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In principle the stacking of different two-dimensional (2D) materials allows the construction of 3D systems
with entirely new electronic properties. Here we propose to realize topological crystalline insulators (TCI) pro-
tected by mirror symmetry in heterostructures consisting of graphene monolayers separated by two-dimensional
polar spacers. The polar spacers are arranged such that they can induce an alternating doping and/or spin-orbit
coupling in the adjacent graphene sheets. When spin-orbit coupling dominates, the nontrivial phase arises due
to the fact that each graphene sheet enters a quantum spin-Hall phase. Instead, when the graphene layers are
electron and hole doped in an alternating fashion, a uniform magnetic field leads to the formation of quantum
Hall phases with opposite Chern numbers. It thus has the remarkable property that unlike previously proposed
and observed TCIs, the nontrivial topology is generated by an external time-reversal breaking perturbation.
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I. INTRODUCTION

The foundation of topology in condensed matter physics
was first laid by the experimental discovery of the inte-
ger quantum Hall effect [1] and the subsequent theoretical
work on quantized Hall conductances in two-dimensional
(2D) periodic potentials [2]. However, the different ways in
which topology can manifest in crystals were mostly unex-
plored until the prediction of the quantum spin Hall effect in
graphene [3,4], which was termed a Z2 topological insulator
(TI). Soon after this, the quantum spin Hall effect and the
associated topological phase transition were experimentally
observed in HgTe quantum wells [5,6]. In the following
years, the study of topological phases of matter has led
to numerous rich discoveries in various condensed matter
systems [7–9].

Topological insulators are defined as having a gapped bulk,
but hosting gapless, anomalous states on their boundaries,
states which are protected by the symmetry of the system.
Depending on the nature of the symmetry, topologically non-
trivial phases are characterized by different integers, called
topological invariants. A change in the value of these in-
variants marks a transition to a topologically different phase,
one hosting either a different number of boundary states or
boundary states of a different chirality. A systematic classifi-
cation of which types of topological phases are possible was
first carried out in the case of fundamental symmetries: time-
reversal (TRS), particle-hole, and chiral symmetry [10,11].
Apart from these fundamental symmetries, however, spa-
tial symmetries can also give rise to topological insulating
phases in materials. The latter are called weak topological
insulators in the case of lattice translations [9] and topo-
logical crystalline insulators (TCI) [12–14] for symmetries
such as mirror, rotation, or glide. Recently, the experimental
discovery of mirror symmetry protected TCIs in the SnTe
material class has made a tremendous impact in this field

of research [15–17]. There have been many works reported
in the literature classifying TCI based on their lattice sym-
metries [18–24], proposing new materials which realize TCI
phases [25–27], and studying the robustness of their boundary
states [28].

One of the main interesting challenges is to construct
new types of topological phases by exploiting the spatial
symmetries of the system. In this context, layered structures
of suitable materials can be engineered to build topologically
nontrivial heterostructures [29,30]. It has been shown that
3D TCIs can be constructed not only by stacking 2D TCI
layers [31] but also by using 2D Chern insulators stacked in
an antiferromagnetic fashion, such that the sign of the Chern
number changes in every second layer [32]. The latter model,
called an “antiferromagnetic topological insulator,” was re-
cently modified in order to describe 3D TCIs protected by mir-
ror symmetry [33] and glide symmetry [34,35], to show that
TCIs can occur in periodically driven systems [36], as well as
to study the newly discovered higher-order TIs [37–40].

From an experimental point of view, building a heterostruc-
ture of Chern insulators with opposite topological invariants
is hindered by an immediate practical difficulty. To change
the sign of the Chern number one must typically reverse the
direction of the applied magnetic field. While this may be
achieved on sufficiently long distances, a field reversal on
the atomic scale of the heterostructure’s unit cell is highly
impractical. One way to overcome this difficulty would be
to use 3D materials which order antiferromagnetically and
simultaneously realize quantum anomalous Hall phases in the
2D limit. However, to our knowledge such a material has not
yet been reported.

