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Combined cluster and atomic displacement expansion for solid solutions and magnetism
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Finite-temperature disordered solid solutions and magnetic materials are difficult to study directly using
first-principles calculations, due to the large unit cells and many independent samples that are required. In
this work, we develop a combined cluster expansion and atomic displacement expansion, which we fit to
first-principles energies, forces, and stresses. We then use the expansion to calculate thermodynamic quantities
at nearly first-principles levels of accuracy. Our model naturally includes both configurational and vibrational
entropy, including anharmonic contributions and structural phase transitions. In addition, we can treat coupling
between atomic displacement and chemical or magnetic degrees of freedom. As examples, we use our
expansion to calculate properties of Si1−xGex , magnetic MnO, Al with vacancies, and BaxSr1−xTiO3. Finally,
we demonstrate that by treating all the relevant degrees of freedom explicitly, we can in some cases achieve
improved convergence of fitting parameters versus distance as compared to a pure cluster expansion.
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I. INTRODUCTION

Solid solutions, which are materials that have well-defined
crystal structures but disordered occupancy of atomic posi-
tions, are important for a variety of technological applica-
tions as both structural and functional materials [1]. About
half of the Inorganic Crystal Structure Database consists of
compounds with partial occupancy [2]. Similarly, compounds
with spin degrees of freedom are often disordered at experi-
mentally relevant temperatures. Unfortunately, both of these
types of materials are difficult to treat at a first-principles
level of accuracy. Large supercells and averages over many
configurations are needed to treat disorder systematically,
but the computational cost of plane-wave density functional
theory (DFT) calculations increases rapidly with the number
of atoms in a calculation [3]. Even worse, finite-temperature
properties require averages over thousands of steps of atomic
motion.

Cluster expansions, which consist of models where chemi-
cal or spin degrees of freedom are treated as interacting scalar
variables on a lattice, with all atomic displacements relaxed,
are widely used to map out the finite-temperature phase dia-
grams of alloys and solid solutions, as well as spin systems
[4–8]. However, cluster expansions have several deficiencies
that can limit their applicability. Most importantly, because
they do not explicitly include structural relaxations, cluster
expansions can only calculate a limited number of properties.
In particular, interactions between atomic displacement and
chemical degrees of freedom cannot be treated easily, which
excludes technologically relevant materials properties like
piezoelectrics, ferroelectrics, ferroelastics, magnetocalorics,
etc. that involve coupled degrees of freedom. Similarly, be-
cause they eliminate all atomic degrees of freedom, cluster
expansions do not capture the effects of vibrational free
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energy, and attempts to add vibrational free energy can be
computationally expensive [5,9,10]. Finally, the atomic dis-
placement relaxations needed to fit cluster expansions are
computationally expensive, as they require calculating the
energies, forces, and stresses of many intermediate structures
during a relaxation, but only the final energy is used in the
model. This implicit treatment of relaxation can lead to effec-
tively long-range and high-order interactions between cluster
variables, even if the underlying physical interactions are
short-ranged, making the fitting process inefficient [11–14].

In this work, we combine the framework of a cluster
expansion for chemical or spin degrees of freedom with an
atomic displacement expansion, which has long been used to
calculate finite-temperature properties of crystalline materials.
Atomic displacement expansions up to harmonic order, i.e.,
phonon calculations, are routinely done either as finite differ-
ences calculations or using DFT perturbation theory [15], and
higher-order calculations are used to treat anharmonic prop-
erties like thermal conduction or phase transitions [16–22].
In contrast to some similar works on model Hamiltonians
[23–25] that are sometimes used to treat solid solutions
[26,27], in this work, we keep all atomic displacement degrees
of freedom rather than only those related to soft modes. By
including all atomic displacement degrees of freedom rather
than only soft modes, our model can quantitatively calculate
materials properties like thermal expansion, thermal conduc-
tivity, dielectric response, etc. that receive contributions from
modes beyond a limited set of pre-selected soft modes.

By combining a cluster expansion with an atomic dis-
placement expansion, including interactions between them,
we get a model with many desirable properties. First, the
combined expansion inherits many of the useful properties of
separate atomic displacement and cluster expansions; namely,
the model can be fit using standard linear least-squares fit-
ting techniques, is systematically improvable, and can treat
chemical disorder, vacancies, and magnetic disorder. Second,
unlike models with specific physically inspired energy terms
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[28–30], our expansion can be easily applied to any crystal
structure and applies equally well to metals, semiconductors,
and ionic materials. Third, the model can be coupled to
external fields in a natural manner. Finally, because the model
uses all of the energies, forces, and stresses from any refer-
ence calculation and makes the relevant degrees of freedom
explicit, it can in some cases be fit with even fewer DFT
calculations than a pure cluster expansion that only considers
chemical degrees of freedom.

