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The recently realized bilayer graphene system with a twist angle of 30◦ offers a new type of quasicrystal
which unites the dodecagonal quasicrystalline nature and graphene’s relativistic properties. Here, we introduce
a concise theoretical framework that fully respects both the dodecagonal rotational symmetry and the massless
Dirac nature, to describe the electronic states of the system. We find that the electronic spectrum consists of
resonant states labeled by 12-fold quantized angular momentum, together with the extended relativistic states.
The resulting quasiband structure is composed of the nearly flat bands with spiky peaks in the density of states,
where the wave functions exhibit characteristic patterns which fit to the fractal inflations of the quasicrystal
tiling. We also demonstrate that the 12-fold resonant states appear as spatially localized states in a finite-size
geometry, which is another hallmark of quasicrystal. The theoretical method introduced here is applicable to a
broad class of “extrinsic quasicrystals” composed of a pair of two-dimensional crystals overlaid on top of the
other with incommensurate configurations.

DOI: 10.1103/PhysRevB.99.165430

I. INTRODUCTION

When two graphene layers are overlapped on top of the
other, the interlayer twist angle θ is an important physical
quantity to determine the electronic structures. This twisted
bilayer graphene (TBG) is essentially a quasiperiodic system,
as the two lattice periods of individual graphene layers are
generally irrational to each other. When θ is relatively small
(less than about 10◦), however, the low-energy physics is
governed by the long-range moiré interference pattern, and
then the electronic properties are captured by the moiré ef-
fective theory that does not need an exact lattice matching.
In brief, the effective theory approximately treats TBG as a
translationally symmetric system ruled by the moiré period.
The exotic phenomena in the low-angle regime [1,2], such
as the flat band formation [3–9] and the Hofstadter butterfly
under magnetic field [8,10–13], can be understood in terms of
the moiré effective theory.

In TBG of large θ , on the other hand, the moiré period
competes with the atomic length scale and the quasiperiodic
nature emerges [14]. When θ = 30◦, in particular, the overlaid
two hexagonal lattices are mapped onto a 12-fold rotationally
symmetric quasicrystalline lattice without any translational
symmetry [Fig. 1(a)], as first shown by Stampfli [15]. Re-
cently, the TBG with a precise rotation angle of 30◦ was
experimentally realized and its spectrum measured in epi-
taxially grown samples on top of the SiC surface [16]. In
addition, similar TBGs have been realized on top of the Ni
surface [17,18] and also by a transfer method [19]. Moreover,
another 30◦-rotated stack of atomic layers has also been
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realized in graphene on top of the BN layer [20] as well
as the MoSe2 bilayer system [21]. In such quasicrystalline
TBG (QC-TBG), the moiré effective approach sketched above
breaks down because its main assumption that the moiré
pattern governs the system is no longer valid.

In the literature, several theoretical approaches have been
applied to understand the electronic structures of conven-
tional quasiperiodic systems [22], such as one-dimensional
Fibonacci lattices [23,24], two-dimensional nonperiodic tiling
including Penrose lattice [25,26], metal nanoparticles [27],
photonic quasicrystals [28], and three-dimensional alloys in-
cluding Al-Mn, Al-Ni-Co, and Al-Cu-Co [29–34]. These
systems can be viewed as intrinsic quasicrystals where the
atomic sites are intrinsically arranged in the quasiperiodic
order. In contrast, the QC-TBG is regarded as an extrinsic
quasicrystal, in that it is composed of a pair of perfect crystals
having independent periodicities, and the quasiperiodic nature
appears only in the perturbational coupling between the two
subsystems. Thus, the QC-TBG unites the quasicrystalline
order and the relativistic nature of the massless Dirac particles
of graphene, yet it is not obvious whether and in what form
the essential features of quasicrystals emerge in the electronic
properties. Since such a hybrid situation is out of the scope
of the previous theories of intrinsic quasicrystals, we need
an alternative theoretical framework to properly describe the
quasicrystalline physics of QC-TBG.

In this paper, we develop a concise model Hamiltonian
that fully respects both the dodecagonal rotational symmetry
and the massless Dirac nature to describe the quasicrystalline
electronic states in the QC-TBG. We find that the electronic
spectrum of QC-TBG is characterized by the 12-fold resonant
states of relativistic Dirac fermions, and they can be well
captured by a ring Hamiltonian composed of 12 Dirac cones.
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FIG. 1. (a) Real-space lattice structures of QC-TBG (TBG stacked at 30◦). Red and blue hexagons represent the graphene’s honeycomb
lattices of layers 1 and 2, respectively. (b) Dual tight-binding lattice in the momentum space for QT-TBG (see text). Red and blue hexagons
show the extended Brillouin zones of layers 1 and 2, respectively. The red filled circles represent the wave numbers k for layer 1, and blue
open ones represent the inverted wave numbers k0 − k̃ for layer 2, where k0 is taken as 0 here. The number n represents the position of
Qn (n = 0, 1, 2, . . . , 11), and the dashed line indicates the connection in the 12-ring effective Hamiltonian. (c) The original positions of k
(layer 1) and k̃ (layer 2) associated with Qn, in the first Brillouin zone. The dashed line indicates the connection in the 12-ring Hamiltonian as
in (a). Due to the symmetry, these 12 wave numbers are at the same distance from the Dirac point so that the intrinsic graphene’s Bloch states
at these wave numbers are all degenerate in energy.