In this work, we adopt an entirely different strategy, one
which does not rely on alternating magnetic fields but on
the Dirac nature of charge carriers in graphene. It is well
known that, due to the zeroth Landau level of graphene, the
velocity of the quantum Hall edge states can be switched not
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FIG. 1. Left: Three-dimensional system formed out of graphene
layers (horizontal lines) separated by thin insulating layers (gray
boxes). The spacers are polar, having a positively charged (+) and a
negatively charged (−) side. Using spacer layers with an alternating
orientation leads to graphene sheets which have an alternating doping
(±μ). The unit cell of the heterostructure (bracket) consists of two
graphene layers, and the full system shows reflection symmetry
about one layer (R). By applying a uniform magnetic field along
the stacking direction, neighboring graphene layers form quantum
Hall phases with opposite Chern numbers, such that their chiral edge
states propagate in opposite directions (horizontal arrows). Right:
Our conventions for the graphene lattice, with Bravais vectors �ex and
�ey. Nearest and next-nearest-neighbor hoppings are labeled t and t2.
There are two sites, denoted a and b in every unit cell (marked by a
blue contour).

only by reversing the magnetic field direction but also under
a constant field by a small shift of the chemical potential
across the charge neutrality point [41]. As such, we consider
a heterostructure in which the graphene layers are separated
by 2D insulating systems which are polar, as shown in Fig. 1.
By reversing the polarization of every second spacer layer, it
is in principle possible to obtain a system in which adjacent
graphene sheets have an alternating electron and hole doping.
In this case, applying a uniform magnetic field along the
stacking direction opens a topological gap in the graphene
layers but in such a way that they carry opposite Chern
numbers.

In the following, we examine the system in two different
limits, depending on which materials are used for the spacer
layers. If the latter are composed of light elements, then we
can expect spin-orbit coupling (SOC) to be negligible, and
the heterostructure can be treated as an effectively spinless
model. In Sec. II, we show that in this case an intrinsi-
cally magnetic TCI phase is realized, one which requires
an externally applied magnetic field to exist. On the other
hand, when the polar spacers contain heavy elements, they
may lead to proximity-induced SOC in the graphene layers,
such that each layer forms a quantum-spin Hall phase [3]. In
Sec. III, we show that when SOC terms are larger than the
doping, a time-reversal-symmetric TCI phase can be realized.
We conclude and discuss directions for future research in
Sec. IV.

II. STACK OF CHERN INSULATING LAYERS
OF GRAPHENE

We begin by examining the first of two limits, in which
the graphene sheets experience a negligible SOC, such that
the heterostructure forms an effectively spinless system. In
this limit, we show that due to the alternating electron and
hole doping of adjacent layers, applying a magnetic field
parallel to the stacking direction results in a mirror symmetry
protected TCI.

In the absence of SOC, the out-of-plane spin component
of electrons in graphene is conserved, such that each spin
sector can be treated independently. We therefore model the
heterostructure as a 3D system of spinless electrons hopping
on a lattice of AA-stacked honeycomb layers. The real space
Hamiltonian reads

H =
∑
〈i j〉,α

t c†
i,αc j,α + μ

∑
i,α

(−1)αc†
i,αci,α

+
∑
i,α

[tz c†
i,αci,α+1 + H.c.], (1)

where c†
i,α (ci,α) creates (annihilates) fermions on site i in layer

α and 〈. . .〉 denotes nearest neighbors (see Fig. 1). The first
term is a nearest-neighbor hopping, which we set to t = 1
throughout the following, whereas μ is an on-site energy
which models the alternating doping of adjacent graphene
systems. As such, there are two layers in each unit cell. The
last term of Eq. (1) models interlayer coupling, with hopping
to the layer below having an amplitude tz and hopping to the
layer above an amplitude t∗

z . In practice, this term will decay
exponentially with the separation of neighboring graphene
sheets, requiring the use of very thin spacers. However, as
we show in the following, a TCI phase can be realized even
when tz is the smallest energy scale of the problem, provided
it does not vanish exactly. In the latter case, the system cannot
be treated as three dimensional, since the heterostructure is
composed of isolated 2D systems.

The momentum space form of Eq. (1) is given by

H(�k) =
[
H+(kx, ky) t∗

z + tze−ikz

tz + t∗
z eikz H−(kx, ky)

]

H±(kx, ky) = t[1 + cos(kx ) + cos(ky)]τx

+ t[sin(kx ) + sin(ky)]τy ± μ. (2)

Here H± are the Hamiltonians of graphene layers experi-
encing a ±μ energy shift, �k = (kx, ky, kz ), kx,y are the in-plane
momentum components along �ex,y (see Fig. 1), and kz is the
momentum along the stacking direction. The Pauli matrices τ

parametrize the a and b sublattice degree of freedom. Last, the
2×2 grading on the first line of Eq. (2) encodes the degree of
freedom associated to the two layers in the unit cell, which we
denote in the following using Pauli matrices η.