We have made the code to fit our expansion to first-
principles calculations and evaluate new structures available
online at [31]. The rest of the work is organized as follows. In
Sec. II, we describe the expansion form, symmetry properties,
and fitting procedure we use in this work. In Sec. III, we fit the
model to several example systems: Si1−xGex, magnetic MnO,
Al with vacancies, and BaxSr1−xTiO3. Finally, in Sec. IV, we
present our conclusions.

II. EXPANSION FORM AND FITTING

A. Expansion

Our model consists of a Taylor expansion around a high-
symmetry reference structure in terms of both scalar degrees
of freedom and vector atomic displacements, including inter-
actions terms between them. In this section, we will treat the
case of a solid solution with a single type of atomic substi-
tution, which is represented by a scalar degree of freedom.
Magnetic and vacancy cases will be examined in the following
sections. In our formulas, the subscript indices i, j, ... run
over the atomic sites of the high-symmetry supercell that we
expand around, and the superscript indices x, y,... run over
Cartesian directions.

Our model consists of three main terms: a cluster expan-
sion, an atomic displacement expansion, and interaction terms
between the two:

Etot = Ecluster + Eatom + Einter. (1)

The form of the cluster expansion is well-known:

Ecluster =
∑

i

Jisi + 1

2!

∑

i j

Ji jsis j + 1

3!

∑

i jk

Ji jksis jsk + . . . ,

(2)

where si = 0, 1 are scalar degrees of freedom at site i, with
1 corresponding to a dopant atom being present, and Ji j , etc.,
represent fitting coefficients. In contrast to a normal cluster
expansion, these energy terms represent the energy of dopant
atoms in the unrelaxed high-symmetry reference structure,
not relaxed structures. Instead, we treat atomic displacements
explicitly as follows:

Eatom = 1

2!

xy∑

i j

Kxy
i j ux

i uy
j + 1

3!

xyz∑

i jk

Kxyz
i jk ux

i uy
ju

b
k + . . . , (3)

where ux
i is the displacement of atom i in direction x from

its reference position. Kxy
i j is the fitting coefficient for the

interaction between atom i moving in the x direction and atom
j moving in the y direction; other terms are similar. There
is no first-order term because we assume the high-symmetry
structure is in equilibrium. The second-order term is the

standard harmonic force constant matrix, and higher-order
terms are anharmonic force constants. Forces are obtained by
taking a derivative with respect to ux

i in the normal fashion:
F x

i = −∂Etot/∂ux
i .

Finally, we include interaction terms between the scalar
and vector degrees of freedom:

Einter =
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1
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where M x
i j , etc. are fitting coefficients for the interaction

terms. For example, the first-order term in this expansion,
with coefficient M x

i j , is turned on if there is a dopant at site i
(si = 1), and determines the forces on the surrounding atoms
j in direction x that result from that substitution. Similarly, the
term M xy

i jk represents the change the spring constant between
the atoms at sites j, k in directions x, y due to a dopant at site i.

This expansion is very general and can in principle be used
for any combination of substitutions and atomic distortions
that maintains the topology of the bonding in the crystal
structure. While the expansion must be truncated in practice, it
can be systematically improved if higher precision is needed.
We will demonstrate in Sec. III that is also useful in practice,
and as discussed in Sec. III A, this expansion will often have
better convergence properties than an expansion that treats
some of the degrees of freedom implicitly.

B. Symmetry

While the above expansion can in principle handle any
reasonably small distortion of a unit cell, the number of
fitting coefficients increases rapidly as higher-order terms are
needed. To make the scheme useful, it is necessary to take
advantage of symmetries of the reference structure in order
to reduce the number of independent fitting coefficients. We
will present a brief overview of the symmetry properties; most
properties carry over from discussions of atomic displacement
expansions [16,32].

The energy must be invariant under the application of
the space group symmetries of the high-symmetry reference
structure, which consist of a symmetry matrix Rxy and po-
tentially a partial translation τ x. Under the application of a
symmetry operation, the site i can be shifted to another site i′:
X x

i′ = ∑
y RxyX y

i + τ x, where X x
i is the reference position of

atom i. Because the invariance must hold for any combination
of si and ux

i , each term in our expansion must be individually
invariant. For example,

Ji j = Ji′ j′ , (5)

Kxy
i j =

∑

zw

RxzRywKzw
i′ j′ , (6)

M x
i jk =

∑

y

RxyM y
i′ j′k′ . (7)

These relations are widely known and used for separate
cluster and atomic displacement expansions, and aside from
keeping track of which degrees of freedom transform as
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scalars and which as vectors, the relations in this work are
analogous.

In addition to space group operations, the energy must be
invariant under permutations of either the cluster degrees of
freedom or the displacement degrees of freedom[16,32]. For
example,

Ji j = Jji, (8)

Kxy
i j = Kyx

ji , (9)

M x
i jk = M x

jik . (10)

We note that scalar and vector degrees of freedom cannot be
permuted for each other.