The resulting quasiband structure comprises a series of the
nearly flat bands corresponding to the resonant states, each of
which is labeled by a 12-fold quantized angular momentum.
The spatial pattern of wave functions exhibits the fractal
inflations of the Stampfli tiling, which is a direct manifestation
of the quasicrystalline nature [35]. Since we can tune the
twist angles in the model, the transition of electronic states
from the approximants [36] of QC-TBG to a true dodecagonal
rotational symmetry can be continuously described within a
12-fold ring model, and the emergence of quasicrystalline
states and the validity of the approximant method are critically
attested. We also show that the 12-fold resonant states appear
as spatially localized states in a finite-size geometry, which
is another hallmark of the quasicrystalline nature [23,24,37].
The proposed theoretical approach is applicable to a broad
class of extrinsic quasicrystals, and its simple structure of
the closed Hamiltonian allows rigorous analysis on exotic
quantum phenomena of quasicrystals.

The paper is organized as follows. In Sec. II, we present
the tight-binding model for QC-TBG, and introduce the dual
tight-binding approach in the momentum space. In Sec. III A,
we derive the approximate 12-wave ring Hamiltonian and,
using this, we describe the quasiband structure, the resonant
states, and the characteristic wave functions to respect the
Stampfli tiling. In Sec. III C, we calculate the electronic states
of QC-TBG in an alternative method using the finite-size
tight-binding model, and demonstrate the localization nature
of the 12-fold resonant states. A brief conclusion is given in
Sec. IV.

II. THEORETICAL METHODS

A. Tight-binding Hamiltonian for QC-TBG

We define the atomic structure of QC-TBG by starting
from AA-stacked bilayer graphene (i.e., perfectly overlapping

honeycomb lattices) and rotating the layer 2 around the center
of hexagon by 30◦ [Fig. 1(a)]. We set xy coordinates parallel
to the graphene layers and z axis perpendicular to the plane.
The system belongs to the symmetry group D6d , and it is
invariant under an improper rotation R(π/6)Mz, where R(θ )
is the rotation by an angle θ around the z axis, and Mz is
the mirror reflection with respect to the xy plane. The prim-
itive lattice vectors of layer 1 are taken as a1 = a(1, 0) and
a2 = a(1/2,

√
3/2) with the lattice constant a ≈ 0.246 nm,

and those of the layer 2 as ãi = R(π/6) ai. Accordingly,
the reciprocal lattice vectors of layer 1 are given by a∗

1 =
(2π/a)(1,−1/

√
3) and a∗

2 = (2π/a)(0, 2/
√

3), and layer 2
by ã∗

i = R(π/6) a∗
i . The atomic positions are given by

RX = n1a1 + n2a2 + τX (layer 1),

RX̃ = ñ1ã1 + ñ2ã2 + τX̃ (layer 2), (1)

where ni and ñi are integers, X = A, B (X̃ = Ã, B̃) denotes
the sublattice site of layer 1 (2), and τX and τX̃ are the sub-
lattice positions in the unit cell, defined by τA = −τ1, τB =
τ1, τÃ = −R(π/6)τ1 + dez, τB̃ = R(π/6)τ1 + dez with τ1 =
(0, a/

√
3). Here, d ≈ 0.335 nm is the interlayer spacing be-

tween graphene layers and ez is the unit vector normal to the
layer.

We model graphene by the tight-binding model of carbon
pz orbitals. The Hamiltonian is spanned by the Bloch bases of
pz orbitals at difference sublattices,

|k, X 〉 = 1√
N

∑
RX

eik·RX |RX 〉 (layer 1),

|k̃, X̃ 〉 = 1√
N

∑
RX̃

eik̃·RX̃ |RX̃ 〉 (layer 2), (2)
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where |RX 〉 is the atomic pz orbital at the site RX , k and k̃ are
the two-dimensional Bloch wave vectors, and N = S/Stot is
the number of graphene’s unit cells S = (

√
3/2)a2 in the total

system area Stot. We assume that the transfer integral between
any two pz orbitals is expressed as [38]

−T (R) = Vppπ

[
1 −

(
R · ez

R

)2
]

+ Vppσ

(
R · ez

R

)2

,

Vppπ = V 0
ppπe−(R−a/

√
3)/r0 , Vppσ = V 0

ppσ e−(R−d )/r0 , (3)

where R is the relative vector between two atoms, V 0
ppπ ≈

−2.7 eV, V 0
ppσ ≈ 0.48 eV, and r0 ≈ 0.0453 nm [4,39].

The total tight-binding Hamiltonian is expressed as H =
H1 + H2 + U where H1 and H2 are the Hamiltonians for the
intrinsic monolayer graphenes of layers 1 and 2, respectively,
and U is for the interlayer coupling. The intralayer matrix
elements of layer 1 are given by

〈k′, X ′|H1|k, X 〉 = hX,X ′ (k)δk′,k,

hX,X ′ (k) =
∑

L

−T (L + τX ′X )e−ik·(L+τX ′X ), (4)

where L = n1a1 + n2a2 and τX ′X = τX ′ − τX . Similarly, the
matrix for H2 is given by replacing k with R(−π/6)k.