Choosing a real-valued interlayer coupling, tz = t∗
z , the

Hamiltonian Eq. (2) obeys a spinless mirror symmetry of the
form

R(kz ) = τ0 ⊗
(

1 0
0 eikz

)
, (3)
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FIG. 2. Band structure of a single monolayer of spinless
graphene in a ribbon geometry (infinite along �ex , W = 100 unit cells
along �ey), using t = 1 and μ = 0. In the absence of a magnetic
field [� = 0, panel (a)], two bulk Dirac cones are connected by
dispersionless boundary states localized on the two zigzag edges of
the ribbon. With a magnetic flux � = 0.18 (b) the bulk spectrum
consists of Landau levels, and chiral edge modes appear at the two
boundaries of the ribbon. The color scale denotes the probability
density of a state integrated over half of the ribbon (unit cells indexed
by 0 � ny < W/2), such that modes localized on opposite boundaries
of the ribbon are shown in blue and red, respectively.

such that

R(kz )H(kx, ky, kz )R(kz )−1 = H(kx, ky,−kz ). (4)

As a consequence, the terms proportional to tz vanish on the
mirror invariant plane of the Brillouin zone, kz = π , and the
two graphene monolayers are effectively decoupled from each
other. Further, since for kz = π the mirror operator is R =
τ0ηz, electronic states in adjacent monolayers have different
mirror eigenvalues, +1 and −1. This naturally opens the
possibility of stabilizing a mirror symmetry protected TCI
if the graphene sheets enter Chern insulating phases when a
magnetic field is applied.

Since we are dealing with an effective spinless model valid
for each of the two spin sectors, we introduce an orbital mag-
netic field through the usual Peierls substitution. We choose a
gauge in which the in-plane hopping within each unit cell is
modified as t → t exp(i�ny), where ny is an integer labeling
the unit cells in the �ey direction (see Fig. 1) and � is the Peierls
phase. The latter physically represents the number of magnetic
fluxes penetrating a hexagonal plaquette with area a� due to
a perpendicular magnetic field B, such that � = Ba�e/h.

Using the Kwant code [42,43], we compute the band
structure of a single graphene sheet in a ribbon geometry with
zigzag edges, translationally invariant along �ex and consisting
of W = 100 unit cells in the �ey direction (see Fig. 1). Note that
our gauge choice for the Peierls substitution is only compati-
ble with translation symmetry along �ex. As shown in Fig. 2, for
a single graphene monolayer the gapless Dirac cone spectrum
becomes gapped under the addition of the orbital field, which
leads to the formation of Landau levels. Characteristic to
graphene and other hexagonal lattice systems, there exists
a Landau level at the charge neutrality point, E = 0. Away
from this point, the system enters quantum Hall phases with
opposite Chern numbers, C = +1 for E > 0 and C = −1 for
E < 0.

Given the band structure of Fig. 2(b), we expect the al-
ternating doping μ to ensure that adjacent graphene layers

FIG. 3. Band structure of the graphene heterostructure with
Hamiltonian Eq. (2) in an infinite slab geometry with hard wall
boundary conditions in the �ey direction and a width of W = 100
unit cells. We use t = 1, � = 0.18, μ = 0.3, and tz = 0.1. The left
and right panels show the band structures for kz = π/2 and kz = π ,
respectively. One Dirac cone appears on each surface, positioned
on the mirror invariant kz = π line of the surface BZ. The color
scale is the same as in Fig. 2. In order for the interlayer coupling
to efficiently gap out the edge modes away from the mirror line, we
have added a sublattice symmetry breaking term to the model μsτzηz,
with μs = 0.15.

of the 3D system have opposite Chern numbers after the
magnetic field is turned on, so that their chiral edge states have
opposite velocities. Moreover, since states of neighboring
graphene sheets are decoupled at kz = π and have opposite
mirror eigenvalues, these chiral modes remain orthogonal
on the mirror invariant plane due to Eq. (4), leading to the
formation of surface Dirac cones. The full heterostructure then
realizes a mirror symmetric TCI phase with a mirror Chern
number,

CM = C+ − C−
2

, (5)

where C± = ±1 are the Chern numbers (computed at kz = π )
of graphene layers experiencing a ±μ energy shift, such that
CM = 1. Note that, due to Eqs. (3) and (4), on the plane kz = 0
the reflection operator is equal to the identity matrix, R(0) =
1. The system then cannot be block-diagonalized into different
mirror eigenspaces. It could still be possible that the full Chern
number at kz = 0 is nonzero, but, lacking disjoint sectors with
opposite mirror eigenvalue, such a topological phase would
not be protected by mirror symmetry, corresponding instead
to a stack of quantum Hall systems with copropagating edge
modes.

