
PHYSICAL REVIEW B 99, 165432 (2019)

Resonant optical second harmonic generation in graphene-based heterostructures
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An optical second-harmonic generation (SHG) allows to probe various structural and symmetry-related
properties of materials, since it is sensitive to the inversion symmetry breaking in the system. Here, we investigate
the SHG response from a single layer of graphene disposed on an insulating hexagonal boron nitride (hBN) and
silicon carbide (SiC) substrates. The considered systems are described by a noninteracting tight-binding model
with a mass term, which describes a nonequivalence of two sublattices of graphene when the latter is placed
on a substrate. The resulting SHG signal linearly depends on the degree of the inversion symmetry breaking
(value of the mass term) and reveals several resonances associated with the band gap, van Hove singularity, and
bandwidth. The difficulty in distinguishing between SHG signals coming from the considered heterostructure
and environment (insulating substrate) can be avoided by applying a homogeneous magnetic field. The latter
creates Landau levels in the energy spectrum and leads to multiple resonances in the SHG spectrum. Position of
these resonances explicitly depends on the value of the mass term. We show that at energies below the band gap
of the substrate the SHG signal from the massive graphene becomes resonant at physically relevant values of the
applied magnetic field, while the SHG response from the environment stays off resonant.
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I. INTRODUCTION

The second-harmonic generation (SHG) has become a very
important tool to investigate different properties of materials.
The sensitivity of the SHG to inversion symmetry and number
of layers is an important aspect to perform experiments or
to realize devices based on quasi-two-dimensional (2D) het-
erostructures [1]. The fact that the SHG is forbidden in materi-
als where the inversion symmetry is preserved [2] can also be
exploited for the investigation of layered systems composed
from different materials. Recently, such heterostructures at-
tracted a lot of attention from the physical community due
to their unusual electronic properties [3]. The state-of-the art
method to study structural properties of these systems is the
scanning tunneling microscopy (STM). However, the direct
STM measurements can probe only the surface states and
are not sensitive to structural changes in multilayered het-
erostructures. On the other hand a much simpler experiment
on the SHG can indirectly capture the differences between
various combinations of layers even if it occurs not at the
surface.

Unfortunately, an application of this technique to a sim-
plest and most extensively studied 2D material, i.e., a mono-
layer graphene, turns out to be inefficient. Indeed, a pristine
graphene exhibits inversion symmetry, which prevents any
SHG. The SHG signal in graphene can be observed either by
inducing an asymmetry between two sublattices of graphene
placing it on top of a band insulator or considering the fact
that a photon momentum q of the applied light already works
as a source of asymmetry. It has been shown that the response
caused by the photon momentum is weak, since it is propor-
tional to the momentum itself [4]. The problem of the SHG

in the case of the hexagonal lattice with the broken inversion
symmetry has also been considered previously [5,6]. It is
worth mentioning another physical effect, namely the valley
polarization, that allows the SHG in graphene [7]. Although
this mechanism could be very useful in the context of val-
leytronics, addressing the valley polarization experimentally
is still a matter of research.

In this work we investigate the SHG from the graphene
disposed on the insulating hexagonal substrates with different
band gaps as a particular example of quasi-2D heterostruc-
tures mentioned above. For this aim we perform calculations
using the diagrammatic technique based on the full dispersion
of the noninteracting tight-binding model with the mass term.
The reason for yet another theoretical study of the SHG
in graphene with the broken inversion symmetry is the fact
that previous studies on this subject report features that can
hardly be explained within physical intuition. For instance,
this concerns a stronger SHG response for a smaller mass
term [6], which is very surprising, since the mass is a conse-
quence of the inversion symmetry breaking. Furthermore, an
overwhelming majority of theoretical studies of the SHG in
graphene-based heterostructures are focused on frequencies
of the incident light around the band gap, which is far from
the experimentally accessible regime, where the energy of
the incoming photons is usually around 1.5 eV for red light
sources. For this reason, we obtain the full SHG spectrum
that is needed for a description of the actual experimental
data. This allows us to reveal additional resonances in the
optical spectrum that correspond to the van Hove singularity
and bandwidth, which cannot be captured by a simplified
Dirac model. The comparison between the SHG response
obtained for the full tight-binding spectrum and the one for

2469-9950/2019/99(16)/165432(12) 165432-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.165432&domain=pdf&date_stamp=2019-04-30
https://doi.org/10.1103/PhysRevB.99.165432


VANDELLI, KATSNELSON, AND STEPANOV PHYSICAL REVIEW B 99, 165432 (2019)

the approximated Dirac picture allows us to define the limits
of applicability of this approximation.

Another experimentally relevant problem that stays undis-
cussed in all previous works is the difficulty to distinguish
between SHG signals from the graphene flake placed on the
insulating substrate and the rest of the insulating sample.
Indeed, we find that, contrary to the result of Ref. [6], the SHG
response is proportional to the band gap, which in the case of
graphene disposed on the substrate is small compared to the
band gap of the clean substrate. Therefore, the SHG signal
from graphene can hardly be seen on top of the large SHG
signal from the band insulator. We show that this problem
can be resolved including the homogeneous magnetic field
in the system. The presence of the magnetic field results in
the formation of Landau levels in the energy spectrum. Since
these levels are sharp, we expect intense resonances associated
with transitions between Landau levels in the SHG spectrum.
Therefore, the presence of the magnetic field introduces a
natural amplification of the SHG that can be tuned adjust-
ing the value of the external magnetic field at a fixed laser
frequency. The small value of the mass term of the graphene-
based heterostructure allows us to find resonances on Landau
levels already at energies below the band gap of the insulating
substrate, while the SHG signal of the environment stays off
resonant. An experimental evidence of the applicability of this
technique can be found in Ref. [8].

II. SHG RESPONSE FROM MASSIVE GRAPHENE

Here, we study optical second harmonic generation from
graphene-based heterostructures using the following tight-
binding model that describes a behavior of noninteracting
electrons on a hexagonal lattice. This model can be ob-
tained from the first-principle density functional theory by a
parametrization of the band structure [9]. The corresponding
Hamiltonian matrix written in the sublattice space reads

Ĥk =
(

fk + m Sk

S∗
k fk − m

)
. (1)

Here, the off-diagonal term Sk is a Fourier transform of the
nearest-neighbor hopping process t , and the diagonal one fk
describes the next-nearest-neighbor hopping of electrons t ′
(see Appendix A). Here we also introduce the mass term m
that explicitly breaks the inversion symmetry of the system.
This term describes the sublattice imbalance, which illustrates
the situation when graphene is placed on top of a band
insulator. The corresponding value of the mass obtained in
atomistic calculations for the case of hexagonal boron nitride
(hBN) and silicon carbide (SiC) substrates can be found in
Refs. [9–12] and [13], respectively. This model is found to be
relevant for other materials, such as the monolayer MoS2 [14]
and germanene under the effect of an electric field [15].