The interlayer matrix element between layers 1 and 2 is
written as [1,7,40]

〈k̃, X̃ |U |k, X 〉 = −
∑
G,G̃

t (k + G)e−iG·τX +iG̃·τX̃ δk+G,k̃+G̃,

(5)

where G = m1a∗
1 + m2a∗

2 and G̃ = m̃1ã∗
1 + m̃2ã∗

2
(m1, m2, m̃1, m̃2 ∈ Z) run over all the reciprocal points of
layers 1 and 2, respectively. We also defined

t (q) = 1

S

∫
T (r + zX̃X ez )e−iq·rdr, (6)

where zX̃X = (τX̃ − τX ) · ez.

B. Dual tight-binding lattice in momentum space

Equation (5) shows that the interlayer interaction occurs
between the states satisfying the generalized umklapp scat-
tering condition k + G = k̃ + G̃. When we start from the
layer 1’s Bloch states at k0, for example, the interlayer
Hamiltonian U couples this state with layer 2’s Bloch states
at k̃ = k0 + G − G̃. They are further coupled back to layer
1’s states at k = k0 + G′ − G̃′, and so forth. As a result, the
space of the wave functions associated with k0 is spanned
by {|k, X 〉 | k = k0 + G̃ − G} and {|k̃, X̃ 〉 | k̃ = k0 + G − G̃}
for ∀ G and ∀ G̃. However, we actually need only a subset
of these sets since the Brillouin zone (BZ) of each layer is
translationally invariant with respect to the reciprocal lattice
vectors of its own (i.e., k and k + G stand for the same
Bloch wave number of layer 1). Thus, without loss of gen-
erality, we can choose the subspace spanned by the QC-TBG
Hamiltonian as {|k, X 〉 | k = k0 + G̃, ∀ G̃} and {|k̃, X̃ 〉 | k̃ =
k0 + G, ∀ G}. Here, note that the k points in each layer is
regularly spaced with the reciprocal vectors of the other layer.

According to Eq. (5), the interaction strength between
k = k0 + G̃ and k̃ = k0 + G is given by t (q) where q =
k + G = k̃ + G̃ = k + k̃ − k0. Since t (q) decays in large q,
the relevant contribution occurs only when |k + k̃ − k0| is
relatively small. The interaction strength can be visualized
by the diagram Fig. 1(b), where all the layer 2’s wave points
k̃ are inverted to k0 − k̃, and overlapped with the layer 1’s
wave points k. In the map, the quantity |k + k̃ − k0| is the
geometrical distance given by two points, so that the inter-
action takes place only between the points located in close
distance. If the k points are viewed as “sites,” the whole
system can be recognized as a tight-binding lattice in k space,
which is the dual counterpart of the original tight-binding
Hamiltonian in the real space. It should be noted that, unlike
the real-space version, the intralayer Hamiltonians H1 and H2

now can be interpreted as k-dependent onsite potential in the
k space, which is nothing but the band energy of intrinsic
graphene. Recently, the relationship between the real space
and the momentum space was also noticed in the localized
wave functions in moiré bilayer systems [41].

In this k-space tight-binding model, the hopping between
different k-space sites (the interlayer interaction U ) is smaller
by an order of magnitude than the potential landscape (the
band energy), so that the eigenfunctions tend to be localized
in the k-space lattice, in a similar manner to the Aubry-André
model in one dimension [42]. In the practical calculation,
therefore, we are allowed to take only a limited number of
wave points around k0 inside a certain cutoff circle, and ob-
tain the energy eigenvalues by diagonalizing the Hamiltonian
matrix within the finite bases. If we plot the energy levels
against k0, we obtain the quasiband structures of the system.
Here the wave number k0 works like the crystal momentum
for the periodic system, so it can be called the quasicrystal
momentum. The cutoff radius kc should be greater than the
typical localization length in the k space, but need not be too
large since the wave points discarded outside kc are properly
considered by shifting k0. If we increase kc, we will see
more and more replicas of the identical quasienergy band
with different origins because shifting k0 actually corresponds
to taking a different origin in the k-space map of Fig. 1(b).
The resonant band structure near k0 = 0 barely changes in
this process because its wave function is very well localized
to the 12-membered ring in the k space. The replica bands
are just a duplication of the same states so they should be
appropriately removed in calculating the physical quantities
such as the density of states. The validity of the momentum
cutoff is discussed in detail in Appendix A.

III. RESULTS AND DISCUSSION

A. 12-fold symmetric resonant states

At k0 = 0, we see that the 12 symmetric points Qn =
a∗[cos(nπ/6), sin(nπ/6)] (n = 0, 1, 2, . . . , 11) form a circu-
lar chain in the dual-tight-binding lattice of which radius
is a∗ ≡ |a∗

i | = 4π/(
√

3a), indicated by the dashed ring in
Fig. 1(b). Noting that the layer 2’s wave points are inverted,
these points are associated with layer 1’s Bloch wave numbers
k = Qn for even n’s and layer 2’s k̃ = −Qn for odd n’s.
Figure 1(c) shows the original positions of k (layer 1) and k̃
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(layer 2) associated with Qn, in the first Brillouin zone. Due to
the symmetry, the intrinsic graphene’s Bloch states at the 12
points are all degenerate in energy, and therefore the interlayer
coupling hybridizes them to make resonant states. Here, the
coupling is only relevant between the neighboring sites of the
ring, and it is given by t0 = t (2a∗ sin 15◦) ≈ 157 meV.