In addition to space group operations, each term in the
model must also be invariant under arbitrary translations of the
unit cell [16,32]. These relations are also known as acoustic
sum rules because of their role in ensuring that there are three
zero frequency phonon modes at �. The acoustic sum rules for
our expansion are again simple generalizations of the relations
from pure atomic displacement expansions. For example,

0 =
∑

j

Kxy
i j ∀ i, xy, (11)

0 =
∑

j

M x
i j ∀ i, x, (12)

0 =
∑

k

M xy
i jk ∀ i j, xy. (13)

These constraints are enforced as linear constraints during the
fitting procedure.

In addition to the constraints discussed above, we note
that there are similar constraints due to the invariance of the
system under arbitrary rotations of the unit cell [16,32]. These
additional constraints relate different orders of the expansion
to each other; however, we do not enforce them explicitly
during our fitting procedure.

C. Strain

In addition to cluster and atomic displacement variables,
it is necessary to include strain degrees of freedom, εxy,
in our model. However, strains are fundamentally related
to long wavelength atomic displacements, and our existing
expansion does not require any new fitting coefficients to treat
strain [32,33]. The relationship between the harmonic force
constants and the elastic constants Cwx,yz is well-known, albeit
rarely used in first-principles contexts:

Estrain = 1

2

wx,yz∑
Cwx,yzεwxεyz, (14)

Swx,yz = 1

2

∑

i j

Kwx
i j

(
X y

i − X y
j

)(
X z

j − X z
i

)
, (15)

Cwx,yz = Swy,xz + Sxy,wz − Sxw,zy, (16)

where X x
i is the reference position of atom i in direction x,

and Swx,yz is a tensor defined above. Elastic constants have
an extra permutation relation, Cwx,yz = Cyz,wx, that in some
cases results in an additional constraint on the force constants.

We enforce this relation by requiring that the spring constants
obey the Kun-Huang condition, Swx,yz = Syz,wx [32,33].

The contributions to the elastic constants due to dopants
are treated using analogous formulas, except with si variables
that turn on the extra contributions in the presence of dopants.
For example,

Ecl-strain = 1

2

wx,yz∑

i

C wx,yz
i siε

wxεyz, (17)

S wx,yz
i = 1

2

∑

jk

M wx
i jk

(
X y
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k

)(
X z

j − X z
k

)
, (18)

C wx,yz
i = S wy,xz

i + S xy,wz
i − S xw,zy

i . (19)

In addition to the above terms, which are second-order
in strain, there are additional first order in strain effective
interactions. The lowest-order interaction term between pure
atomic displacements and strain, Eat-strain, is

Eat-strain =
xyz∑

i

T x,yz
i ux

i ε
yz + . . . , (20)

T x,yz
i =

∑

j

Kxy
i j

(
X z

j − X z
i

)
, (21)

where T x,yz
i is the first-order coupling between strain εyz

and the atomic displacement ux
i . We emphasize that T x,yz

i is
fully determined by appropriate combinations of our exist-
ing coupling coefficients and is not an independent fitting
parameter. Similarly, the lowest-order coupling between a
cluster variable si and strain εxy, is a simple generalization
of Eq. (21):

Ecl-strain =
xy∑

i

U xy
i siε

xy +
xy∑

i

V x,yz
i j siu

x
jε

yz + . . . , (22)

U xy
i =

∑

j

M x
i j

(
X y

j − X y
i

)
, (23)

V x,yz
i j =

∑

j

M xy
i jk

(
X z

k − X z
j

)
. (24)

By including all terms of Eqs. (14)–(24), we include the
effects of strain up to second order; we ignore higher-order
strain contributions. Stress is calculated in the normal way,
σxy = − 1

V ∂Etot/∂εi j .

D. Vacancies

We can represent vacancies (or interstitial atoms) using
the same formalism as discussed above, with nonzero cluster
degrees of freedom representing missing atoms instead of
substituted atoms. The only difficulty is that unless we impose
additional constraints, the energy will depend weakly on the
displacement of a vacancy site, which is unphysical as there
is no atom to displace. The necessary constraints simply
require the force on any vacancy site to be exactly zero. These
constraints enforce a cancellation between various terms in
the model to ensure the energy does not depend on vacancy
positions. These constraints can be constructed naturally by
the same procedures used to setup the linear regression.
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E. Magnetism

We can use our expansion to treat simple magnetic sys-
tems, with the spins represented by cluster variables. If the
spins are limited to collinear up and and down spins, and
have nearly constant magnitude, then our expansion still ap-
plies. The only difference is that the cluster variables become
si = ±1, as in the Ising model. A collinear magnetic field can
be treated as a chemical potential.

Unlike cluster variables, which represent different atoms,
there is an additional symmetry in spin systems due to the
invariance of the energy when flipping every spin (si → −si).
This symmetry requires that expansion terms have an even
number of spin variables.