Note that for the case of graphene on hBN the appearance
of the gap corresponds to the commensurate phase at small
enough misorientation angle between their lattices, whereas
for the incommensurate phase the average gap is supposed
to be zero [16,17]. It is the average gap that matters in
SHG experiments, where the typical laser spot size is much
larger than the interatomic distance. In the following when
discussing graphene placed on the insulating substrate we will

FIG. 1. Dispersion relation of graphene with (solid line) and
without (dashed line) account for the next-nearest-neighbor hopping
process t ′. Red arrows show optical resonances at the bandwidth
(� point), van Hove singularity (M point), and band gap (K point).

keep in mind only the commensurate case. The dispersion

relation E±
k = fk ±

√
|Sk|2 + m2 for the case of graphene

disposed on top of hBN with t = −2.8 eV, t ′ = −0.1t [18],
and m = 30 meV is shown in Fig. 1.

Following the procedure adopted from Ref. [7], the effect
of the applied probe light is accounted for via the Peierls
substitution introducing a vector potential A that represents
an external radiation

Ĥi j[A] = Ĥi j exp

(
−i

e

c

∫ R j

Ri

A(r, t ) · dr
)

. (2)

Here, e is the modulus of the electronic charge, c is the speed
of light, and Ĥi j is the lattice {i, j} space representation of the
Hamiltonian matrix (1).

The SHG response function we aim to obtain in the current
work can be derived using the Feynman diagram technique.
For this reason, we stick to the path integral formalism with
the corresponding action for our problem

S[A] = − Tr
∑
kν

ĉ∗
kν (1(iν + μ) − Ĥk[A])ĉkν . (3)

Here, ĉ(∗)
k is a two-dimensional spinor of Grassman variables

that describe creation (annihilation) of an electron, and 1 is
the 2 × 2 identity matrix in the sublattice space; the trace
is taken over the same space, β is the inverse temperature,
and

∑
k,ν stands for the infinite summation over the fermionic

Matsubara frequencies νn = (2n + 1)π/β and momentum in-
tegration over the Brillouin Zone (BZ). The chemical potential
μ = −3t ′ corresponds to the half-filled case (neutrality point).

The electric current density can be defined as the re-
sponse of the system on the applied vector potential
jαω[A] = δF [A]/δAαω, where F [A] = lnZ[A] and Z[A] =∫

D[c∗, c] exp {−βS[A]} is the generating functional, that is,
the partition function of the problem written in terms of the
action (3). Expanding the electric current up to the second
order with respect to the vector potential, one gets the usual
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(a) (b)

(c) (d)

FIG. 2. The triangular (a), frequency independent (b), and non-
linear bubble diagrams (c) and (d) involved in the SHG process.

relation

jαω[A] − jαω[0] =
∑
β,ω′

δ jαω[A]

δAβω′

∣∣∣∣
A=0

Aβω′

+ 1

2

∑
βγ ,ω′ω′′

δ2 jαω[A]

δAβω′δAγω′′

∣∣∣∣
A=0

Aβω′Aγω′′ .

(4)

The coefficient in front of the linear term is the usual optical
conductivity of the system. The coefficient in front of the
square of the vector potential describes the second harmonic
generation. The latter can also be expressed via the three-
particle correlation function 
ωω′ω′′

αβγ as

δ2 jαω[A]

δAβω′δAγω′′

∣∣∣∣
A=0

= δ3F [A]

δAαωAβω′δAγω′′

∣∣∣∣
A=0

= 2e3
ωω′ω′′
αβγ . (5)

Diagrammatic expressions for this correlation function are
shown in Fig. 2. The diagram “b” will be ignored in the fol-
lowing, because it represents a constant energy shift. Explicit
expressions for the triangular 
(3)(ω) (“a”) and nonlinear
bubble 
(2)(ω) (“c” and “d”) diagrams are following



(2)
αβδ (ω) = Tr

∑
k,ν

v̂(2)
αβĜ(k, ν − ω)v(1)

δ Ĝ(k, ν + ω)

+ 2 Tr
∑
k,ν

v̂(2)
αβ Ĝ(k, ν + ω) v̂(1)

γ Ĝ(k, ν),



(3)
αβγ (ω) = Tr

∑
k,ν

v̂(1)
α Ĝ(k, ν+ω)v̂(1)

β Ĝ(k, ν)v̂(1)
γ Ĝ(k, ν−ω),

(6)

where Ĝ(k, ν) = [1(iν + μ) − Ĥk]
−1

is the Green’s function
of our problem, and velocity operators can be defined in the
same way as in Ref. [7]

v̂(1)
α = 1

e

δĤk[A]

δAα

∣∣∣∣
A=0

, v̂(2)
αβ = 1

e2

δ2Ĥk[A]

δAαδAβ

∣∣∣∣
A=0

. (7)

As can be seen from Eq. (6), expressions for diagrams
“c” and “d” are connected by the following simple relation



(2) c
αβγ (ω) = 


(2) d
αβγ (2ω). The coefficient 2 is not included in the

definition of 

(2) d
αβγ (2ω). Then, the total result for the nonlinear

bubble can be written as 

(2)
αβγ (ω) = 


(2) d
αβγ (2ω) + 2


(2) d
αβγ (ω),

which explicitly connects the behavior of the SHG spectrum
at double and single frequencies of the applied light. It is
also worth mentioning that the contribution of the 


(2) d
αβγ (ω)

diagram is missing in Ref. [7].
The real frequency dependence of correlation functions can

be obtained performing an analytic continuation


̄αβγ (ω) = lim
ε→0

[
αβγ (−iω + ε) − 
αβγ (0)]. (8)

In practical calculations ε is taken to be small but finite.
In the following we take into account that the experi-

mentally measurable quantity for the SHG is the conversion
efficiency. It can be defined in the same way as in Ref. [2] and
is proportional to the ratio

η(ω) = 
̄(ω)/ω. (9)

The explicit evaluation of the introduced diagrams is
shown in Appendix B. We find that the contribution of the
triangular diagram 
(3)(ω) is zero even when a nonzero next-
nearest-neighbor hopping t ′ and chemical potential away from
the half filling are considered. The reason is that the integral
over momentum k in equation (6) for 
(3)(ω) averages to
zero in the whole Brillouin zone. This is essentially due to
the fact that two valleys K and K ′ of graphene contribute to
the integral with opposite signs and hence compensate each
other. This result is a generalization of the situation considered
in Ref. [5] for the case of a low-energy Hamiltonian for MoS2

material, where the contribution of the triangular diagram is
canceled by symmetry with respect to the inversion of ky.
A nonzero result for the triangular diagram can be obtained
introducing a valley polarization that generates an imbalance
between the two valleys, as discussed in Ref. [7].