In the vicinity of k0 = 0, the Hamiltonian of the ring can
be expressed by a 24 × 24 matrix

Hring(k0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H (0) W † W
W H (1) W †

W H (2) W †

. . .
. . .

. . .
W H (10) W †

W † W H (11)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

H (n)(k0) =
(

h(n)
AA h(n)

AB

h(n)
BA h(n)

BB

)
, W = −t0

(
ω 1
1 ω∗

)
, (8)

where h(n)
X ′X (k0) = hX ′X [R(−7nπ/6)k0 + Q0], ω = e2π i/3,

and we neglect the k0 dependence of the interlayer matrix
element t (q). The diagonal block H (n) represents the
monolayer’s Hamiltonian at k = k0 + Qn for even n (layer
1) and k̃ = k0 − Qn for odd n (layer 2). In each 2 × 2 block
the sublattices are arranged in the order of (A, B) or (Ã, B̃)
for n ≡ 0, 3 in modulo of 4, and (B, A) or (B̃, Ã) for n ≡ 1, 2.
By doing this, the first base of a 2 × 2 block is always
mapped to the first base of other block under the operation of
R(π/6)Mz. Note that the arrangement of hAA, hAB, etc., in the
submatrix H (n) is fixed irrespective of n, and the dependence
on n solely comes from R(−7nπ/6)k0 in the argument of
hX ′X . Consequently, the total Hamiltonian Hring is obviously
symmetric under rotation by a single span of the ring (i.e.,
moving Qn to Qn+1), which actually corresponds to the
operation [R(π/6)Mz]7 (210◦ rotation and swapping layers 1
and 2) in the original system.

Figure 2(a) shows the density of states (DOS), Fig. 2(b)
the band structures as a function of k0 in the negative energy
region, and Fig. 2(c) its closer view near k0 = 0. The 12
Dirac cones are arranged on a circle with a radius �k = 4(2 −√

3)π/(3a) and they are strongly mixed near k0 = 0. As a re-
sult, the originally degenerate 12 states of graphene (in each of
the electron side and the hole side of the Dirac cone) split into
different energies, and exhibit the characteristic dispersion
including flat band bottoms and the Mexican-hat edges. This
leads to a series of spiky peaks and dips (pseudogaps) in DOS.
At k0 = 0, the Hamiltonian can be analytically diagonalized
to obtain a set of energies (neglecting the constant energy)

E±
m = t0 cos qm ±

√
3t2

0 sin2 qm + (h0 − 2t0 cos qm)2, (9)

where h0 = hAB(Q0) = hBA(Q0) = 1.84 eV, ± corresponds
to the conduction band and valence band, respectively, and
qm = (7π/6)m with m = −5,−4, . . . , 5, 6 is the wave num-
ber along the chain. The eigenvalue of R(π/6)Mz is given
by eimπ/6. Here, the states with m = ±s (s = 1, 2, 3, 4, 5)
form twofold doublets, and belong to two-dimensional Es

irreducible representation of D6d point group. The m = 0 and

6 are nondegenerate, and belong to A1 (A2) and B2 (B1), re-
spectively, for the conduction (valence) band. If we disregard
the z-position difference, the index m is regarded as quantized
angular momentum in 12-fold rotational symmetry, and this is
an essential characteristics of quasicrystal TBG.

We have similar resonant states also in the conduction
band, while the energy scale of the band structures is much
smaller than in the valence band. Equation (9) clearly explains
such asymmetry; the dispersion of E−

m in qm is nearly three
times wider than that of E+

m , considering that h0 � t0. Intu-
itively, the wave function of the conduction band of intrinsic
graphene has the opposite phases between the sublattices A
and B, and then the interlayer coupling between incommensu-
rate layers tends to be suppressed by the phase cancellation.

B. Wave functions showing the quasicrystal tiling

The 12-wave resonant coupling also gives rise to a char-
acteristic pattern in the wave function. Figure 2(d) shows
the wave functions at k0 = 0 where the hybridization is the
most prominent, where we can see that the wave amplitude
distributes selectively on a limited number of sites in a 12-fold
rotationally symmetric pattern. The extent of the hybridization
of different wave modes is characterized by the inverse partic-
ipation ratio (IPR) on the dominant layer

P−1(ψ ) =
∑′

i |ψi|4(∑′
i |ψi|2

)2 . (10)

Here, ψi is the amplitude at the site i of the eigenstates ψ , and∑′
i represents the sum over the sites on the dominant layer,

which is defined as the layer having greater wave amplitude
than the other. We have P−1 = 1 for a pure single-layer state,
and P−1 = 1.5 for a hybrid state of two plane wave modes. In
Fig. 2(b), the blue dots represent IPR at several sample points
in the band structures along the x direction, where the dot area
is proportional to P−1 − 1. We see that the IPR becomes large
exclusively around k0 = 0, where the 12 wave components
are strongly hybridized. P−1 remains almost 1 near the Dirac
cones where the hybridization is almost negligible. We also
have a region of P−1 ∼ 1.5 along the arch-shaped gap below
the Dirac cone, which is indicated by “2-wave” in Fig. 3(b).
These “2-wave” states arise from the hybridization of the K
and K ′ of the same layer assisted by the second-order process
of the interlayer coupling U .