In many cases, an Ising-like model will be inadequate to
treat the magnetic degrees of freedom. A natural expansion of
this formalism is to use the more general Heisenberg model,
where the spins are allowed to rotate in three dimensions and
magnetic anisotropy can be included. A full model would
require treating the spin degrees of freedom like vectors
with constant magnitude, instead of scalars. However, for
simple situations, it is possible to fit the expansion to simple
collinear spins, but then allow the spins to rotate during
calculations using the model. This can be done by treating
interactions between pairs of scalar spins like a dot product
(sis j → �si · �s j). Using this idea, we can fit our expansion to
collinear spin data using the Ising-like expansion, but allow
for Heisenberg-like spin-spin interactions when calculating
finite-temperature properties.

F. Fitting

Despite its generality, our model is linear in the coupling
coefficients, and can be fit using standard linear least-squares
techniques. We first use Gaussian elimination to determine
the minimum number of independent fitting parameters after
applying Eqs. (5)–(10). We prepare a library of energies,
forces, and stresses from a set of DFT calculations that are rel-
evant to the desired application. Then, we fit the coefficients,
enforcing the acoustic sum rules [Eqs. (11)–(13)] as linear
constraints.

It is necessary to truncate the expansion in order to perform
the fitting. We generally truncate terms that are less than third
order in the atomic displacements and less than third order
in the chemical degrees of freedom only due to limitations
imposed by the supercell. In order to keep the number of terms
limited to those mostly likely to be significant, we limit such
terms to two-body interactions beyond third nearest neigh-
bors. Similarly, we truncate higher-order terms after second or
third nearest neighbors. If the model fails to reach the desired
level of accuracy and if sufficient fitting data is available, these
constraints can be relaxed and additional terms can be added
to the fitting, at the cost of a more time consuming fitting
step. Despite our efforts to limit the number of terms, this still
leaves a large number of terms to fit. In order to search for
a sparse solution, we use recursive feature elimination [34],
with cross-validation to determine how many independent
parameters to keep for optimum out-of-sample prediction.
During each step of this algorithm, the smallest standardized
coefficients are dropped and the model is refit. We find that
this procedure is faster and more numerically stable than L1

regularization, which has previously been used to search for
sparse models in a similar context [18].

For insulating materials, electrostatic dipole-dipole inter-
actions decay very slowly with distance, and it is necessary
to handle these contributions separately from our fitting pro-
cedure. We use Born effective charges and the electronic
dielectric constant, determined from DFT perturbation theory
[15,35], to subtract the contribution of long-range electro-
static forces before fitting. We then add back the long-range
contribution for predictions. For the current examples where
atoms of the same valence are substituted, we assume the Born
effective charges are not modified by substitutions, atomic
displacements, or strain. The accuracy of this approximation
will depend on the details of the system being studied. In
the cases we consider, we find that it is sufficient; however,
we are considering better approximations to the long-range
electrostatic coupling for use in future work. We clarify that
only the dipole-dipole interaction beyond our harmonic fitting
range is affected, as inside the fitting range the short-range
interactions will compensate for any errors in the electrostatic
coupling.

In order to test and improve our models, we also implement
the ability to use automatically run finite-temperature Monte
Carlo sampling to generate new structures, perform new DFT
calculations on these structures, and add the new data to the
model in order to iteratively improve it. In particular, we
run Monte Carlo at a temperature relevant to the system we
are studying, but in a small enough unit cell to perform an
additional DFT calculations. We also perform sampling on
the chemical degrees of freedom if we expect those degrees
of freedom to be in equilibrium. After sufficient sampling to
reach equilibrium, we take the final structure and perform a
new DFT calculation. This procedure both provides a source
of relevant out-of-sample data to test our model, and new
data to improve the model. We stop this procedure when
our predictions match the new DFT calculations to sufficient
accuracy for our application.

This iterative technique is especially useful when the
initial model has a hidden unphysical instability versus
atomic displacements for at least some chemical degrees of
freedom [21]. Because the phase space of the model (atomic
displacements, chemical arrangements, and strain) is high
dimensional, it can be possible for the model to appear to
be accurate for many testing configurations, but still have a
hidden instability that causes the model to either move to an
unphysical lower energy ground state structure or fail to have
any bounded energy at all, resulting in an energy below the
expected energy range. Finite-temperature sampling of such
an unstable model will allow the model to discover this region
of phase space with incorrect behavior and get stuck there.
Our iterative fitting procedure will then automatically perform
a new DFT calculation and add this new structure to our set
of fitting data, which should repair the instability for the next
iteration. We continue the iterating until no new instabilities
develop and the model reaches the desired accuracy.

G. First-principles computational details

We perform first-principles DFT calculations [36,37] with
a plane-wave basis set as implemented in QUANTUM ESPRESSO
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[38] and using the GBRV high-throughput ultrasoft pseudopo-
tential library [39,40]. We use a plane wave cutoff of 40
Ryd. We use the PBEsol exchange-correlation functional [41],
which provides more accurate lattice constants than other
generalized gradient approximation functionals. For Mn d
states, we use DFT+U with U = 3 eV. We calculate Born
effective charges and dielectric constants using DFT pertur-
bation theory [15]. We take advantage of the computational
efficiency of using nondiagonal supercells to calculate long-
range two-body model terms [42].

