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Sensing electrons during an adiabatic coherent transport passage
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We study the detection of electrons undergoing coherent transfer via adiabatic passage (CTAP) in a triple
quantum-dot system with a quantum point contact sensing the charge of the middle dot. In the ideal scenario, the
protocol amounts to perfect change transfer between the external dots with vanishing occupation of the central
dot at all times, rendering the measurement and its backaction moot. Nevertheless, even with minor corrections
to the protocol, a small population builds up in the central dot. We study the measurement backaction using a
Bayesian formalism simulation of an instantaneous detection at the time of maximal occupancy of the dot. We
show that the interplay between the measurement backaction and the nonadiabatic dynamics induces a change
in the success probability of the protocol, which quantitatively agrees with a continuous detection treatment.
We introduce a correlated measurement signal to certify the nonoccupancy of the central dot for a successful
CTAP protocol, which, in the weak-measurement limit, confirms a vanishing occupation of the central dot. Our
proposed correlated signal purports the proper experimental method by which to confirm CTAP.
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I. INTRODUCTION

Quantum measurements constitute one of the main pil-
lars of quantum mechanics. They induce an unavoidable
backaction on the measured system [1]. This trait can be
advantageously used for applications in quantum information
processing, ranging from error correction [2] to improved
quantum state discrimination [3] and to quantum feedback
[4]. On the other hand, the impact of measurement backaction
can be particularly detrimental in the detection of quantum co-
herent processes, as the measurement corresponds to a strong
decoherence channel [5]. The regime of weak measurement,
in which the backaction is reduced alongside the rate of in-
formation acquisition, is therefore of particular interest. Weak
measurements, in fact, enable detection while minimally dis-
turbing the coherent process and make it possible to define
meaningful conditional outcomes in quantum regimes [6,7].

The detection of coherent quantum processes is relevant
for the study of quantum transport. Quantum effects play
a crucial role in electronic transport through nanostructures
and have been at the core of mesoscopic physics since its
foundation. The direct detection of quantum processes by
weak measurements is, however, a more recent development.
A paradigmatic example thereof involves a which-path de-
tection in electronic interferometers [8–10]. More recently,
the direct detection of electronic transport through virtual-
state transition in cotunneling processes has been addressed
theoretically [11,12], showing that weak measurements make
it possible to collect information on the system through condi-
tional quantities without destroying the coherent cotunneling
process. The adverse effect of backaction on such transport
has also been predicted [12] and consequently measured [13].

The role of noninvasive detection of quantum transport
processes admits an extra layer of complexity when an exter-
nal time-dependent driving is applied to the system. A relevant

paradigmatic case is that of coherent transfer via adiabatic
passage (CTAP) [14–19]. The CTAP scheme amounts to
transporting an electron between two quantum wells (left
to right) through an additional central well via dynamically
tuned tunnel barriers. For appropriate adiabatic driving of
the system, the protocol fully transfers the particle while
maintaining a vanishing population at the central well at any
time. Thus, the CTAP scheme is manifestly robust against
fluctuations that couple to the charge of the central island.
Additionally, it is an all-electrical spatial implementation of a
well-known quantum optics techniques to transfer populations
between long-lived atomic levels [20,21]. There are various
proposals to realize the CTAP in different physical systems
[19], and a classical analog of the scheme has been experimen-
tally realized in optics [22] with follow-up applications [19].

The detection of a vanishing charge in the central well
along with a successful left-to-right transfer is a striking
signature of the CTAP mechanism. At the same time, how-
ever, the detector backaction affects the quantum interference
underlying the adiabatic passage. Indeed, a strong projec-
tive measurement would destroy the coherence of the cen-
tral well and, correspondingly, disrupt the adiabatic passage.
Nevertheless, the central-well occupation can be addressed
by continuous weak measurements. In a recent work [23],
the probability distribution function of the current signal of
a quantum point contact (QPC) sensing the charge in the
central dot during a single-shot CTAP and the fidelity of the
transport were numerically computed. The gradual acquisition
of information on the system was shown to induce loss of
fidelity to the population transfer; namely, it appears that the
combined detection of the central-well occupation alongside
a successful adiabatic passage is unattainable.