We also show a large-scale plot of m = 0, 6 states in
Fig. 3(a). We see that the wave pattern perfectly follows the
Stampfli tiling, where the red (left-half) and black (right-half)
lines represent the third and fourth generations of the fractal
inflation, respectively [15]. Such a long-range structure of
the quasicrystalline wave function is actually quite sensitive
to a slight change of the twist angle. Figure 3(b) represents
the wave pattern of the corresponding state in TBG with
θ = 29.84◦, calculated by the same 12-wave method. The
TBG of 29.84◦ is a quasicrystal approximant, which is not
quasiperiodic but has a translational symmetry with period
of 3.31 nm. We can see that the local wave pattern is quite
similar to that of 30◦, while the long-range quasiperiodic
nature is completely lost and round to a periodic pattern.
Here, we confirmed that the quasiband structures, DOS, and
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FIG. 2. (a) DOS and (b) electronic structures in the valence band side of QC-TBG calculated by the 12-ring effective model. Blue dots
represent the inverse participation ratio of the dominant layer at several sample points in the band structures, where the dot area is proportional
to the measure of the spatial extent of the wave functions. Inset shows the size of the dots for almost decoupled states (“uniform”), the states
arise from the hybridization of the two waves in the same layer (“2-wave”), and the states arise from the hybridization of twelve waves
(“12-wave”) (see text). The black arrow shows the gap opening caused by 2-wave mixing. (c) Detailed band structures near k = 0 with index
m indicating quantized angular momentum in 12-fold rotational symmetry. (d) The valence band wave functions at k = 0 characterized by m,
where the area of the circle is proportional to the squared wave amplitude, and red and blue circles represent the states in the upper and the
lower layers, respectively.

IPR look almost the same as 30◦, but the tiny change of the
wave bases and the coupling matrix elements in the 12-ring
Hamiltonian encodes the periodic/quasiperiodic transition.

The energy spectrum of the QC-TBG approximant can
also be calculated by the original real-space tight-binding
model since it has a finite superlattice unit cell. We can show
that the DOS and the wave function of 29.84◦ calculated
by the original tight-binding model are virtually the same
as the result of the 12-ring effective Hamiltonian, and this
justifies the validity the effective approach. In Appendix B,
we present an extensive study on the electronic structures of
the quasiapproximants in all the angle regions from 0◦ to 30◦.

C. Localization in finite-sized QC-TBG

The emergence of quasicrystalline states in QC-TBG can
also be confirmed by a finite-sized tight-binding lattice, while

the computation is enormous. Here, we consider a tight-
binding lattice composed of two large disks of graphene with
radius R = 39.4 nm stacked at exactly 30◦, and calculate its
electronic structures by diagonalizing the huge Hamiltonian
matrix with the total number of atoms 371 532. As shown in
Fig. 4(a), the DOS of the finite flakes (thick red line), which
is obtained by broadening its discrete spectrum, is consistent
with the DOS of the 12-wave effective model (thin black line)
calculated by the effective Hamiltonian with a few wave bases
[Fig. 2(b)]. In Fig. 4(b), we also present the wave functions
at three energies α, β, and γ , which correspond to the band
edges of the quasiband structures in the effective Hamiltonian
(Fig. 2).

The magnified plot of γ is presented in the inset of Fig. 4(b)
showing the characteristic pattern of 12-wave approximation.
Interestingly, however, it is overlapped with an envelope func-
tion decaying in the radial direction. Such a localized feature
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FIG. 3. (a) Large-scale plot of m = 0, 6 states of TBG with
θ = 30◦ in Fig. 2(d). Red (left-half) and black (right-half) lines
represent the fourth and third generations of the Stampfli tiling,
respectively. (b) Similar plot for the quasicrystal approximant with
θ = 29.84◦. The red lines indicate the periodic unit cell.

is never seen in single-layer graphene and it is the character-
istics of the resonant states of QC-TBG. As a measure of the
concentration to the center, we calculate the second momen-
tum 〈r2〉/R2 for each eigenstate and plot it as green circles
in Fig. 4(a). For a uniform state (i.e., the wave amplitude is
constant throughout the system), 〈r2〉/R2 approaches 1/(2π ),
which is indicated by the dashed line. We can actually see that
〈r2〉/R2 lies around this line for most of the states, while it
becomes exceptionally small at the energies of the quasiband
edges argued in the previous section. In terms of the quasiband
structures, these localized states actually correspond to the
integral of the quasiband states over the nearly flat region,
and the length scale of the envelope function is related to the
size of the flat area in the momentum space. For the state at γ

(m = 0 state), for instance, the radius of the flat area is roughly
given by δk ∼ 0.2/a, and the corresponding real-space scale
r = 2π/k ∼ 7.7 nm matches the characteristic decaying and
oscillating scale of the envelope function.