H. Monte Carlo sampling

In order to determine finite-temperature properties using
our model, we perform classical Monte Carlo sampling of the
Boltzmann distribution using the METROPOLIS algorithm [43].
We use a local updating strategy, performing sweeps where
we attempt to move each atom a random distance, the average
magnitude of which is tuned during thermalization to achieve
approximately 50% acceptance. Strain is treated in a similar
fashion. In cases where we also allow the cluster variables
to change, we perform grand canonical Monte Carlo [44],
which involves including additional cluster variable sweeps
using a single spin flip approach. In order to sample the grand
canonical ensemble, we cycle through atomic displacement,
strain, and cluster sweeps, accepting proposed moves with the
Boltzmann probability. Because all of the energy terms in our
model (except for long-range electrostatic interactions) are
local, a single site updating strategy will generally be efficient,
except possibly near a phase transition where degrees of
freedom can become strongly correlated.

III. EXAMPLES

A. Si1−xGex

As our first example, we consider the technologically rel-
evant solid solution Si1−xGex, in the diamond structure. The
end members are the only thermodynamically stable phases at
zero temperature.

We begin by investigating the effects of atomic relaxation
on the convergence of interactions in Si1−xGex [13]. We
consider a 4 × 4 × 4 cell of Si (128 atoms) with two Ge atoms
substituted for two Si. In Fig. 1, we plot the energy difference
between a given configuration of Ge atoms, as a function of
distance between them, taking as the reference an isolated
Ge atom, either relaxed or unrelaxed, in the same cell. In the
case where all the atoms are fixed to their ideal positions, the
first neighbor effective interaction between the Ge is large,
but decays to zero rapidly as the distance increases. Even
the second neighbor direct interaction is almost negligible. In
contrast, when all the atoms in the cell are allowed to relax,
the first neighbor interaction energy is smaller, but it barely
decays with distance. A cluster expansion fit to the relaxed
energies will have much worse convergence with distance
than a fixed atom cluster expansion. By taking into account
atomic displacements explicitly, we can take advantage of
this improved convergence. We typically find that the limiting
factor in our expansions is the convergence of the force
constants, rather than the pure cluster terms. Also, we find
that in the fixed atom case, three-body cluster interactions
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FIG. 1. Interaction energy between two Ge substituted for Si as a
function of distance. Red dashed line is for unrelaxed positions, blue
solid line is for relaxed positions.

are either very short-ranged or negligible. In Appendix, we
discuss a direct comparison between a pure cluster expansion
and a combined cluster and atomic displacement expansion,
fit to the same DFT calculations.

Moving on to the fitting our expansion, we first fit to
structures with only small atomic displacements. Our fitting
data consists of structures with pure Si, pure Ge, and ran-
dom substitutions of Si and Ge, as well as random atomic
displacements of up to 0.15 Å. We use 40 calculations to
fit, with supercell sizes of up to 4 × 4 × 4 the primitive unit
cell (128 atoms), and we test our expansion with another 30
structures, some of which have 2 × 2 × 8 unit cells to test
possible longer-range interactions. For this simple example
case, we limit the range of the model to only second order
in the cluster variables and up to third order in the atomic
displacements, and the third-order terms are only nearest
neighbor. We note that because the highest-order terms in
our model are an odd power of the atomic displacements, the
model cannot be applied for arbitrarily large displacements,
but it can successfully reproduce the properties of the material
within its range of validity.

After performing recursive variable selection and cross-
validation, we are left with 95 independent fitting parameters
out of 555 original parameters. We show the out-of-sample
forces and energies predicted by the model in Fig. 2. We
get excellent agreement over a considerable range of ener-
gies and forces, with a mean absolute error in energies of
0.2 meV/atom, or 1.0%, and a mean absolute error in force
components of 1.4%.

Next, we generate structures with larger distortions, up to
0.7 Å, and we allow a more general set of anharmonic expan-
sion terms, up to fourth order in the atomic displacements and
out to second nearest neighbor, again using recursive feature
elimination to identify the important coefficients. As shown in
Fig. 3, our new model again has excellent performance, with
an out-of-sample mean absolute error of 0.3 meV/atom, as
compared to an average energy of 63 meV/atom in the testing
data. The model is suitable for thermodynamic calculations

174108-5



KEVIN F. GARRITY PHYSICAL REVIEW B 99, 174108 (2019)

FIG. 2. For small distortions of the Si1−xGex system, out-of-
sample comparison between model (x axis) and first-principles
(y axis) (a) forces (eV/Å) and (b) energies (meV/atom).

up to several hundred Kelvin and includes all relevant anhar-
monic contributions to the energy.