In this work, we analytically study the detection of the
charge in the central dot in a CTAP scheme conditional to
a successful electron transfer. This quantity provides direct
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(a)

FIG. 1. The CTAP protocol. (a) Sketch of a solid-state system
implementing a CTAP using a triple single-level quantum-dot setup
with tunable tunnel barriers. The CTAP transfers the electron from
well 1 to well 3 without charge occupancy in the central well 2. A
QPC detector weakly senses the charge on the central dot. (b) The
instantaneous eigenvalues of the CTAP Hamiltonian [see Eqs. (1) and
(2)] for ε1 = ε3 = 0 and ε = ε2 = �max/10. (c) The time-dependent
occupancy of the three wells for εi = 0, with i = 1, 2, 3. (d) The
time-dependent occupancy of the central well for finite values of the
central-well energy ε = ε2 and (e) finite-adiabatic parameter γ . Both
a finite ε = ε2 and a finite γ lead to a nonvanishing charge on the
central well. The numerical time evolution in (e) is computed with
δt = 5 × 10−4 h̄/�max.

evidence of the vanishing population of the central dot during
a successful CTAP. We show that the detection process is
effective in a limited time window at the maximal occu-
pancy of the central well, thus enabling us to introduce an
efficient description of the probability distribution function
of the detector’s signal. Our approach allows us to determine
the measured occupation of the central well conditional to the
electron passage in the form of so-called weak values (WV)
[6]. Our results confirm a vanishing central-well occupation in
the limit of weak-measurement backaction and adiabatic evo-
lution. Interestingly, the WV of the central-well population,
conditional on an unsuccessful CTAP transfer, approaches a
finite negative value, thus providing indirect evidence of the
quantum coherence of the process. Such correlated detection
can prove valuable in sensing of other types of prominent adi-
abatic passage processes, e.g., in topological pumps [24–30].

II. THE CTAP SCHEME

We consider a system consisting of three single-level quan-
tum dots or wells with energy levels εi coupled to a QPC
which serves as the charge detector of the occupancy of
the central dot or well [see Fig. 1(a)]. The external wells,

1 and 3, are connected to the central one, 2, by time-dependent
tunneling rates �12(t ), �23(t ). The Hamiltonian of the system
is written as

H3w =
3∑

i=1

εic
†
i ci + [h̄�12(t )c†

1c2 + h̄�23(t )c†
2c3 + H.c.],

(1)
where c†

i creates an electron in well i. Provided that the energy
levels of the external wells are the same, ε1 = ε3 = 0, the
CTAP protocol coherently transfers an electron from well 1 to
well 3 by applying Gaussian voltage pulses to tune the tunnel
barriers in time [14],

�12(t ) = �max exp

[
− (t − tmax/2 − tdelay)2

2σ 2

]
,

�23(t ) = �max exp

[
− (t − tmax/2)2

2σ 2

]
, (2)

where both pulses have the same height �max and width σ

and are delayed by tdelay. The probability of transferring the
electron is maximal when σ = tmax/8 and tdelay = 2σ [23],
and in the ideal adiabatic limit, it approaches 1.

The deterministic success of the CTAP relies on the Hamil-
tonian (1) with ε1 = ε3 = 0 having a zero-energy (E0 = 0)
eigenstate at any time, as shown in Fig. 1(b). The basic idea
is that the time dependence in Eq. (2) adiabatically evolves
the left-well occupancy to the right-well occupancy through
that zero-energy eigenstate. Consider for simplicity the case
where all εi = 0. At the onset of the protocol, tstart → −∞,
the system’s eigenstates are degenerate at zero energy. The
switching on of �2 (note that the coupling �2 between wells
2 and 3 is switched on before the coupling �1 between 1
and 2) maintains only the left-well state at zero energy. This
zero-energy state adiabatically evolves to the right-well state
at the end of the protocol, tfin → ∞. Note that having ε2 �= 0
does not affect the properties of the zero-energy eigenstate
[see Fig. 1(b)].