Contrary to the triangular diagram, the contribution from
the nonlinear bubble is nonzero, and the 


(2)
αβγ (ω) tensor

reveals the reduced symmetry C3 instead of C6 with respect to
rotation (see Appendix B). Thus, we find that the contribution

(2)

xxx(ω) = 0, whereas the result for 
(2)
yyy(ω) is nonzero. It can

be shown that the only nonzero components of the tensor are

(2)(ω) = 
(2)

yyy(ω) = −
(2)
xxy(ω) = −
(2)

yxx(ω) = −
(2)
xyx(ω).

Remarkably, the account for the next-nearest-neighbor
hopping process t ′ also does not change the result for the
nonlinear bubble diagram. This can be explained looking at
the dispersion relation in Fig. 1. The inclusion of t ′ equally
shifts the upper and the lower band at given momentum k,
which does not change the energy difference between them.
Since we consider only direct excitations at zero momentum,
the SHG spectrum depends on the energy difference between
two bands and hence does not change with the inclusion of the
next-nearest-neighbor hopping.

Figure 3 shows the absolute value of the conversion ef-
ficiency ηyyy(ω) for different values of the mass term (half
of the band gap). Here, the results for the hexagonal boron
nitride (hBN, t = −2.4 eV, m = 2.78 eV), graphene on hBN
(Gr/hBN, t = −2.8 eV, m = 0.03 eV), and graphene on a
SiC substrate (Gr/SiC, t = −2.8 eV, m = 0.13 eV) [6,9] are
compared. The data on the right panel for the Gr/SiC is
multiplied by a factor of 5, and the one for the Gr/hBN is
multiplied by 5 × (mGr/SiC ÷ mGr/hBN) for clarity. The real
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FIG. 3. The absolute value of ηyyy(ω) for hBN (black line),
Gr/SiC (green line), and Gr/hBN (red line) at low (left) and high
(right) frequency ω. The data for Gr/SiC on the right panel is
multiplied by a factor of 5 and data for Gr/hBN is multiplied by
5 × (mGr/SiC/mGr/hBN ). The data on the left panel is shown without
the multiplication. Labels “1,” “2,” and “3” depict resonances on the
band gap, van Hove singularity, and the bandwidth, respectively. The
frequency ω of the applied light is given in units of eV.

and imaginary parts of the conversion efficiency ηyyy(ω) are
shown in Appendix B.

The SHG is a virtual process that is allowed even if the
frequency of the applied light is smaller than half of the
band gap. The nonzero increasing value of the conversion
efficiency η(ω) at small ω < m frequencies confirms this
statement. This consideration appears to be in agreement with
the result of Ref. [5] and also reproduces the trend observed
in Ref. [19]. Increasing the frequency of the applied light, the
SHG spectrum reveals the first resonance at energies when
excited electrons reach the band gap. This resonance appears
as a pair of peaks at frequencies ω = m and ω = 2m in
agreement with the frequency dependence of the nonlinear
bubble diagram 
(2)(ω) discussed above. These peaks are
labeled as “1” in Fig. 3. The double resonance on the band
gap was reported previously in Ref. [6] but is missing, for
example, in Ref. [19].

The use of the full tight-binding dispersion allows us to
capture additional resonances in the SHG spectrum labeled
as “2” and “3” in Fig. 3. The peak “2” corresponds to the
van Hove singularity and appears in the nonlinear optical
spectrum at the frequency ω = 2.8 eV (Gr/hBN and Gr/SiC)
and ω = 3.67 eV (hBN) with its replica at 2ω. The resonant
peak “3” at the highest energy comes from the bandwidth
of the system. Note that the use of the full tight-binding
dispersion is crucial for a description of these additional
optical resonances depicted in Fig. 1 via red arrows, since
the low energy expansion (Dirac picture) does not provide
the corresponding features of the energy spectrum. Our results
appear in good qualitative agreement with previous ab initio
theoretical work on hBN [20,21]. In addition, we observe that
the off-resonant SHG response function linearly depends on
the value of the mass term. Indeed, the conversion efficiency
η(ω) for the Gr/SiC shown in Fig. 3 (right) is almost indis-
tinguishable from the one of the Gr/hBN multiplied by the
factor (mGr/SiC/mGr/hBN). The fact that a smaller mass term

leads to a smaller value of the conversion efficiency can also
be seen comparing the off-resonant behavior of η(ω) for the
hBN with the one for graphene-based heterostructures. For
instance, the SHG response from the hBN for the applied
red light (ω � 1.5 eV) is five times larger than the one from
the Gr/hBN. However, the direct comparison of these signals
is complicated by a predominant resonant behavior of the
conversion efficiency of hBN at large frequencies. From the
physical point of view, this result can be explained as follows.
The mass term is exactly the factor that breaks the inversion
symmetry and hence is responsible for the SHG. Since the
latter is identically zero in systems with the unbroken inver-
sion symmetry, the larger SHG signal is expected when the
symmetry breaking is more severe. It is worth mentioning that
our result is in disagreement with the one of Ref. [6], where
the authors report a larger SHG signal for the material with a
smaller mass term.

III. INFLUENCE OF MAGNETIC FIELD ON THE SHG

Now, let us discuss the effect of a homogeneous magnetic
field on the SHG. The inclusion of the magnetic field in a
general tight-binding model can be done only numerically,
which is less intuitive and is much more complicated than
an analytical solution of the problem. However, this issue can
be resolved in the framework of the Dirac model. The latter
can be obtained performing the low-energy expansion of the
Hamiltonian matrix (1) in the vicinity of K and K ′ points of
the hexagonal Brillouin Zone of graphene [22]

ĤD = v[τkxσ̂x + kyσ̂y] + mσ̂z. (10)

Here, τ = ±1 is the valley index, and v = 3at/2 is the elec-
tron speed at conical points K and K ′.