In Fig. 4, we show an example grand canonical Monte
Carlo calculation in a 10 × 10 × 10 unit cell. Atomic dis-
placements, strain, chemical degrees of freedom are all
included in our grand canonical Monte Carlo sampling. For
several fixed chemical potentials, we plot the Ge filling frac-
tion as a function of temperature. At low temperature, the sys-
tem is phase separated into pure Ge and pure Si. Near 300 K,
depending on the chemical potential, the system transitions to
a disordered solid solution, in reasonable agreement with past
results on this system [6,13,45].

B. MnO

MnO in the rocksalt structure has an antiferromagnetic
(AFM) ground state with a Neel temperature of 118 K [46].
Even without spin-orbit coupling, the spin structure breaks
cubic symmetry and leads to a rhombohedral distortion of
the unit cell of 0.96◦, according to our calculations. This
distortion reduces the frustration of the first nearest neighbor
antiferromagnetic spin-spin interactions, only half of which

FIG. 3. For larger distortions of the Si1−xGex system, out-of-
sample comparison between model (x axis) and first-principles
(y axis) (a) forces (eV/Å) and (b) energies (meV/atom).

can be satisfied in the cubic structure [46]. The second neigh-
bor interactions are comparable in size to the first neighbor
interactions, and are not frustrated. We find that the energy
difference between the ferromagnetic (FM) and antiferro-
magnetic phases in the cubic structure is 77 meV/Mn, and
increases to 86 meV/Mn when the rhombohedral distortion is
relaxed; so, the distortion energy is small, but not negligible.

We seek to study this coupled magnetic-structural phase
transition using our model. We expand around the cubic
ferromagnetic structure. We allow only second-order terms
in the spin degrees of freedom, as discussed in Sec. II E. We
consider first- and second-order atomic displacement terms,
which can be coupled to spin, as well as short-range third
and fourth-order displacement terms. We fit the model to a set
of structures with both ordered and random collinear spins,
and atomic displacements up to 0.5 Å in 4 × 4 × 4 supercells.
In Fig. 5, we show a comparison between our model and
reference DFT calculations. We find excellent agreement,
with a mean absolute energy error of 0.9 meV/Mn over a wide
energy range.

We use the model to preform classical Monte Carlo sam-
pling in a 12 × 12 × 12 unit cell, interpreting the spins as
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FIG. 4. Ge filling fraction as a function of temperature (K) for
Si1−xGex , for fixed chemical potential μ. Different color lines are
different chemical potentials, see legend.

Heisenberg-like, as discussed in Sec. II E. In Fig. 6(a), we
plot the antiferromagnetic order parameter as a function of
temperature, both using the full model and with the atoms
fixed to the cubic structure and only the spins allowed to
relax. The coupling between the spin variables and structural
variables both raises the phase transition temperature and
modifies its character, making the transition more strongly
first-order. In addition, we can use the model to examine how
the structure changes near the phase transition. In Fig. 6(a), we
plot both the xx and xy components of strain as a function of
temperature. As expected, the xy component is only nonzero
in the low-temperature AFM phase, and its magnitude is
closely related to the AFM order parameter. The xx compo-
nent is less affected by the transition, but there is a minor
change in slope as well as a small volume jump at the phase
transition. However, this volume change is much smaller

FIG. 5. For MnO, comparison between model energies and first-
principles energies, in meV/Mn. Green symbols are in-sample,
larger orange symbols are out-of-sample. Reference energy is cubic
MnO in FM phase.

FIG. 6. (a) In MnO, AFM order parameter as a function of
temperature (K). Blue line allows full atomic displacements, red line
fixes them. (b) Strain vs temperature (K). Green line is σxx , orange
is σxy.

than the 2.2% volume difference between the AFM and FM
phases at zero temperature, which emphasizes the fact that
the cubic paramagnetic phase at finite temperature is not well
approximated by the cubic FM phase at zero temperature.

We note that the coupled structural-magnetic finite-
temperature calculations performed in this section are
straightforward using our expansion method, but would be
challenging to calculate directly using first-principles tech-
niques or using a pure spin-spin magnetic model.

C. Al with vacancies

As an example of a vacancy calculation, we consider Al in
the fcc structure [47]. We consider 3 × 3 × 3 and 6 × 6 × 6
unit cells with 0–2 vacancies per cell (up to 7%), and atomic
displacements of up to 0.26 Å. The reference chemical poten-
tial is that of zero-temperature bulk Al. Our expansion consists
of terms up to fourth order in the atomic displacements and up
two second order in the cluster variables, although the third-
and forth-order terms are very short-ranged.

As shown in Fig. 7, our expansion gives excellent out-
of-sample agreement with the reference forces and energies.
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FIG. 7. For Al with vacancy system, out-of-sample comparison
between model (x axis) and first- principles (y axis) (a) forces (eV/Å)
and (b) energies (meV/atom).