We confirm the presence of surface Dirac cones by com-
puting the band structure of Eq. (2) in a slab geometry,
infinite in the stacking direction and along �ex, but containing
W = 100 sites in the �ey direction. As shown in Fig. 3, on each
surface the chiral modes of adjacent layers cross at kz = π ,
but gap out away from this line, forming a surface Dirac cone
protected by mirror symmetry. When determining the band
structures, we have noticed that due to the high symmetry
of H(�k), the interlayer coupling tz does not efficiently cou-
ple the chiral modes away from the mirror plane, leading
to surface nodal lines that wind across the surface BZ in
the kz direction. The surface nodal lines are a consequence
of a spurious sublattice symmetry of the model and occur
both for zigzag and armchair terminations of the graphene
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layers. Since we are interested in the phenomenology of TCIs
protected purely by mirror, we have lowered the symmetry of
the initial Hamiltonian H(�k) by adding a sublattice symmetry
breaking term, μsτzηz, which enables the chiral edge modes to
couple away from kz = π . This term does not break the mirror
symmetry Eq. (3), such that the mirror Chern number remains
nontrivial, provided that μs is not large enough to close the
bulk gap.

As we have shown, the heterostructure of oppositely doped
graphene layers enters a TCI phase under an externally ap-
plied magnetic field. Unlike previously observed TCIs, this
phase is only present when time-reversal symmetry is explic-
itly broken, since the spectrum is gapless in the zero field case.
As long as SOC is negligibly weak, each spin component
of the graphene charge carriers behaves according to the
Hamiltonian Eq. (2), such that the full system contains two
surface Dirac cones, which are protected by the conservation
of the out-of-plane spin component. Further, the precise form
of the mirror symmetry Eq. (3) may be tuned by altering
the materials forming the polar spacer layers and therefore
the interlayer coupling tz. If, for instance, we choose an
imaginary hopping between graphene monolayers, tz = −t∗

z ,
then the mirror operator would read R = τ0 ⊗ diag(1,−eikz ),
and the surface Dirac cones would be positioned at a dif-
ferent mirror invariant plane, kz = 0. Notice, however, that
for a generic, complex-valued tz the heterostructure Hamil-
tonian Eq. (2) would break both this mirror symmetry and
that of Eq. (3). To introduce complex interlayer hoppings
one would have to modify Eq. (2) such that the phase of
the hopping to the layer above is opposite to the phase of
the hopping to the layer below. For instance, replacing the
off-diagonal blocks of this Hamiltonian with |tz|eiθ (1 + eikz )
would preserve mirror symmetry for any value of the complex
phase θ , as evidenced by the fact that the term still vanishes
at kz = π .

Finally, we note that there is no threshold value of tz for
which a TCI phase is realized, meaning that the interlayer
coupling can be the smallest energy scale of the problem.
Reducing the value of tz by increasing the thickness of the
spacer layers does not remove the topologically protected
surface Dirac cones but simply reduces their velocity in the
kz direction.

III. STACK OF QUANTUM SPIN-HALL LAYERS
OF GRAPHENE

The negligibly small value of SOC in free-standing
graphene [44,45] enabled us to use a spinless model when
discussing the heterostructure of Fig. 1, provided that the
polar spacers contain light elements. It is, however, known
that graphene in proximity to heavy atoms or 2D materials
containing heavy atoms may lead to large induced SOC
terms [46,47]. In Ref. [48], for instance, it was shown that
a SOC-driven quantum spin-Hall phase with a gap as large
as 80 meV may be realized in graphene sandwiched between
oppositely oriented 2D layers of BiTeX (X = Cl, Br, I).
Motivated by this fact, in the following we study the het-
erostructure in the limit in which SOC is larger than the
alternating doping of adjacent graphene sheets.

We describe the system using AA-stacked copies of spin- 1
2

graphene models. The 3D real space Hamiltonian now reads

H 1
2

=
∑
〈i j〉,α

t c†
i,αc j,α + μ

∑
i,α

(−1)αc†
i,αci,α

+
∑

〈〈i j〉〉,α
it2νi jc

†
i,ασzc j,α

+
∑
i,α

[c†
i,αTzci,α+1 + H.c.], (6)

where c†
i,α = (c†

i,α,↑c†
i,α,↓) creates fermions with spin ↑,↓

on site i in layer α, 〈. . .〉 and 〈〈. . .〉〉 denote nearest and
next-nearest neighbors (see Fig. 1), and the Pauli matrices σ

parametrize the spin degree of freedom. The first two terms, t
and μ, have the same meaning as before, whereas the term
proportional to t2 is the usual intrinsic SOC term [3], an
imaginary next-nearest-neighbor hopping. The sign νi j = ±1
is positive whenever the path connecting sites i and j ro-
tates counterclockwise and negative for a clockwise rotation.
Finally, Tz is a matrix describing electron hopping between
neighboring graphene layers.