The SHG in the case of Dirac electrons is forbidden by
Furry’s theorem [23]. This is represented by the fact that the
triangular diagram 
(3)(ω) is identically zero. The nonlinear
bubble diagram is absent in the Dirac approximation, since
the corresponding low-energy Hamiltonian does not contain
any second order term in momentum k that is responsible for
the existence of the nonlinear vertex v(2). Moreover, the SHG
response calculated on the basis of the low-energy Hamil-
tonian does not reproduce all features of the SHG spectrum
shown in Fig. 3. Therefore, we need to go beyond the Dirac
approximation in order to obtain an experimentally relevant
result for the SHG. Here, we can benefit from the fact that the
frequency of the red light, which is commonly used in SHG
experiments, is smaller than the van Hove singularity. For this
reason, the inclusion of already the first order correction in
momentum k to the low energy Hamiltonian (10) will be suffi-
cient to describe the SHG in graphene-based heterostructures,
although the resulting model will not hold for energies around
the van Hove singularities. We indicate the correction to the
Dirac Hamiltonian as HTW, which is the so-called trigonal
warping term

ĤTW = λ
[
2τkxkyσ̂y − (

k2
x − k2

y

)
σ̂x

]
, (11)

where λ = 3a2t/8 is the trigonal warping parameter [22].
The crucial role of the trigonal warping for the SHG in
graphene at low energies was pointed out in previous works
[6,24], although the result for the SHG is obtained there for
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FIG. 4. Comparison between absolute values of ηyyy(ω) for the
full dispersion (solid line) and massive Dirac dispersion with trigonal
warping (dashed line) for the case of Gr/SiC at zero value of the
magnetic field. ω is given in units of eV.

the regime of very low frequencies, which is not accessible
experimentally. The Dirac approximation with the trigonal
warping term was also considered in Ref. [5] for the case of
the SHG in MoS2. From the diagrammatic point of view, the
role of the trigonal warping is to introduce a nonlinear vertex
v(2) in the theory, which is responsible for the existence of
the nonlinear bubble diagram 
(2)(ω). In the following, we
make an additional approximation expanding the 
(2)(ω) up
to the first order in the trigonal warping parameter λ. Then, the
contribution of the trigonal warping remains only in the vertex
function v2, while the Green’s function stays the same as for
massive Dirac electrons. This will allow us to account for the
effect of Landau levels in the Green’s function analytically
without any approximations.

In order to estimate limits of applicability of the derived
approximation, let us consider the correction to the dispersion
relation due to the trigonal warping. At small values of the
mass m, the contribution to the energy from Dirac dispersion
is approximately equal to 3t

2 k and the contribution from the
trigonal warping term is 3t

8 k2. The latter can be considered as
a small correction for k up to 0.4, which corresponds to the
energy of about 1.7 eV. Figure 4 shows that this estimation
is rather conservative, and the SHG response function of the
approximate model is in good agreement for the one obtained
using the full tight-binding spectrum up to energies of about
2 eV. As expected, the breakdown of the approximation is
associated with the presence of the resonance on the van Hove
singularity in the SHG spectrum, which cannot be reproduced
without the full tight-binding dispersion.

After all, the conversion efficiency η(ω) at zero magnetic
field can be recast in a very simple form (see Appendix C)

η(ω) = 12imλv
∑

k

tanh
(

βεk
2

)
εk

[
1

ω2 − ε2
k

+ 4

ω2 − 4ε2
k

]
,

(12)

where εk = √
v2k2 + m2 is the massive Dirac dispersion of

electrons in graphene. Remarkably, Eq. (12) shows that the

FIG. 5. The absolute value of ηyyy(ω) (in a.u.) as the function of
the frequency of the applied light ω (in eV) for the case of Gr/SiC
under the effect of the magnetic field B = 1 T, 2 T, 4 T, and 6 T.
Colors serve as guides to the eye and depict resonances on the same
Landau levels at different values of the magnetic field.

off-resonant value of η(ω) linearly depends on the mass term
m, as expected from above discussions.

The homogeneous magnetic field directed perpendicular to
the surface of the sample can be introduced in the system
via the Peierls substitution k → k + eAB with the following
vector potential AB = B

2 (−y, x, 0). With this substitution, the
energy spectrum of the problem changes dramatically from εk
to a discrete set of Landau levels described by the following
expression εn =

√
m2 + 2|eBv2n| with n ∈ Z, (see Refs. [22]

and [25] for the case of zero mass term).
In the presence of the magnetic field, the translational

symmetry of the initial problem is explicitly broken. However,
the symmetry with respect to inversion in k space in the
Dirac model with the trigonal warping is still preserved.
This ensures that the contribution from the triangular diagram

(3)(ω) to the SHG response remains zero. The explicit calcu-
lation of the nonlinear bubble diagram 
(2)(ω) with the above
approximations is shown in Appendix D. The result for the
corresponding conversion efficiency for the case of Gr/SiC in
the presence of the magnetic field is shown in Fig. 5. Here, we
clearly see the multiple-peak structure of the SHG response
function due to excitations between Landau levels. A similar
picture has been observed experimentally in [8] for the SHG
in GaAs material. It can be shown that a selection rule for
the allowed transitions between Landau levels is �n = ±1. A
more precise analysis of Fig. 5 allows us to distinguish two
types of peaks with different intensities that correspond to the
contribution of different diagrams “c” and “d” shown in Fig. 5
to the SHG.

As we observe above, the SHG signal from the Gr/hBN
in the absence of the magnetic field is much smaller than
the signal coming from the clean hBN at experimentally
accessible frequencies. An application of the homogeneous
magnetic field results in the formation of the Landau level,
which in the case of small value of the effective mass of the
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graphene-based heterostructures appears already at energies
below the band gap of the insulating substrate. The resonance
on the Landau levels drastically enhances the SHG signal
from the graphene placed on top of the hBN, while the SHG
response from the hBN remains off resonant at energies below
the band gap. Therefore, the inclusion of the magnetic field
simplifies the detection of the SHG signal from the graphene
flake disposed on top of the insulating substrate.