Ideally, the CTAP process takes infinite time and yields
unitary transfer probability [see Fig. 1(c)]. Realistically, a
finite duration, tfin − tstart, introduces a nonzero overlap of
the initial left-well state at time tstart = 0 with the finite-
energy eigenstates. Yet the protocol is designed to maintain
a maximal overlap of the remaining zero-energy eigenstate
with the left-well state. Note that the success of the protocol
is not altered by a finite ε2 since the zero-energy eigenstate is
preserved [see Fig. 1(b)] and its initial and final overlaps with
the left and right wells are unaffected.

The adiabaticity of the process is controlled
by a generalized Landauer-Zener parameter γ =
max |〈ψ1|∂t Ĥ3w|ψ0〉/(E1 − E0 )2| = 4

√
e/(tmax�max) � 1,

with Ej and |ψ j〉 ( j = −1, 0, 1) being the instantaneous

eigenenergies and eigenstates of Ĥ3w at time t . Remarkably,
in the adiabatic limit and ε2 = 0, the occupation of the central
well is identically zero [14,23], 〈c†

2c2〉 ≡ n2 = 0, as shown in
Fig. 1(c). This makes the system insensitive to any external
interaction with the central-well population, whether it is by
undesired fluctuations or by a charge detector. The feature
n2(t ) = 0 is modified by either ε2 �= 0 (alongside a finite
duration of the experiment) or by diabatic corrections at
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γ �= 0. Hence, a detection process of a CTAP should be
considered along with the γ → 0 and ε2 → 0 limits.

The effect of finite ε = ε2 can be accounted for analytically
in the adiabatic limit, yielding

n2(t ) =
∑

j,k=−1,0,1

(
α

tstart
j

)
〈ψ j (t )|c†
2c2|ψ j (t )〉αtstart

j

=
∣∣∣∣αtstart

1

√√
4�2

1 + 4�2
2 + ε2 + ε

−α
tstart
−1

√√
4�2

1 + 4�2
2 + ε2 − ε

∣∣∣∣
2

/2, (3)

where α
tstart
j ≡ 〈ψ j (tstart )|1〉 is the overlap amplitude of the

left well with the eigenstates at time t = tstart. The resulting
time-dependent occupation of the central well is reported
in Fig. 1(d), where a finite, yet small, occupancy n2(t ) is
maintained around tmeas = (tmax + tdelay)/2.

In the finite-γ case, the evolution of the initial state can
be determined numerically. It can be obtained by discretizing
the time in intervals δt where the Hamiltonian is assumed to
stay constant. We use the Crank-Nicolson method [31,32] to
approximate the propagator over a time period �t . The time
evolution of the system is then expressed as

ρ(t + �t ) = Û (�t )ρ(t )Û †(�t ), (4)

where the propagator in Cayley form [33] is

Û (�t ) =
[
1 + i

�t

2
Ĥ3w(t )

]−1[
1 − i

�t

2
Ĥ3w(t )

]
. (5)

The time evolution is applied to an initial-state density matrix
element ρ written in the {|1〉, |2〉 |3〉} basis at time tstart =
0. Our numerical calculations for 〈c†

2c2〉 = n2(t ) reported in
Fig. 1(e) show that, for relatively adiabatic evolution, the
largest correction to the central-well population occurs at
a short time window around the middle of the pumping
protocol, (tmax + tdelay)/2. At other times, n2 is exponentially
small [23]. This makes the protocol exponentially insensitive
to external fluctuations on the dot but, at the same, time poses
a limit on the direct detection of the charge in the central
well [23].