FIG. 4. (a) DOS (red line) and the generalized second momen-
tum (green filled circles) of the two large finite flakes of graphene,
with 371 532 atoms (radius of the flake ∼39.4 nm), stacked at exactly
30◦. Black line shows the DOS of the k-space model [12-wave model
(kc < 18.8/a)]. (b) Plots similar to Fig. 2(d) for each peak α, β, γ .

IV. CONCLUSIONS

We revealed that the quasicrystalline nature emerges in
the electronic properties of QC-TBG, or the twisted bilayer
graphene stacked at 30◦. We developed a concise model
Hamiltonian for this unique system, and demonstrated that
the electronic structure is well described by the quasiband
picture despite the lack of periodicity. The quasiband states
of the QC-TBG are characterized by the 12-fold resonant
states of relativistic Dirac fermions, where the wave functions
exhibit the spatial pattern fully respecting the dodecagonal
quasicrystal tiling. Such a nonuniform distribution of electron
may be observed by microscopy imaging techniques. The
emergence of quasicrystalline states was attested by com-
paring the QC-TBG and a periodic approximant near 30◦,
and it was demonstrated that even a slight deviation from
the QC configuration destroys the long-range quasicrystalline
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FIG. 5. (a) Histogram of the number
of dominant wave base components |k, X 〉
and |k̃, X 〉 that make up each state. Thick
light gray, middle dark gray, thin black
lines show the histogram for all the states
calculated with the wave bases within kc of
150/a, 75.1/a, 18.8/a, respectively, where
the total number of wave bases are 11 630,
2918, 182, respectively. The histogram is
normalized by the total number of states,
which is two times the number of wave
bases due to the sublattices. (b)–(d) The
dominant component wave bases of three
example states in the k space. The radius
of each shaded red (blue) circles is pro-
portional to the amplitude of each wave
basis in layer 1 (2). (b) The wave compo-
nent of a nearly decoupled, monolayerlike
state. (c) The state which originates from
the 2-wave mixing. And, (d) the 12-wave
resonance state.

nature. Finally, we studied the electronic states of QC-TBG
using the finite-size tight-binding model, where the 12-fold
resonant states appear as spatially localized states in a finite-
size geometry.

While we considered the QC-TBG as a model example in
this paper, the theoretical method based on the k-space tight-
binding approach introduced here is applicable to any kind
of extrinsic quasicrystal composed two-dimensional materials
overlaid in incommensurate configurations, including het-
erostructures of two-dimensional materials having difference
lattice symmetries (e.g., rectangle and hexagon).

Extrinsic quasicrystals also provide a unique opportunity
to tune the quasicrystal bands by controlling the interlayer
interaction strength U . As U is an exponential function of
the interlayer spacing d [43], we can either increase U by
applying pressure, or decrease it through intercalation of ions
or addition of barrier atomic layers [44]. When U becomes
comparable to the width of the energy bands, we expect a
transition from the weakly coupled regime to the strongly
coupled regime where the quasicrystalline nature is even more
pronounced. The detailed studies on exotic electronic natures
in a broad class of extrinsic quasicrystals, such as the elec-
tronic transport, optical properties, the quantum Hall effect,
and also the effects of U modulation to these phenomena, are
left for future research.
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APPENDIX A: VALIDITY OF THE
MOMENTUM-SPACE CUTOFF

In this Appendix, we argue about the validity of introduc-
ing the momentum-space cutoff in calculating the quasiband
structure. As we mentioned in Sec. II B, the wave functions of
the QC-TBG are localized in the k space in a similar manner
to the Aubry-André model in one dimension [42] because the
hopping term in the k space is much smaller than the potential
landscape (the band energy). Figures 5(b)–5(d) show some
examples of the k-space amplitude map. Figure 5(b) shows
a nearly decoupled state which is dominated by only a single
state of monolayer graphene, and Fig. 5(c) is a state origi-
nating from the 2-wave mixing, where a pair of monolayer’s
states on layer 2 are coupled though the mediation of a middle
state on layer 1. Figure 5(d) is the 12-wave resonant state.
Any eigenstates other than those examples are also localized
within just a few reciprocal lattice constants in k space.
When we increase the number of total wave base components
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FIG. 6. Quasiband structure of QC-TBG calculated by 12-wave
model (thin red lines) and 182-wave model (thick gray lines).

(|k, X 〉 and |k̃, X̃ 〉) by increasing kc, each eigenstate hardly
changes as long as kc is greater than the typical localization
length. In Fig. 5(a), we show the histogram of the number of
dominant wave components in the eigenstates at a particular
k0, calculated in the basis sets within kc of 150/a, 75.1/a, and
18.8/a, respectively, where the total number of wave bases
are 11 630, 2918, and 182, respectively. We actually see that
each of eigenstates is composed only a few (mostly less than
10) bases. We note that, in large kc, we often see a resonance
between different localized states which are very distant in
k space. This does not much affect the calculation of the
physical quantity because the overlap of the different localized
wave functions are exponentially small.

We have infinitely many localized states far away from the
first Brillouin zone, so one might think that it is necessary to
take an infinite kc to properly include all the states. Note that,
however, these localized states can be moved into the vicinity
of the first Brillouin zone by shifting k0 with a proper amount,
as we show in the following. Thus, instead of using a large
kc requiring a large computational cost, we can obtain the full
spectrum of the system by calculating the electronic structures
as a function of k0 with a moderate kc.