One current limitation of the model is that it does not allow
vacancies to hop from site to site, and it is not designed to
reproduce this energy barrier between lattice sites, which is
strongly anharmonic. This hopping will begin to happen at
fairly low temperatures in Al. Because neither our expan-
sion procedure nor our Monte Carlo routines are designed
handle barrier hopping events, we are limited in the thermo-
dynamic calculations we can perform on this system to low
temperatures. Alternatively, we could limit our expansion to
harmonic order in the atomic displacements, which would
prevent hopping events at the cost of limiting our treatment
of vibrational entropy to harmonic order. Any lattice-based
expansion method will fail as the system approaches the
melting temperature, but we expect that an extension of this
calculational framework to handle rare barrier hopping events
in a more systematic manner is possible, which we leave as a
future direction of research.

D. BaxSr1−xTiO3

BaTiO3 and SrTiO3 are well-studied perovskite oxides
that are used technologically for their dielectric properties

[19,21,23–25,27]. At low temperatures, BaTiO3 is a rhom-
bohedral ferroelectric, due to a polar distortion along the
(111) direction. As the temperature is raised, BaTiO3 becomes
orthorhombic, with polarization along the (011) direction,
then tetragonal, with polarization along the (001) direction,
and finally cubic.

SrTiO3 is also cubic at high temperatures, but goes through
at a nonpolar tetragonal phase transition related to octahedral
rotations (a0a0c− in Glazer notation [48]). As has been well-
studied, at zero temperature in DFT calculations, SrTiO3

still has a weak polar distortion, even after taking octahedral
rotations into account [49]. Zero temperature quantum fluctu-
ations, which we do not include in our model, are necessary
to get the correct ground state of SrTiO3, and are understood
to be responsible for the enormous low temperature dielectric
constant of SrTiO3 [25].

We fit our expansion to the BaxSr1−xTiO3 system, expand-
ing around cubic BaTiO3. Due to the fact that both end mem-
bers are unstable in their high-symmetry phases, this system
requires a much more careful treatment of the anharmonic
modes than previous examples. It is necessary to include DFT
calculations from the various locally stable minima in addition
to the experimentally observed structures in order to ensure
that model gives good results at finite temperature. We find
that we can get accurate results up to 300 K by expanding only
up to fourth order in atomic displacements, second neighbor
in distance, and including up to three-body interactions. We
use the recursive approach discussed in Sec. II F to identify
instabilities in the model and generate new fitting data until
the model reaches sufficient accuracy. Including structures
generated during iteration, a total of 250 DFT calculations
were used to do the fitting, which is many more than was
necessary for the previous examples. This total includes
both relaxations to find the various local minima as well
as single structure calculations to sample higher-temperature
configurations. In addition, we weigh low-energy structures
more in our fitting to ensure the local minima are well
described.

As can be seen in Fig. 8, model performance is not quite
as good as the previous examples that lack unstable modes,
and it begins to degrade around 50 meV/atom. However, the
mean absolute error in energy is still only 1.4 meV/atom,
as compared to an average energy of 36.8 meV/atom in our
test set. Furthermore, the model is more accurate at lower
energies, allowing it to describe local minima correctly, which
is necessary to capture low-temperature behavior.

We use our model to run Monte Carlo calculations at
finite temperatures, with Sr and Ba distributed randomly, but
fixed during each calculation, because we expect the chemical
degrees of freedom to be quenched to a random configuration
during the experimental crystal growth procedure, and there-
fore not in equilibrium at temperatures relevant to the ferro-
electric transition. We use a 10 × 10 × 10 unit cell. In Fig. 9,
we show the resulting phase diagram. We reproduce the three
ferroelectric phase transitions on the Ba-rich portion of the
phase diagram, as well as the nonpolar phase transition on the
Sr-rich side. In agreement with previous first-principles based
calculations in this system [19,21,23–25,27], we overestimate
the SrTiO3 phase transition temperature and underestimate the
BaTiO3 phase transition temperatures. Considering the small
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FIG. 8. For BaxSr1−xTiO3, comparison between model energies
and first-principles energies, in meV/atom. Green symbols are in-
sample, larger orange symbols are out-of-sample.

energy differences involved and the sensitivity of unstable
modes to changes in volume, this level of accuracy is typical
for first-principles phase diagrams. Due to the fact that we
do not include quantum fluctuations, we find that the low
temperature phase of SrTiO3 is polar, instead of a quantum
paraelectric.

In addition to identifying the phases, we can use our
model to calculate detailed material properties as a function
of doping and temperature. For example, in Fig. 10, we
present the average dielectric constant throughout the phase
diagram, calculated with the method of Ref. [26]. Unlike a
effective Hamiltonian approach [26], our expansion includes
contributions from all atomic degrees of freedom, instead
of just soft modes, and treats thermal expansion correctly.
Due limitations in converging the dielectric constant near a

FIG. 9. Phase diagram of BaxSr1−xTiO3 as a function of doping
and temperature (K). Tet refers to nonpolar tetragonal, Mix refers to
mixed octahedral rotations and polarization, and (111), (011), and
(001) refer to polarization directions.
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FIG. 10. Static dielectric constant as a function of Ba percentage
and temperature (K). Colors range from 0 (dark blue) to 2000
(dark red).

ferroelectric phase transition in a finite cell, we cap the re-
ported dielectric constant at 2000. As expected, the dielectric
constant is very high throughout the region where the various
polar phase transitions occur, but is unaffected by the nonpolar
transition in the Sr-rich region.