III. THE DETECTION PROCESS

To determine the effect of the measurement process, we
assume that the detector is an ideal quantum point contact
[34,35] whose current is solely sensitive to the presence of
an electron in the middle well. Besides being routinely used in
experiments as a charge sensor [36], a QPC provides a simple,
yet general, model for a detector. The QPC is characterized
by the tunneling amplitudes � and � + δ� depending on
whether well 2 is unoccupied or occupied, respectively [34].
The coupling between the system and the detector is then
given by the Hamiltonian

Hqpc =
∑

r

(Er − μr )a†
r ar +

∑
l

(El − μl )a
†
l al

+
∑
l,r

h̄(� + δ� c†
2c2)(a†

r al + a†
l ar ), (6)

where a†
r and a†

l are the electron creation operators in the right
and left electrodes, respectively, while Er(l ) stands for the set
of energy levels in the reservoirs kept at chemical potentials
μr(l ) so that the difference is set by the applied voltage bias
μr − μl = eV . Here, we assume all tunneling amplitudes are
real and independent of the states in the QPC leads. We further
restrict ourselves to the zero-temperature limit, 1 � βeV .
Under this condition the effect of thermal noise is negligible
both in the signal and in the backaction [8,37], so that no
extra noise sources are present, and the detector is quantum
limited [38]. The macroscopic (classical) signal in the detector
is the current through the QPC. This is a stochastic signal
whose distribution generically depends on the system’s state
and the duration of the measurement τV . When the central
well is empty, the average current is Ie = eTeV/h̄, where
T = 2π h̄2νlνr�

2 is the transmission probability through the
QPC and νr,l is the density of states in the leads. Similarly,
when the central well is occupied, we have the average current
Io = e(T + δT )eV/h̄.

For a generic (coherent) state of the system, the stochastic
current outcome I can be regarded as the fraction of suc-
cessfully transmitted electrons across the QPC, I = en/N ,
where N is the total number of impinging electrons at a rate
eV/h̄ during the measurement time τV . The QPC current is
therefore characterized by the probability distribution P(I, N ).
For the empty case, the transmission probability is T , and for
large N, I will be normally distributed with variance 4SI/τV ,
where SI = 2eIe(1 − T ) is the current shot noise. The vari-
ance of the distribution is the same for the occupied con-
figuration as long as δ� � �. By increasing N , the vari-
ance is gradually reduced, and the state of the well being
occupied or unoccupied is resolved. The two states are dis-
tinguishable when 4SI/τV < (Ie − Io)2, which is τV > τM =
4SI/(Ie − Io)2, where τM is referred to as the measurement
time. As long as τV � τM , the measurement is not sufficiently
long to distinguish the two states, and we are in the weak-
measurement regime.

It is convenient to rescale the stochastic current variable I
to a dimensionless outcome variable, x = (2I − Ie − Io)/(Io −
Ie), so that Ie and Io are linearly mapped to the dimension-
less outcome values −1 and 1, respectively. For a given
state of the system defined by the density matrix ρ(t ) =∑

i, j=1,2,3 ρi, j |i〉〈 j|, the probability distribution of the QPC
current is given by [35,39]

P(x, N ) = (ρ11 + ρ33)P(x, N | − 1) + ρ22P(x, N |1), (7)

where P(x, N |s) is a Gaussian distribution with an average of s
and a variance of D/N , where D = τMeV/h̄ and D/N 
 1 sets
the weak-measurement limit. The measurement backaction al-
ters the state of the system. For a given measurement outcome
x, the density matrix after the measurement is [35,39]

ρ ′(t + τV , x) = 1

P

⎛
⎝ρ11(t )eα ρ12(t ) ρ13(t )eα

ρ12(t ) ρ22(t )e−α ρ23(t )
ρ13(t )eα ρ23(t ) ρ33(t )eα

⎞
⎠, (8)

where P = ρ11(t )eα + ρ22(t )e−α + ρ33(t )eα and we have in-
troduced α = xN/D. Controlling the duration of the measure-
ment, τV → 0, the Bayesian formalism makes it possible to
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FIG. 2. Detector signal. Probability distribution density of the
dimensionless detector signal x for different measurement strengths
N/D at tmeas = (tmax + tdelay )/2 for (a) ε/�max = 1/50 and γ → 0
and (b) ε/�max = 1/50 and γ /4

√
e = 1/50. In all simulations for

(b) δt = 510−2h̄/�max. The results reproduce with good accuracy
those from the full simulation in Ref. [23]. The different color scales
highlight the acute difference in the to-be-measured accumulated
charge in the central well by the two scenarios [see also Figs. 1(d) and
1(e)].

follow the quantum evolution of the system state during the
measurement process [35,39].