Let us consider two states |k1, X 〉 and |k̃1, X̃ 〉 with

k1 = k0 + G̃1 (G̃1 ∈ G̃),

k̃1 = k0 + G1 (G1 ∈ G) (A1)

for a given k0. Suppose k1 and k̃1 are outside the cutoff circle,
i.e., |k1| > kc and |k̃1| > kc, but they strongly interact with
each other, i.e.,

|q(= k0 + G1 + G̃1)| � O(|a∗
i |). (A2)

Now, for any such k1, we can always find G2 (G2 ∈ G)
which makes k1 move to the point k2 ≡ k1 − G2 in the first

FIG. 7. DOS of QC-TBG calculated by 12-wave bases (thin
black line) and 182-wave bases (middle blue line). The thick red line
shows the DOS of finite-sized QC-TBG.

Brillouin zone, i.e.,

|k2| � O(|a∗
i |). (A3)

And suppose k̃2, defined as

k̃2 ≡ k0 + G1 + G̃1. (A4)

Then, by shifting k0 to a new point k′
0 defined as

k′
0 ≡ k2, (A5)

we can see that

k2 = k′
0 + 0 (0 ∈ G̃),

k̃2 = k′
0 + G1 + G2 (G1 + G2 ∈ G) (A6)

are the member of the subspace spanned from k′
0. And by

considering that k̃2 = q, and from Eqs. (A2) and (A3), we can
show that these two points are within the cutoff circle. Since

k2(= k0 + G̃1 − G2) = k1(= k0 + G̃1) (mod G),

k̃2(= k0 + G1 + G̃1) = k̃1(= k0 + G1) (mod G̃),
(A7)

|k2, X 〉 and |k̃2, X̃ 〉 represent the Bloch states the same as
|k1, X 〉 and |k̃1, X̃ 〉, respectively, interacting with the same
interaction strength t (q), since

q′ ≡ k2 − (k′
0 − k̃2) = q. (A8)

Thus, by shifting k0 to k′
0, the points discarded outside kc with

k0 are properly considered. And by calculating the electronic
structures for every k0 in the first Brillouin zone, we can get
every possible interaction pair in this system.

Figure 6 shows the quasicrystal bands of QC-TBG calcu-
lated with 12-wave model (kc < 3.76/a with k = 0 removed)
and 182-wave model (kc < 18.8/a). We can see that the band
structure of 182-wave model fully includes the spectrum of
12-wave model, while it also contains many other band lines.
Actually, these extra lines are just replicas of the identical
quasicrystal bands of 12-wave model with different origins
(Sec. II B). In other words, the physical properties can be
well described by calculating the quasiband structure with a
relatively short kc.

The minimum 12-wave models well reproduce the band
structure near the 12-wave resonant states, while there are
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FIG. 8. (a) DOS of TBGs with various rotation angles 0◦ < θ < 30◦ in a wide range of energy. Each line is offset along the vertical
direction by θ . Peaks marked with green arrows correspond to the van Hove singularity of monolayer graphene, and 2-wave mixing (interlayer
and intralayer) of TBGs, respectively. Peaks marked as α, β, γ correspond to the singularities associated with the resonant states of QC-TBG
(θ = 30◦). (b) Magnified plot of (a) near the energy ranges of the critical states of QC-TBG.

some small errors in the other energies. In Fig. 7, we see that
the 182-wave model almost perfectly overlaps with the DOS
of very large finite flakes, while the 12-wave model slightly
underestimates/overestimates the density of states far from
the resonant-state peaks. We confirmed that further increase
of kc does not change the DOS profile.

APPENDIX B: QUASICRYSTAL APPROXIMANTS

In Sec. III A, we compared the quasicrystalline TBG
stacked at 30◦ (QC-TBG) and its periodic approximant at
29.84◦. Actually, there exist infinitely many periodic TBGs
in any finite region in θ , just like rational numbers in the
real number axis. As we will see in the following, the peak
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structure in the density of states changes almost continuously
in rotating the twist angle θ , and tracing its evolution is useful
to get insights on the connection between QC-TBG and the
low-angle moiré TBGs, although the computation requires an
enormous number of atomic bases (103–105 atoms).

Here, we calculated the electronic structures of periodic
TBGs with various θ using a tight-binding model. Figure 8(a)
shows the evolution of the DOS in a wide range of energy,
and Fig. 8(b) is the magnified plot near the critical states
of QC-TBG. The peaks marked with “MG” correspond to
the van Hove singularity of monolayer graphene. Similarly,
“2-wave interlayer” represents the singularity that originates
from the two-wave mixing between the states in different
layers [45], and “2-wave intralayer” is the mixing between
the states in the same layer [18,43]. We show the width of the
band opening (pseudogap) from 2-wave-interlayer/-intralayer
mixing by the green horizontal arrows.