IV. CONCLUSIONS

In this work, we present an expansion in terms of both
scalar degrees of freedom, corresponding to chemical or
magnetic variables, and vector atomic displacements. We
discuss various symmetry properties of the expansion, as
well as a procedure for determining relevant coefficients and
fitting them to first-principles calculations. By using exam-
ples, we show that the model can be usefully applied to solid
solutions of semiconductors like Si1−xGex and oxides like
BaxSr1−xTiO3, as well as magnetic insulators like MnO and
metals with vacancies like Al.

Due to the fact that this expansion can be applied to a
wide range of materials, and that the fitting, improvement,
and validation of model can proceed nearly automatically,
we expect that it can be useful for many purposes. By
combining features of a cluster expansion with structural
degrees of freedom, we can in some cases achieve improved
convergence with distance, and by making use of energies,
forces, and stresses from every available self-consistent field
calculation, we can fit the expansion with surprisingly few
first-principles calculations. We fit our models using dozens
of calculations for materials without structural transitions, and
a few hundred for materials with multiple local minima and
strong anharmonic terms. The expansion naturally includes
both configurational free energy and vibrational free energy
to any desired order. Most importantly, we can calculate
properties that couple atomic displacements with chemical
or magnetic degrees of freedom. This allows for the study
of materials like ferroelectrics, piezoelectrics, electrocalorics,
magnetocalorics, shape memory alloys, and ferroelastics that
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are technologically relevant but difficult to treat directly with
first-principles calculations.
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APPENDIX: CONVERGENCE VERSUS PURE
CLUSTER EXPANSION

The primary purpose of the combined atomic displacement
and cluster expansion presented in this work is not to compete
directly with pure cluster expansion treatments of chemical
disorder, but instead to calculate properties that depend on
atomic displacements. Nevertheless, in some cases it is pos-
sible to take advantage of the shorter convergence length
of the unrelaxed cluster expansion coefficients, as discussed
in Sec. III A and Fig. 1, to fit a combined model that can
out-perform a pure cluster expansion fit to the same number
of DFT calculations. This out-performance with limited data
is possible despite that fact the full model requires fitting many
more total coefficients.

The counter-intuitive potential for a more complicated
model to have improved performance despite limited fitting
data depends on the fact that a pure cluster expansion can
make use of only a very limited fraction of the total infor-
mation produced during a typical first-principles structural
relaxation, namely, the final energy. In contrast, the combined
expansion presented in this work can take advantage of the
energy, forces, and stress from every step of the structural re-
laxation. Therefore any given calculation with N atoms and ns

steps represents ns (3(N − 1) + 6 + 1) total pieces of fitting
data. In practice, this data will be highly correlated during the
final relaxation steps. Nevertheless, there is clearly more data
available to the combined expansion, which can compensate
for the larger number of coefficients that are needed. When
this additional data is combined with the shorter convergence
length for unrelaxed coefficients, improved performance rela-
tive to a pure cluster expansion is possible, although certainly
not guaranteed.

We present one example of this improved convergence in
Fig. 11. In this example for the SixGe1−x system examined
in Sec. III A, we fit each model to the same nine structural
relaxations, with x varying from 0.008–1.0, and the structural
relaxations starting with the unrelaxed diamond structure. We

FIG. 11. Out-of-sample model comparison between model
(x axis) and reference energy (y axis) of a pure cluster expansion
model (orange points) and a combined cluster plus atomic displace-
ment expansion (green points) for SixGe1−x system as discussed in
Appendix.

can see that although both models perform well given the
limited fitting data, the combined model is more accurate than
the pure cluster expansion in this case. Because the combined
expansion also gives access to more properties than the cluster
expansion, simply fitting the more complicated model with
the same amount of data is already quite useful. We further
clarify that this model fit on limited data is not expected to be
as accurate as the model fit to more data in the main text.

In general, we do not expect either type of model to system-
atically outperform the other when fit to limited datasets, and
we expect the same performance when each model has access
to a sufficiently large dataset. Mostly likely, the pure cluster
expansion will perform better when the effective cluster in-
teractions converge quickly with distance, when the strain re-
mains small, and when the atomic displacement expansion is
long-ranged or high-order. In addition, we note that any Monte
Carlo calculations will be less computationally expensive
using the pure cluster expansion. Therefore a choice between
the two models will most likely depend primarily on which
properties are being studied, rather than the convergence. We
leave a more systematic comparison between the two models
to future work.
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