Computing the signal of the QPC and its effect on the ef-
ficiency of the CTAP process requires a numerical simulation
of the system-detector evolution over the whole cycle, as in
Ref. [23]. Taking advantage of the vanishing occupancy of
the central well during the CTAP protocol, we can make the
numerical computation considerably easier. We first note that
in order to probe the vanishing occupancy of the central well,
it is sufficient to sense it at the most volatile instance of time
when a nonvanishing population can develop, as opposed to
following the charge throughout the protocol with negligible
chance of detection. The specific dynamics of the CTAP
scheme makes the sensing at that given time as informative
as the full charge tracking. In fact, as shown in Fig. 1(e),
the population in the central dot n2 becomes appreciable
only around tM = (tmax + tdelay)/2, before decreasing once
more. We therefore expect that a short-pulse measurement,
a measurement kick, at a single time when the central-well
population is in its maximum, tM ≈ (tmax + tdelay)/2, plays
the same role as an integrated charge detection and that
the two descriptions of the system-detector dynamics should
essentially capture the same physics. In other words, our sim-
plification decouples the system’s numerical time evolution
from that of the detector until the measurement time tmeas =
(tmax + tdelay)/2. At that time, the pulsed weak measurement
can be treated analytically.

We plot P(x, N ) in Figs. 2(a) and 2(b) for the ideal adia-
batic limit with ε ≡ ε2 �= 0 and for a finite adiabatic parameter
γ , respectively. The probability density distribution we obtain
in the adiabatic limit agrees extremely well with the one
obtained via a conservative numerical ensemble averaging
[23]. The difference between the two plotted distributions
arises due to the profound difference in the to-be-measured
accumulated charge in the central well; that is, the central
well potential ε �= 0 generates a much smaller signal than the
nonadiabatic correction for the chosen parameters [see also
Figs. 1(d) and 1(e)].

IV. MEASUREMENT BACKACTION AND
CONDITIONAL SIGNAL

The advantage of the Bayesian approach is the possibility
to address the backaction of any single measurement and not
only its average effect. We can thus determine the average out-
come of sensing the charge on the central well (2) conditional
on the success of the pumping cycle,

w
〈x〉1 =

∫ ∞

−∞
xP(x|w)dx =

∫
x

P(w|x)P(x)

P(w)
dx. (9)

The expression involves the probabilities of finding, at time
tend = tmax + tdelay, the pumped electron at a given well
(w ∈ {1, 2, 3}) given a specific measurement outcome x, i.e.,
P(w|x) = 〈w|Uρ ′(tmeas, x)U −1|w〉, with U being the time
propagator from tstart to tmeas, and the probability of finding the
particle in the well w, P(w) = ∫ ∞

−∞ P(w|x)dx. With the intro-
duced rescaling of the detector signal, the conditional detector
outcome is directly translated to the conditional occupancy
of the dot via n2 = (x + 1)/2 and, equivalently, w〈n2〉1 =
(w〈x〉1 + 1)/2. Note that, in our numerical method, the time
evolution in the calculation of P(w|x) can be conveniently
absorbed in the back-in-time evolution of the state |w〉 rather
than in the evolution of the density matrix.