IV. CONCLUSION

In this work we present a consistent calculation of the SHG
response from the graphene-based heterostructures. In our
calculations we first start with the full tight-binding dispersion
and obtain the nonlinear optical spectrum for experimen-
tally relevant frequencies of the applied light. We find that
the conversion efficiency has three pairs of resonances that
correspond to optical excitations between the band gap, van
Hove singularity, and bandwidth. We also observe that the
off-resonant behavior of the SHG response function linearly
depends on the mass term, contrary to what has been reported
in previous studies. The problem of distinguishing the small

signal from the graphene on top of the insulating substrate is
proposed to resolve here by the inclusion of the magnetic field.
The presence of the latter in the system leads to a formation
of Landau levels in the energy spectrum at energies below the
band gap of the insulating substrate. This allows us to obtain
resonant SHG excitations for the considered heterostructure
keeping the SHG signal from hBN off resonant. The magnetic
field is included in the theory analytically in the framework
of the simplified Dirac model with the trigonal warping.
The limit of applicability of this approximation is carefully
discussed. For instance, we find that the derived approxi-
mation is valid at energies below 2 eV, which is sufficient
for a description of the SHG experiment with experimentally
relevant frequency of the applied light.
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APPENDIX A: DERIVATION OF VERTEX FUNCTIONS

Explicit relation for the Fourier transform of the nearest-neighbor t and next-nearest-neighbor t ′ hopping processes in the
case of a hexagonal lattice is following

Sk = t

[
exp(iky) + 2 exp

(
− iky

2

)
cos

(√
3

2
kx

)]
, (A1)

fk = 2t ′
[

cos(
√

3kx ) + 2 cos

(√
3

2
kx

)
cos

(
3

2
ky

)]
. (A2)

The expression for velocities can be derived following Ref. [7]

v(1) σσ ′
α (k) = 1

e

δHσσ ′
k

δAα

∣∣∣∣∣
A=0

= ∂kα
Hσσ ′

k − i
(
rσ ′
α − rσ

α

)
Hσσ ′

k , (A3)

where A is the vector potential of the applied light introduced by the Peierls substitution, and σ, σ ′ indicate pseudospin degrees
of freedom related to a sublattice space. r indicates the atomic position within the unit cell. The resulting expression for velocities
becomes

v(1)
x (k) =

(
v(1) AA

x (k) −√
3ta e

−ikya
2 sin

(√
3kxa
2

)
−√

3ta e
+ikya

2 sin
(√

3kxa
2

)
v(1) BB

x (k)

)
, (A4)

v(1)
y (k) =

(
−6t ′a cos

(√
3

2 kxa
)

sin
(

3
2 kya

) −3ita e− ikya
2 cos

(√
3

2 kxa
)

3ita e
ikya

2 cos
(√

3
2 kxa

) −6t ′a cos
(√

3
2 kxa

)
sin

(
3
2 kya

)
)

, (A5)

where v(1) AA
x (k) = v(1) BB

x (k) = −2
√

3t ′a(sin(
√

3kxa) + sin(
√

3
2 kxa) cos( 3

2 kya)). In the same way, recalling the equation for the
two-photon velocity

v(2) σσ ′
αβ (k) = 1

e2

δHσσ ′
k

δAαδAβ

∣∣∣∣∣
A=0

= [
∂kα

∂kβ
+ i

(
ρσ ′

α − ρσ
α

)
∂kβ

+ i
(
ρσ ′

β − ρσ
β

)
∂kα

− (
ρσ ′

β − ρσ
β

)(
ρσ ′

α − ρσ
α

)]
Hσσ ′

k .
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This leads to the following expressions for the components of the second-order velocities

v(2)
xx (k) =

(
v(2) AA

xx (k) − 3ta2

2 e− ikya
2 cos

(√
3kxa
2

)
− 3ta2

2 e
ikya

2 cos
(√

3kxa
2

)
v(2) BB

xx (k)

)
, (A6)

v(2)
yy (k) =

(
−9t ′a2 cos

(√
3kx
2

)
cos

( 3ky

2

) − 1
2 e− 1

2 (iky )t
(

cos
(√

3kx
2

) + 8e
3iky

2
)

− 1
2 e−iky t

(
e

3iky
2 cos

(√
3kx
2

) + 8
) −9t ′a2 cos

(√
3kx
2

)
cos

( 3ky

2

)
)

,

where v(2) AA
xx (k) = v(2) BB

xx (k) = −3t ′a2(cos (
√

3kxa
2 ) cos ( 3kya

2 ) + 2 cos (
√

3kxa)), which is the expression for the two-electrons-
two-photons vertex.

APPENDIX B: EVALUATION OF DIAGRAMS FOR THE SHG

An important step in our derivation is to take explicitly the summation over internal frequencies in the loop of equation (6).
This simplifies considerably the expressions to be computed and gives physical insight into the problem, allowing us to show
explicitly the connection between formulas and physical transitions. The Green’s function G(k, ν) of the initial problem (1) is

Ĝ(k, ν) = 1

1(iν + μ) − Ĥk
= 1(iν + μ − fk ) + σ̂ · ξk

(iν + μ − fk )2 − ξ 2
k

, (B1)

where 1 is the identity matrix and σ̂ = (σ̂x, σ̂y, σ̂z ) is the vector of Pauli matrices in the sublattice space. We also define ξk =
(Re Sk, Im Sk, m) and ξk =

√
|Sk|2 + m2.

This representation of the Green’s function is not convenient to look for a compact expression for the diagram (6), so we
define the so-called spectral representation of the Green’s function (see, e.g., Ref. [26]). It’s an expansion of the denominator in
the above expression in simple fractions

1(iν + μ − fk ) + σ̂ · ξk

(iν + μ − fk )2 − ξ 2
k

= Â

iν + μ − fk − ξk
+ B̂

iν + μ − fk + ξk
. (B2)

Solving for the matrix coefficients Â and B̂, we find the following expression for the propagator

Ĝ(k, ν) =
∑
s=±1

�̂s(k)

iν + μ − fk − sξk
, (B3)

where we have introduced projectors over positive and negative energy states

�̂s(k) = 1

2

(
1 + s

ξk
σ̂ · ξk

)
. (B4)

We now define the third-order factor for the diagram as

�ss′s′′
αβγ (k) = Tr

[
v̂(1)

α �̂s(k)v̂(1)
β �̂s′

(k)v̂(1)
γ �̂s′′

(k)
]
. (B5)

Most importantly, this object does not depend on the frequency ν. Omitting the integration over momenta in (6), one gets



(3)
αβγ (ω, k) =

∑
ν,s,s′,s′′

�ss′s′′
αβγ (k)[

iν + μ − fk − ξ s
k

][
iν + iω + μ − fk − ξ s′

k

][
iν − iω + μ − fk − ξ s′′

k

] . (B6)

Now we concentrate on the following part of the denominator and we notice that it can be conveniently manipulated exploiting
partial fractions

1(
iν + iω + μ − fk − ξ s′

k

)(
iν − iω + μ − fk − ξ s′′

k

) = A

iν + iω + μ − fk − ξ s′
k

+ B

iν − iω + μ − fk − ξ s′′
k

,

where

A = −B = − 1

2iω − (
ξ s′

k − ξ s′′
k

) .