As before, we begin by discussing the decoupled limit
Tz = 0, when each of the graphene layers is an independent
2D system. Since in the simple model Eq. (6) the SOC term
commutes with σz, we can write the Hamiltonian separately
for each spin component s = ± and each of the two layers in
a unit cell l = ± as

Hl=±,s=± = t[1 + cos(kx ) + cos(ky)]τx

+ t[sin(kx ) + sin(ky)]τy + lμτ0

+ 2st2[sin(kx ) − sin(ky)

− sin(kx − ky)]τ0. (7)

The heterostructure obeys a spinful time-reversal symme-
try with operator T = iτ0η0σyK and K complex conjugation.
Further, the system also obeys a spinful mirror symmetry
about one layer, which takes the form

R 1
2
(kz ) =

(
τ0σz 0

0 τ0σzeikz

)
, (8)

where the 2×2 grading is in the layer degree of freedom, η.
Note that the reflection symmetry Eq. (8) anticommutes with
the time-reversal-symmetry operator. In general, the commu-
tation relation between the two operators is gauge dependent,
since it is always possible to redefine R 1

2
→ iR 1

2
, such that

the new operator commutes with time reversal. We choose
the basis conventionally used in topological classification
studies [19], in which the two symmetries anticommute if the
system is spinful.

The two spin eigenstates in each monolayer have opposite
mirror eigenvalues [49,50]. This means that under the addi-
tion of an intrinsic SOC term, t2 > 0, each graphene sheet
simultaneously realizes a quantum spin-Hall phase as well as
a 2D TCI phase, since the different spin sectors have opposite
Chern numbers C = ±1.

For the interlayer coupling we choose a term which re-
spects both time reversal as well as mirror symmetry but
mixes the two spin components, as one can expect when
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FIG. 4. Band structure of the spinful graphene heterostructure
[Eq. (9)] in an infinite slab geometry (W = 100 unit cells along �ey).
We use t = 1, t2 = 0.5, μ = 0.1, and tz = 0.2. Only bulk modes
(shown in green) and states on one of the two surfaces are plotted.
The color of the surface modes denotes the mirror sector of each
state: red for an eigenvalue +1 and blue for −1. At kz = 0 (left),
the nonzero mirror Chern number leads to the appearance of two
Dirac cones on the surface. States having the same mirror eigenvalue
propagate in the same direction, so they are topologically protected.
In contrast, for the other mirror invariant plane kz = π (right), the
mirror Chern number vanishes. There are both left and right moving
surface modes in each of the two mirror sectors, which are gapped
out by the interlayer coupling term.

the polar spacers contain heavy elements. We set Tz = iσxtz
in Eq. (6), where the real number tz is the strength of the
coupling, such that the full momentum space Hamiltonian is

H 1
2
(�k) =

⎛
⎜⎝
H+,+ 0 0 A

0 H+,− A 0
0 A† H−,+ 0

A† 0 0 H−,−

⎞
⎟⎠ (9)

with A = itz(1 − eikz )τ0. Notice that according to Eq. (8), even
when the interlayer coupling is added, there are now two dif-
ferent planes on which a mirror Chern number can be defined,
kz = 0 and kz = π , unlike the spinless model discussed in the
previous section. Crucially, however, the mirror eigenvalues
of every second layer reverse when going from kz = 0 to
kz = π , which allows for a different mirror Chern number on
each mirror invariant plane. When kz = 0, eigenstates of the
spin-up sector (i.e., those of H+,+ and H−,+) have the same
mirror eigenvalue as well as the same Chern number, both of
which are opposite to those of H+,− and H−,−. As such, the
3D coupled system realizes a TCI with mirror Chern number
CM = 2, and two surface Dirac cones are expected to appear
on the kz = 0 line of the surface BZ. On the other plane,
kz = π , the mirror eigenvalues switch both when changing the
spin sector as well as the layer, leading to a trivial topological
invariant. This is because the eigenspace with positive mirror
eigenvalue is formed by H+,+ and H−,−, which in total have
a vanishing Chern number.

To confirm the presence of surface Dirac cones only at kz =
0, we plot in Fig. 4 the band structure of the system in an
infinite slab geometry, with translational invariance along the
stacking direction and �