In the limit of weak measurement, D/N 
 1, the con-
ditional detector outcome in Eq. (9) takes the form of so-
called weak values of the population of the middle well. WVs
were introduced as the distinctive result [6] of measurements
consisting of (i) initializing the system in a certain state |ψi〉
(preselection), (ii) weakly measuring an observable Â of the
system via a von Neumann interaction [1] with a detector,
and (iii) retaining the detector output only if the system
is eventually measured to be in a chosen final state |ψ f 〉
(postselection). The average signal of the detector will then
be proportional to the real (or, possibly, the imaginary) part

of the WV f 〈A〉i = 〈ψ f |Â|ψi〉
〈ψ f |ψi〉 . Apart from the role of weak

values in addressing conceptual questions [40–42] and their
use for precision measurements [9,39,43–50], they provide a
way to define conditional physical observables independent
of the detector’s details [11,12,51]. In the present case too, the
weak value is the proper quantity to address the detection of
the charge in the central well for successful CTAP adiabatic
transfers. This coincides with the conditional signal outcome
introduced in Eq. (9).

The measurement backaction effects are presented in
Fig. 3, where the failure probability of CTAP, 1 − P(3), and
the conditional occupancy of the well 3〈n2〉1 are presented.
In the ideal adiabatic limit, already in the absence of the
measurement, the success probability of the CTAP and the
occupancy of the central well are not optimal; that is, a
finite CTAP failure probability and nonvanishing central-well
population exist [see Figs. 3(a) and 3(b)]. This is the result
of the finite-time duration of the protocol and the finite
energy ε. Theoretically, the expected occupancy of the dot
is correctly reproduced by the simulated conditional signal
of the detector in Fig. 3(b). Furthermore, the success of the
CTAP is surprisingly increasing with increasing measurement
strength, and the conditional measured charge on the central
well is correspondingly reduced. This effect can be explained
by noting that, given the low occupancy of the dot in the
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FIG. 3. Charge measurement for successful CTAP. (a) Probabil-
ity of not finding the electron in the final (right) well at the end of
the protocol and (b) the corresponding conditional occupancy of the
central well 2〈n2〉1 at tmeas = (tmax + tdelay )/2 as a function of the
measurement strength in the ideal adiabatic limit. (c) and (d) The
dependence of the same variables as in (a) and (b), respectively,
as a function of the adiabatic parameter γ . The success probability
P(3) increases with the measurement strength, which statistically
suppresses unwanted components of the system state in the central
well. All results are obtained with δt = 5 × 10−2h̄/�max and tmax =
50h̄/�max.

absence of measurement, the measurement backaction tends
to statistically project the system onto the state with an empty
central well. This reduces the unwanted weight of the system
state on the central well, thus making the state closer to the
ideal CTAP state. Indeed, the more likely such a projection is,
e.g., by increasing ε = ε2, the more the measurement backac-
tion can correct for the finite-duration error [see Figs. 3(a) and
3(b)].

A similar effect of backaction occurs for the case of
diabatic corrections [see Figs. 3(c) and 3(d)]. In the absence
of measurement, the failure probability [Fig. 3(c)] and the
conditional central-well occupation [Fig. 3(d)] reduce to those
set by the initial finite duration of the protocol. The occupancy
increases, and the success probability decreases upon increas-
ing the diabatic corrections. The conditional signal of the
detector follows the unconditional occupancy of the well in
the adiabatic regime but deviates for large γ since the diabatic
dynamics considerably changes the success probability. Also
in this case, we see that the measurement backaction plays
in favor of the CTAP protocol: it reduces the occupancy of
the well [Fig. 3(d)] and increases the success probability
[Fig. 3(c)]. The rational is again that the measurement reduced
the unwanted state component on the central well. However,
this does not hold when the occupancy of the central well
starts deviating considerably from zero and the success prob-
ability is low. In this regime, the conditional charge deviated
considerably from the unconditional one, and the coherence
of the quantum evolution shows up in peculiarities of the
conditional value, e.g., the negative values of 3〈n2〉1.