The useful fact is that the previously complicated evaluation is reduced to the evaluation of two polarization bubbles. The
expression for this diagram at finite chemical potential can be found, for example, in Ref. [26] (p. 157). In our case one gets



(3)
αβγ (k, ω) =

∑
s,s′,s′′

−�ss′s′′
αβγ (k)

2iω − (
ξ s′

k − ξ s′′
k

) ∑
ν

1[
iν + μ − fk − ξ s

k

][
1

iν + iω + μ − fk − ξ s′
k

− 1

iν − iω + μ − fk − ξ s′′
k

]
. (B7)
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The first term in the second line of Eq. (B7) reads

∑
ν

1[
iν + μ − fk − ξ s

k

][
iν + iω + μ − fk − ξ s′

k

] = 1

iω + (
ξ s

k − ξ s′
k

) ∑
ν

[
1

iν + μ − fk − ξ s
k

− 1

iν + iω + μ − fk − ξ s′
k

]
.

(B8)

Now we see that this expression can be summed introducing a convergence factor eiνnη with η → 0 in every term (see, e.g.,
Ref. [27], p. 272). Then, the evaluation of the Matsubara sum becomes simply the evaluation of the function 1

2 − nF (ξ ) in

correspondence of the poles of the function involved, where nF(ξ − μ) = (eβ(ξ−μ) + 1)
−1

is the Fermi distribution function. In
this case there are two poles: iν = −μ + fk + ξ s

k for the first fraction in the square brackets and iν + ω = −μ + fk + ξ s′
k for the

second one, keeping in mind that iω is a bosonic Matsubara’s frequency and the exponential of bosonic frequencies gives just a
factor 1. We can then derive that the sum over frequencies as∑

ν

1[
iν + μ − fk − ξ s

k

][
iν + iω + μ − fk − ξ s′

k

] = 1

iω + (
ξ s

k − ξ s′
k

) [
nF

(
ξ s

k + fk − μ
) − nF

(
ξ s′

k + fk − μ
)]

. (B9)

The second term in the second line of Eq. (B7) is given by a similar expression with the replacement s′ → s′′. The full expression
for the diagram can be obtained putting these two terms together and reads



(3)
αβγ (k, ω) =

∑
s,s′,s′′

−�ss′s′′
αβγ (k)

2iω − (
ξ s′

k − ξ s′′
k

)
[

nF
(
ξ s′

k + fk − μ
) − nF

(
ξ s

k + fk − μ
)

iω − (
ξ s′

k − ξ s
k

) − nF
(
ξ s

k + fk − μ
) − nF

(
ξ s′′

k + fk − μ
)

iω − (
ξ s

k − ξ s′′
k

)
]
.

(B10)

Now we take into account that in our case the s indexes can assume only values ±1. The result becomes different from
0 only if s �= s′ or/and s �= s′′, otherwise one of the numerators in brackets in Eq. (B14) vanishes. Therefore, one gets three
contributions

1)
∑
s=±1

�s,s,−s
αβγ (k)

2(iω − sξk )

[
nF(sξk + fk − μ) − nF(−sξk + fk − μ)

iω − 2sξk

]
, (B11)

2)
∑
s=±1

�s,−s,s
αβγ (k)

2(iω + sξk )

[
nF(sξk + fk − μ) − nF(−sξk + fk − μ)

iω + 2sξk

]
, (B12)

3)
∑
s=±1

−�s,−s,−s
αβγ (k)

ω2 + 4ξ 2
k

[nF(sξk + fk − μ) − nF(−sξk + fk − μ)]. (B13)

Rearranging terms in (B11) and (B12), and changing s to −s in the second one, we get the expression



(3)
αβγ (k, ω) =

∑
s=±1

�s,s,−s
αβγ (k) − �−s,s,−s

αβγ (k)

2(iω − sξk )

[
nF(sξk + fk − μ) − nF(−sξk + fk − μ)

iω − 2sξk

]

−
∑
s=±1

�s,−s,−s
αβγ (k)

ω2 + 4ξ 2
k

[nF(sξk + fk − μ) − nF(−sξk + fk − μ)]. (B14)

The next step is to calculate the contribution coming from the nonlinear bubble. The evaluation of the Matsubara summation
can be done in the same way as we did for the triangular diagram. The integrand of the nonlinear bubble 


(2)
αβγ (ω) becomes:



(2)
αβγ (k, ω) =

∑
s,s′

�ss′
αβγ (k)

∑
ν

(
1

iν − iω + μ − fk−ξ s
k

· 1

iν + iω + μ − fk−ξ s′
k

+ 2

iν + μ − fk−ξ s
k

· 1

iν + iω + μ − fk− ξ s′
k

)
,

(B15)

where

�ss′
αβγ (k) = Tr

[
v̂(2)

αβ�̂s(k)v̂(1)
δ �̂s′

(k)
]
. (B16)

We notice that this expression is identical to Eq. (B9) except for −iω in the first factor. Adapting Eq. (B9), we can then easily
derive the expression for the bubble to be



(2)
αβγ (k, ω) =

∑
s,s′

�ss′
αβγ (k)

[
nF

(
ξ s′

k + fk − μ
) − nF

(
ξ s

k + fk − μ
)

2iω − (
ξ s′

k − ξ s
k

) + 2
nF

(
ξ s′

k + fk − μ
) − nF

(
ξ s

k + fk − μ
)

iω − (
ξ s′

k − ξ s
k

)
]
. (B17)
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As in the previous case, the only possible contribution is given by s �= s′, so we can write



(2)
αβγ (k, ω) =

∑
s

�−s,s
αβγ (k)

[
nF(sξk + fk − μ) − nF(−sξk + fk − μ)

2iω − 2sξk
+ 2

nF(sξk + fk − μ) − nF(−sξk + fk − μ)

iω − 2sξk

]
. (B18)

Results for the real and imaginary parts of the conversion efficiency ηyyy(ω) ∼ 
(2)
yyy(ω)/ω for real frequencies is shown in Fig. 6.

