), we
see that these quasiparticles correspond to large |λ|: in fact,
e j (λ) ∼ e−π |λ|/2. In what follows, we suppress the index j
and denote the energy as E . The limiting behavior of the

FIG. 6. Multifractal spectrum. Density plot of the quantity Dq as
a function of q and the inverse disorder strength φ for an exponential
distribution. The region in black for φ < 2 is quasilocalized.

velocity and the density of states is sensitive to the tails of
the disorder distribution. For the sample-averaged density of
states, Eq. (11) yields

ρT
1,λ =

〈
π

8 cosh(πλ/2 + 2ξ )

〉
dis

+ π

8 cosh(πλ/2)
, (25)

where 〈·〉dis denotes the average over disorder. If the disorder
is bounded or falls off faster than exponentially, one can
safely approximate cosh(x) ≈ ex/2 for large enough λ. The
quasiparticle velocity [given by Eq. (9)] therefore remains
nonzero in the λ → ∞ limit, so transport is asymptotically
ballistic (but with a slower velocity). Likewise, the density of
states remains finite. To find the density of states, one notes
that the number of states in a rapidity interval δλ is given
by ρT

1,λδλ. These cover an energy window δE = E ′(λ)δλ =
e−πλ/2δλ. Thus, ρ(E ) = ρT

1,λ/E ′(λ), which remains finite for
Gaussian-distributed disorder in the |λ| → ∞ limit (although,
in practice, the suppression is quantitatively quite large).

However, for distributions P(ξ ) with exponential or slower
tails, computing the expectation value (25) is more subtle. We
focus on the exponential case P(ξ ) = 1

2φ
exp(−φ|ξ |), which

was discussed numerically above. In this case, the expectation
value (25) reads

φπ

4

∫ ∞

−∞
dξ

e−φ|ξ |

cosh(πλ/2 + 2ξ )
. (26)

To get compact expressions for the asymptotics, we approx-
imate cosh(πλ/2 + 2ξ ) ≈ 1

2 e|πλ/2+2ξ |. There are two cases.
When φ > 2, the integral is dominated by small |ξ | and we
get 〈

π

8 cosh(πλ/2 + 2ξ )

〉
dis

≈ φπe−πλ/2

2(φ − 2)
(1 − e−(φ−2)πλ/2) + · · · , (27)

where · · · indicates terms that do not become singular in
the limit φ → 2. Thus the zero-energy density of states and
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(a) (b)

FIG. 7. Density of states and quasilocalization. (a) Log-log plot
of density of states for various system sizes, in the case where ξk are
distributed exponentially with the parameter φ = 0.3. The density of
states diverges as |E |−ζ at low energies. (b) Exponent 1 − ζ vs φ.
For small φ, we find a good linear fit to ζ = 1 − 0.53φ, which is in
reasonable agreement with the Bethe-ansatz prediction ζ = 1 − φ/2
(see main text).

velocity remain finite when φ > 2, but respectively diverge
and vanish as φ → 2+. Note that there are nonanalytic correc-
tions to the density of states, even in this regime: specifically,
|ρ(E ) − ρ(0)| ∼ Eφ−2.

In the opposite limit φ < 2, Eq. (25) is dominated by |ξ | ≈
πλ/4. In this case, we have instead〈

1

cosh(πλ/2 + 2ξ )

〉
dis

∼ e−φπλ/4. (28)

The velocity then vanishes as v(λ) ∼ exp[−(πλ/2)(1 −
φ/2)] or, equivalently, v(E ) ∼ |E |1−φ/2. Correspondingly, the
density of states ρ(E ) diverges as

ρ(E ) ∼ |E |−1+φ/2. (29)

This behavior of the density of states is borne out numerically
(Fig. 7).

Thus, the dispersion relation of elementary excitations
within generalized hydrodynamics agrees with our simple
counting estimate in Sec. V: a transition occurs when φ =
2. When φ > 2, the velocity approaches a finite value as
|E | → 0, so quantities such as the local autocorrelation func-
tion behave in an asymptotically ballistic fashion. On the other
hand, when φ < 2, the velocity vanishes as |E | → 0 and the
local autocorrelation function will, in general, be anomalous.
It is interesting to note that despite the very local character
of the rare low-energy states due to almost disconnected sites,
they appear naturally as slow quasiparticles in the hydrody-
namics framework.