The sharp peaks marked as α, β, γ correspond to the
singularities coming from the 12-wave mixing of QC-TBG,

which were described as the nearly flat bands in the quasiband
picture in Sec. III A. We can see that the singular peaks rapidly
grow as θ approaches 30◦. The DOS of the TBG with θ =
29.99◦, the periodic TBG closest to 30◦ in this calculation,
is consistent with that of QC-TBG [Fig. 2(a)]. It should be
noted that, however, the wave functions of the approximants
do not obey the quasicrystalline long-range structure with
12-fold rotational symmetry, as argued in Fig. 3(b). We also
see that the peak-and-dip structure in the valence band is
much wider than in the conduction band, and it is consis-
tent with the analytic argument in the 12-wave ring model
[Eq. (9)].

The peaks enclosed by the red box in Fig. 8(b) are associ-
ated with the resonant states other than α, β, γ [i.e., the solu-
tions of Eq. (7) other than α, β, γ ]. In the 12-wave model, we
can also show that corresponding states have flat dispersion
in quasiband structure at θ ∼ 28◦, and exhibit singularities in
DOS. As θ approaches 30◦, however, the quasiband becomes
dispersive [Fig. 2(b)] and the DOS singularities disappear.

[1] E. J. Mele, Phys. Rev. B 81, 161405(R) (2010).
[2] Y. Fu, E. J. König, J. H. Wilson, Y.-Z. Chou, and J. H. Pixley,

arXiv:1809.04604.
[3] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro

Neto, Phys. Rev. Lett. 99, 256802 (2007).
[4] G. Trambly de Laissardière, D. Mayou, and L. Magaud, Nano

Lett. 10, 804 (2010).
[5] S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov,

Phys. Rev. B 81, 165105 (2010).
[6] E. S. Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z.

Barticevic, Phys. Rev. B 82, 121407(R) (2010).
[7] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. 108,

12233 (2011).
[8] P. Moon and M. Koshino, Phys. Rev. B 85, 195458 (2012).
[9] G. Trambly de Laissardière, D. Mayou, and L. Magaud,

Phys. Rev. B 86, 125413 (2012).
[10] C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao,

J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K.
Watanabe, K. L. Shepard, J. Hone, and P. Kim, Nature (London)
497, 598 (2013).

[11] B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz,
B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino,
P. Jarillo-Herrero, and R. C. Ashoori, Science 340, 1427 (2013).

[12] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias,
R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R.
Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M.
Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I.
Fal’Ko, and A. K. Geim, Nature (London) 497, 594 (2013).

[13] P. Moon and M. Koshino, Phys. Rev. B 90, 155406 (2014).
[14] E. Koren and U. Duerig, Phys. Rev. B 93, 201404(R) (2016).
[15] P. Stampfli, Helv. Phys. Acta 59, 1260 (1986).
[16] S. J. Ahn, P. Moon, T.-H. Kim, H.-W. Kim, H.-C. Shin, E. H.

Kim, H. W. Cha, S.-J. Kahng, P. Kim, M. Koshino, Y.-W. Son,
C.-W. Yang, and J. R. Ahn, Science 361, 782 (2018).

[17] Y. Takesaki, K. Kawahara, H. Hibino, S. Okada, M. Tsuji, and
H. Ago, Chem. Mater. 28, 4583 (2016).

[18] W. Yao, E. Wang, C. Bao, Y. Zhang, K. Zhang, K. Bao, C. K.
Chan, C. Chen, J. Avila, M. C. Asensio, J. Zhu, and S. Zhou,
Proc. Natl. Acad. Sci. 115, 6928 (2018).

[19] X. D. Chen, W. Xin, W. S. Jiang, Z. B. Liu, Y. S. Chen, and J. G.
Tian, Adv. Mater. 28, 2563 (2016).

[20] D. Wang, G. Chen, C. Li, M. Cheng, W. Yang, S. Wu, G. Xie, J.
Zhang, J. Zhao, X. Lu, P. Chen, G. Wang, J. Meng, J. Tang, R.
Yang, C. He, D. Liu, D. Shi, K. Watanabe, T. Taniguchi et al.,
Phys. Rev. Lett. 116, 126101 (2016).

[21] Y.-H. Choi, D.-H. Lim, J.-H. Jeong, D. Park, K.-S. Jeong, M.
Kim, A. Song, H.-S. Chung, K.-B. Chung, Y. Yi, and M.-H.
Cho, ACS Appl. Mater. Interfaces 9, 30786 (2017).

[22] S. Roche, G. T. De Laissardière, and D. Mayou, J. Math. Phys.
38, 1794 (1997).

[23] Q. Niu and F. Nori, Phys. Rev. Lett. 57, 2057 (1986).
[24] M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35, 1020

(1987).
[25] K. Niizeki and T. Akamuatsu, J. Phys.: Condens. Matter 2, 7043

(1990).
[26] J.-M. Gambaudo and P. Vignolo, New J. Phys. 16, 043013

(2014).
[27] J.-W. Dong, K. H. Fung, C. T. Chan, and H.-Z. Wang, Phys.

Rev. B 80, 155118 (2009).
[28] K. Mnaymneh and R. C. Gauthier, Opt. Express 15, 5089

(2007).
[29] A. P. Smith and N. W. Ashcroft, Phys. Rev. Lett. 59, 1365

(1987).
[30] T. Fujiwara and T. Yokokawa, Phys. Rev. Lett. 66, 333

(1991).
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