APPENDIX C: SHG IN DIRAC MODEL WITH
TRIGONAL WARPING

At low energies and the initial Hamiltonian matrix Ĥk can
be expanded around K and K ′ points with respect to momen-
tum small momentum k. Then, we get a Dirac approximation
with the trigonal warping for the initial problem

Ĥ = v[τkxσ̂x + kyσ̂y] + mσ̂z + λ
[
2τ σ̂ykxky − σ̂x

(
k2

x − k2
y

)]
,

(C1)

where we have introduced the electron speed at the conical
points v = 3at

2 , valley index τ = ±1, and the trigonal warping
parameter λ = 3a2t/8. Velocities in this case are defined in
the low energy limit (continuous limit) as

v̂(1)
α = 1

e

δĤ

δAα

∣∣∣∣
A=0

= ∂kα
Ĥ

∣∣
A=0, v̂(2)

αβ = 1

e2

δ2Ĥ

δAαδAβ

∣∣∣∣
A=0

= ∂kα
∂kβ

Ĥ
∣∣
A=0. (C2)

Here, v̂(1), v̂(2) and Ĥ are 2 × 2 matrices in the sublattice
space.

We use the simplest approximation that amounts to include
the contribution of the trigonal warping only in the nonlinear
velocity v(2)

αβ . This is justified by the fact that in the dispersion
relation the trigonal warping parameter, which is already
smaller than the electronic speed, appears multiplied by the
squared momentum. So, the corresponding correction to the
position of the poles of the Green’s function is assumed to be
small. On the other hand, it is the first nonzero contribution
to the nonlinear velocity, so it cannot be excluded from the
consideration. This amounts to having a bubble diagram with
a usual velocity v(1) that does not depend on λ and a nonlinear

FIG. 6. Real (solid line) and imaginary (dashed line) part of the
conversion efficiency ηyyy(ω) for Gr/SiC (green color) and Gr/hBN
(red color).

vertex that is linear in λ. This is the lowest order in λ that
describes SHG. In this case the velocities can be obtained
differentiating the Hamiltonian with respect to momentum as
discussed above. So, they are simply proportional to Pauli
matrices as follows.

v̂(1)
x = vτ σ̂x; v̂(1)

y = vσ̂y; v̂(2)
xx = v̂(2)

yy = −2λσ̂x;

v̂(2)
xy = v̂(2)

yx = 2τλσ̂y. (C3)

We take a further approximation and consider only first order
terms in trigonal warping in the diagram 
(2)(ω). Since the
v̂(2)

yy (k) is already proportional to the trigonal warping param-
eter, we neglect the contribution of the trigonal warping in the
Green’s function. As we discuss in the main text (see Fig. 4),
the approximated result quantitatively agrees with the one of
the tight-binding model. The bubble diagram 
(2) in this case
can be expressed in a particularly simple way. Starting from
Eq. (B18), we can considerably simplify this expression in our
Dirac approximation. Starting from



(2)
αβγ (ω) =

∑
|k|<kc

∑
cones



(2)
αβγ (k, ω) = 3

∑
|k|<kc

∑
τ=±1

∑
s

�−s,s
αβγ (kτ )

×
[

nF(sεk − μ) − nF(−sεk − μ)

2iω − 2sεk

+ 2
nF(sεk − μ) − nF(−sεk − μ)

iω − 2sεk

]
, (C4)

where we consider that there are three couples of K and K ′
points in the Brillouin zone, τ is the valley index and kc is
the maximum value of the momentum for which the Dirac
approximation is valid. Now we notice that every component
where τ enters only once is zero when summed over valley
index. The only nonzero contributions are therefore those
involving v(1)

x and v(2)
xy/yx or v(1)

y and v(2)
xx/yy, as discussed in the

main text with symmetry considerations. It is straightforward
to show that these considerations are all equal to each other
up to minus sign. We can then evaluate the following quantity

�−s,s(k) =
∑
τ=±1

�−s,s
yyy (kτ ) = 2 Tr

[
v̂(2)

yy �̂s(k)v̂(1)
y �̂s′

(k)
]

= 4iλ v m s

εk
. (C5)

Let us also recall that nF(sεk − μ) − nF(−sεk − μ) =
s tanh ( βεk

2 ). Now we can plug these expressions back to the
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general expression for 
(2)(ω) and we get



(2)
αβγ (ω) = 12iλ v m

∑
|k|<kc

∑
s

1

εk
tanh

(
βεk

2

)[
1

2iω − 2sεk
+ 2

iω − 2sεk

]
(C6)

= 12iλ v m
∑

|k|<kc

tanh
(

βεk
2

)
εk

[
1

2iω − 2εk
+ 1

2iω + 2εk
+ 2

iω − 2εk
+ 2

iω + 2εk

]

= 12iλ v m iω
∑
k<kc

tanh
(

βεk
2

)
εk

[
1

(iω)2 − ε2
k

+ 1

(iω/2)2 − ε2
k

]
, (C7)

where we integrated over the angular coordinate since there is no angular dependence and thus the last integral is taken over the
modulus k of the momentum only.

APPENDIX D: SHG IN THE PRESENCE OF THE MAGNETIC FIELD

In order to consider the effect of the magnetic field, we add a vector potential describing the incident light using the Peierls
substitution as

Ĥτ = vσ̂τ · (p̂ + eAB + eArad) + mσ̂z, (D1)

where AB = B
2 (−x, y, 0) is the vector potential describing the external constant magnetic field and Arad describes the radiation

field of the incident light. We started the result given in Ref. [25] for the Green’s function of a Dirac particle in a magnetic field.
In that paper it was demonstrated that the Green’s function of the problem can be written as

G(r, r′, ω) = exp

{
−i

�(r, r′)
�0

}
G̃(r − r′, ω), (D2)

where �(r, r′) = ∫ r′

r AB(z) · dz, �0 is the magnetic flux quantum and G̃ is only a function of the difference between r and r′. If
we consider the bubble diagram between two points in real space 
(2)(r, r′, ω) ∼ G(r, r′, ω)G(r′, r,−ω), we see that the two
phases acquired along the paths are equal but opposite in sign, therefore they cancel each other.