VI. OPERATOR SPREADING AND LOCAL
AUTOCORRELATIONS

A. Front broadening

We close this paper by discussing the consequences of our
results for operator spreading in random integrable systems.
The dynamics of operator spreading has attracted a lot of
attention in recent years due to its possible connection to
many-body quantum chaos [72–87]. Under unitary dynamics,
initially local operators spread in space ballistically (unless
the system is many-body localized), with an operator “front”
or light cone that generically broadens diffusively as t1/2 in

FIG. 8. Operator spreading. Contour plot of the OTOC C(x, t ) =
1
2 〈[nx (t ), n0(0)]2〉 for disorder strength W = 1 and temperature T =
1, averaged over 100 realizations. The ballistic spreading of operators
with time is clearly visible, as well as quasilocalized quasiparticles
due to the anomalous low-energy properties of this model.

one-dimensional chaotic (nonintegrable) quantum systems.
This is in sharp contrast to (clean) noninteracting systems that
have an operator front that broadens as t1/3 [55], governed by
an Airy kernel. However, interacting integrable systems have
been argued to have a front that also broadens as t1/2 [51,88],
just like chaotic systems (with the notable exception of non-
generic zero-entropy initial states such as the spin domain-
wall initial state discussed above [68]). In integrable systems,
the operator front is governed by the fastest quasiparticle
in the system [51]: from our hydrodynamic description of
random integrable spin chains, it is natural to expect this front
to broaden diffusively even in the noninteracting case since
the fastest quasiparticle follows a biased random walk. For
these systems, the diffusive broadening of the operator front is
due to the local disorder which causes the fastest quasiparticle
(on average) to “wiggle” around its average trajectory.

In order to characterize operator spreading in our sys-
tem, we compute a specific out-of-time ordered commutator
(OTOC) [72–74] given by C(x, t ) = 1

2 〈[nx(t ), n0(0)]2〉 in a
given thermal state, with nx = c†

xcx the particle density in
the fermionic language. Figure 8 shows C(x, t ) averaged over
100 disorder realizations for W = 1 and temperature T = 1,
where a clear ballistic light cone can be observed. We also
remark that the OTOC shows significant weight that remains
near x = 0 even after a long time. This behavior has to do with
the anomalous low-energy states (Sec. V) and we will return
to it below.

We now focus on the operator front (light cone) and inves-
tigate whether it broadens as t1/3, as expected for clean nonin-
teracting systems, or as t1/2, due to diffusive effects. We start
with the clean case (XX model) and show scaling collapses of
the OTOC near the front. It is clear from Fig. 9 that the data
collapse almost perfectly using a t1/3 ansatz. This is consistent
with expectations in the clean case, where the OTOC shows
oscillations characteristic of an Airy kernel associated with
these higher-order corrections to hydrodynamics [55]. In the
random case, we expect that these oscillations should vanish

174203-9



AGRAWAL, GOPALAKRISHNAN, AND VASSEUR PHYSICAL REVIEW B 99, 174203 (2019)
t1

/
2
C

(x
,t

)
t2

/
3
C

(x
, t

)

(x − vmaxt)/t1/2 (x − vmaxt)/t1/2

(x − vmaxt)/t1/3 (x − vmaxt)/t1/3

W = 0 W = 0.6

FIG. 9. Scaling of the operator front. Scaling collapses of the
OTOC near the operator front. Left panel: For the clean case, the
front has oscillations as expected from an Airy kernel. The scaling
with exponent 1/3 (upper left) leads to a better collapse than the
diffusive scaling 1/2 (lower left). Right panel: Similar collapses for
the random case are inconclusive.

and that the front will collapse onto a diffusive form. From
Fig. 9, it is clear that there are no characteristic oscillations
near the front. However, scaling our data with both t1/2

and t1/3 leads to equally good collapses and suggests that
such collapses are not a very conclusive way to measure the
exponent α of the front broadening tα . We also considered
collapses from the time evolution following local quenches,
with very similar results. Nevertheless, our transport results
combined with our hydrodynamic theory strongly suggest that
α = 1/2 even for random noninteracting chains.

B. Slow local relaxation

We now turn briefly to the part of the local operator that
remains near its initial position at late times. Since we are con-
sidering a noninteracting model, we can equivalently consider
the return probability of an initially local wave packet [89].
We should distinguish between average and typical behavior:
typically, the initial site is not a weak link, so anomalous wave
functions have no support there. However, the site-averaged
local autocorrelation function does receive a contribution from
rare sites. Once again, we discuss this for the exponential
distribution (4) in the quasilocalized phase, φ < 2.