The conditional occupancy in Figs. 3(b) and 3(d) in the
limit of weak measurement and adiabatic dynamics is a direct
measurement of the vanishing occupation of the central well
when restricting ourselves to successful CTAP processes. This
has to be contrasted with an unconditional measurement for

N/D

6·10−9

8·10−9

P
(1

)

(a)

0.0

0.2

0.4(c)

0 10 20

N/D

−0.2

−0.1

0.0

1
〈n̂

2
〉 1

(b)

0.2 0.3

γ

−20

0

20
(d)

FIG. 4. Unsuccessful CTAP. (a) Probability of finding the elec-
tron in the initial (left) well at the end of the protocol and (b) the
corresponding conditional occupancy of the central well at tmeas =
(tmax + tdelay )/2 as a function of the measurement strength in the
ideal adiabatic limit. (c) and (d) The dependence of the same quan-
tities on the adiabatic parameter. The decreasing of P(1) with the
measurement strength is consistent with the results in Fig. 3. P(1)
has a recurring behavior as a function of the adiabatic parameter.
In correspondence with P(1) → 0, the conditional occupancy of
the dot shows large or negative values characteristic of peculiar
weak values. All results are obtained with δt = 5 × 10−2h̄/�max and
tmax = 50h̄/�max.

which there is no guarantee that the probability of a successful
electron transfer results from CTAP alongside a vanishing
central-well occupation. Also, as shown in Ref. [23], any
measurement asserting an unambiguous value of the central-
well population in a single run of a CTAP would hinder the
success of the protocol, making it inconclusive.

Interestingly, we can access, via the Bayesian formalism
[35,39], the conditional value for unsuccessful CTAP, given
by the probability of finding the electron in the left or central
well. The results for P(1) and 1〈x〉1 are shown in Fig. 4.
Analogous results are obtained for P(2) and 2〈x〉1. We note
the decreasing of P(1) in Figs. 4(a) and 4(c) with the mea-
surement strength, which is consistent with the increasing
dependence of P(3) in Fig. 3. The dependence on the adiabatic
parameter γ shows a recurring behavior. While the probability
of failing the CTAP, P(1) + P(2), is a monotonous function of
γ [see Fig. 3(c)], the probabilities of detecting the particle in
either of the two wells is determined by the quantum evolution
in the finite Hilbert space of the system, which generically
shows revival as a function of time or system parameters.

As expected, P(1) is small in the adiabatic limit. The
corresponding conditional occupation of the central well is
negative. This nonclassical feature is an indirect signature of
the quantum evolution of the CTAP. In fact, as known from
weak-measurement theory [6], these peculiar features are
in one-to-one correspondence with the violation of certain
Leggett-Garg inequalities [39], which set classical (i.e., from
macroscopic realism) inequalities for correlated outcomes
of a sequence of measurements. Specifically, if we indicate
x j (t ) as the dimensionless signal of a QPC detector coupled
to the jth quantum well at time t , the classical constraint
0 � | 1〈x1(t − meas)〉1| � 1 on the conditional outcome is
violated in the limit of weak measurements if and only if the
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Leggett-Garg inequality, −3 � B � 1, with B ≡
〈x1(tstart )x2(tmeas)〉 + 〈x2(tmeas)x1(tfin) − 〈x1(tstart )x1(tfin)〉,
is violated too.

V. SUMMARY AND CONCLUSION

In the present work, we addressed the detection of the
central-well occupancy in a CTAP along with the corre-
sponding backaction. We modeled the measurement as an
instantaneous process taking place at the time of maximal
occupancy of the central well, thus decoupling the measure-
ment from the system evolution. The instantaneous detection
reproduces the results of continuous detection of the central-
well occupancy during the entire pumping protocol and allows
us to conveniently define and compute the population of the
central well conditional on successful electron transfer via
CTAP. This quantity, as opposed to single-shot measurements
and unconditional averages, is the one that directly probes

the occupation of the central well for the adiabatic transfer.
By analyzing the weak-measurement limit, we showed that
the conditional occupation of the central well vanishes in the
adiabatic limit, thus providing direct measurable evidence of
the main feature of CTAP. We also found that the occupation
conditional on a nonsuccessful pumping remains finite in the
adiabatic limit, which provides evidence of the coherent quan-
tum nature of the process. Our work puts forward correlated
detection as a valuable method for sensing adiabatic passage
processes, e.g., in topological pumps [24–30].
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