(2)(r, r′, ω) =
∑

ν

Tr
[
v̂(2)

yy G̃(r − r′, ν + ω)v̂(1)
γ G̃(r′ − r, ν − ω)

] + 2
∑

ν

Tr
[
v̂(2)

yy G̃(r − r′, ν + ω)v̂(1)
γ G̃(r′ − r, ν)

]
= 
(2)(r − r′, ω) (D3)

where the velocities coincide with those calculated in the Dirac case without magnetic field. This means that the resulting bubble
depends just on the translationally invariant part of the Green’s function. This allows us to define a momentum dependent Green’s
function G(k, ω) = ∑

r G̃(r, ω)eik·r and to calculate the response using equation (5). The expression for G(k, ω) was derived in
Ref. [25] and was found to be

Ĝ(k, ω) = −π

+∞∑
n=0

D̂n(k)

(iω + μ)2 − εn
2
, (D4)

where:

D̂n(k) = −i exp

(
− ck2

|eB|
)

(−1)n

{
(mσ̂z − iω1)

[
[1 − σ̂z]Ln

(
ck2

|eB|
)

− [1 + σ̂z]Ln−1

(
ck2

|eB|
)]

+ 4(kxσ̂x + kyσ̂y)L1
n−1

(
ck2

|eB|
)}

,

(D5)

Lα
n (x) are generalized Laguerre polynomials and εn =

√
m2 + 2h̄2�2

c |n| are the discrete Landau levels of the system with
cyclotron frequency �c. The order of magnitude for the cyclotron frequency in graphene can be estimated replacing the value of
the electron velocity v = c

300 :

�c =
√

2eBv2

h̄c
≈ 37 meV

√
B(Tesla). (D6)

We can now see that the denominator has two poles for each frequency. We can rewrite everything in simple fractions in order
to obtain a summation over functions with a single pole. To do so we have to identify terms that depend on ω in the numerator.
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It is then useful to split the numerator in two parts. Explicitly this reads D̂n = �̂0(n, k) + iω �̂1(n, k), where we have collected
the quantities

�̂0(n, k) = −i exp

(
− ck2

|eB|
)

(−1)n

[
mσ̂z�̂1(n, k) + 4(kxσ̂x + kyσ̂y)L1

n−1

(
ck2

|eB|
)]

, (D7)

�̂1(n, k) = i exp

(
− ck2

|eB|
)

(−1)n

[
[1 − σ̂z]Ln

(
ck2

|eB|
)

− [1 + σ̂z]Ln−1

(
ck2

|eB|
)]

. (D8)

In this case the electron Green’s function becomes

Ĝ(k, ω) =
+∞∑

n=−∞

�̂n(k)

iω − sgn(n)εn
. (D9)

The projectors �n are obtained solving the equations to reduce Eq. (D4) in simple fractions and are

�̂n(k) = 1

2

(
�̂1(n, k) − i sgn(n)

�̂0(n, k)

εn

)
. (D10)

Now only the quantity at the denominator of the Green’s function depends on the Matsubara frequencies and we can repeat
exactly the same steps used to derive Eq. (B17) as in the case without magnetic field in order to calculate the bubble diagram. In
the Dirac approximation, the triangular diagram 
(3) = 0. The bubble diagram with magnetic field then reads



(2)
αβγ (ω) =

∑
ν,k

Tr
[
v̂(2)

αβĜ(ν + ωk)v̂(1)
γ Ĝ(ν − ωk)

] + 2
∑
ν,k

Tr
[
v̂(2)

αβĜ(ν + ωk)v̂(1)
γ Ĝ(νk)

]
(D11)

=
+∞∑

n,n′=−∞

∑
ν,k

�αβγ (k, n, n′)
[

1

(i(ν + ω) − sgn(n)εn)(i(ν − ω) − sgn(n′)εn′ )

+ 2

(i(ν + ω) − sgn(n)εn)(i(ν − ω) − sgn(n′)εn′ )

]

=
+∞∑

n, n′ = −∞
n �= n′, k

�αβγ (k, n, n′)[nF(εn − μ) − nF(εn′ − μ)]

[
1

2iω − sgn(n)εn+sgn(n′)εn′
+ 2

iω − sgn(n)εn+ sgn(n′)εn′

]
,

where

�αβγ (k, n, n′) = Tr
[
v̂(2)

αβ�̂n(k)v̂(1)
γ �̂n′ (k)

]
, (D12)

and we used Eq. (B9) to go from the second to third line. The use of this expression reduces the computational effort necessary
to compute the polarization that appears in other methods, because the only factor that depends on the momentum is the matrix
element. The three-particle correlation function can be written simply as



(2)
αβγ (ω) =

+∞∑
n, n′ = −∞

n �= n′

�αβγ (n, n′)[nF(εn − μ) − nF(εn′ − μ)]

[
1

2iω − sgn(n)εn + sgn(n′)εn′
+ 2

iω − sgn(n)εn+ sgn(n′)εn′

]
,

(D13)

where �αβγ (n, n′) = ∫
BZ ′ d2k �αβγ (k, n, n′) and the BZ ′ indicates that we are integrating in a small region where the quadratic

approximation is enough to describe the bands of graphene around the valleys with τ = ±1. The limitations and proper choice
of BZ is discussed in the main text. In natural units e = 0.0854 and 694 eV2 = 1 T. Finally λ′ = 0.4 Å · v and 1 Å = 1

2000 eV ,
so that λ = 0.06. Using this method for the calculation of the Green’s function, the very big computational time required for
calculations in magnetic fields can be overcome. I also approximated considering just a few k points per valley (since the k points
are weighted by a Gaussian function and they decay quite fast). Analyzing the structure of the matrix element �αβγ (n, n′) it is
easy to show that there is a selection rule on �n = n − n′ for the allowed transitions, that is �n = ±1. This becomes evident
if we realize that the integral in the matrix element contains an integral over k of Laguerre functions that are orthonormal by
definition. Expression (D13) can be rewritten in a less compact but more physically comprehensible way dividing the Landau
level number n and the band index s as follows



(2)
αβγ (ω) = 4iω

+∞∑
n = 1

s = ±1

�αβγ (n,−n − s)[nF(εn − μ) − nF(−εn+s − μ)]

[
1

(2iω)2 − (εn − εn+s)2 + 1

(iω)2 − (εn − εn+s)2

]
,

(D14)
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The sum over s accounts for the selection rule discussed in the previous paragraph and now the summation is taken just over a
single positive Landau level index.
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