We consider the probability that a particle initially local-
ized at site x has moved a distance less than one lattice site
at time t . This quantity is proportional to the (mean) local
autocorrelation function C0(t ) = 〈Sz

i (t )Sz
i (0)〉. We focus on i

even and infinite temperature. In generalized hydrodynamics,
this can be expressed as

C0(t ) ∼
∑
j=1,2

∫
dλ〈ρ(λ)mj (λ)2�(a − |v(λ)t |)〉dis, (30)

φ

β

t

S
z i
(t

)S
z i
(0

)

FIG. 10. Anomalous local relaxation. Top panel: Algebraic de-
cay of the average local structure factor C0(t ) as a function of time,
for various disorder strengths φ. This power-law decay for small
values of φ can be observed up to very long times. Bottom panel:
Decay exponent of the average local correlation function C0(t ), as a
function of disorder strength φ. We find that C0(t ) ∼ t−β , where β ≈
φ/2 throughout the quasilocalized phase φ < 2. The generalized
hydrodynamics prediction β = φ/2 is indicated by a dashed red line.
When φ > 2, one has conventional ballistic behavior, C0(t ) ∼ 1/t .

where at infinite temperature for a free-fermion model, ρT ∼
ρ, a = 1 is the lattice spacing, and mj (λ) = n j = 1 is the spin
of the quasiparticles. Focusing on low-energy quasiparticles,
this integral can be written out as

C0(t ) ∼
∫

dλ dξ e−φ|ξ |ρT (λ, ξ )�[1 − |v(λ, ξ )t |]. (31)

We now resolve the step function and approximate ρt (λ, ξ ) �
e−πλ/2+2ξ�(λ − 4ξ/π ), as in Sec. V C, to rewrite this expres-
sion in terms of the double integral,

C0(t ) ∼
∫ ∞

1
2 log t

dξ

∫ ∞

4ξ/π

dλe−πλ/2e(2−φ)ξ ∼ t−φ/2. (32)

Higher-energy quasiparticles give rise to a ballistic decay 1/t
that is subleading when φ < 2. Thus, throughout the quasilo-
calized phase, the autocorrelation function decays slower
than one would expect for a model with ballistic transport.
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Numerical simulations of the autocorrelation function give
results in very good agreement with this exponent (Fig. 10).
We emphasize that in the argument above, it was crucial to
disorder average the full autocorrelation function—separately
averaging the velocity and the density of states would yield
an incorrect exponent φ/(2 − φ), in clear disagreement with
our numerical results. The local velocity is inversely pro-
portional to the local density of states and capturing these
correlations is essential to deriving the correct anomalous
exponent.

We will show elsewhere that anomalous decay of local
autocorrelation functions occurs in other models such as XXZ
as well; however, the possibility of subdiffusive behavior is
specific to the disordered noninteracting models, as generic
interacting models will have a finite diffusion constant due to
interactions.

VII. DISCUSSION

We studied the nonequilibrium dynamics of integrable
spin chains with correlated disorder that preserves integra-
bility. Focusing on the noninteracting case, we formulated
a (generalized) hydrodynamic theory for such random sys-
tems and described the emergence of diffusive corrections
due to quasiparticles scattering off random impurities. This
provides a mechanism for diffusion that is different from
the recent theories of diffusive corrections to GHD in clean
integrable quantum systems. The predictions from hydrody-
namics were compared to numerical results obtained from
exact diagonalization of the free-fermion problem. Both spin
and energy transport can be described very accurately using
hydrodynamics, provided diffusive corrections are included.
Moreover, we have shown that low-energy quasiparticles are
very sensitive to the tails of the disorder distribution and can

become quasilocalized, leading to an anomalous decay of
local autocorrelation functions.

We expect our results to generalize naturally to all interact-
ing random integrable systems [56–58]. In general, we expect
a complicated interplay between diffusive corrections due
to disorder and due to thermal fluctuations and interactions.
However, a simpler intermediate setup would be to consider
initial states for which thermal fluctuations vanish, such as
the spin domain-wall initial state considered above. For such
initial states, we expect our predictions to extend naturally to
the interacting case, and it would be interesting to compare the
hydrodynamic predictions to matrix product state simulations.

Our results also indicate that diffusive broadening of the
operator front can occur even in some noninteracting systems,
which are clearly nonchaotic. These models could be used as a
testbed for future diagnostic tools to distinguish chaotic from
integrable systems. These models are also natural from the
point of view of integrability breaking: adding integrability-
breaking perturbations to a random integrable chain at strong
disorder could lead to either thermalization or to many-body
localization. The results of Ref. [58] suggest that the regime
of ballistic transport escaping localization might not be as fine
tuned as one could have expected, and it would be interesting
to investigate whether hydrodynamics can still accurately
describe transport away from the integrable limit.
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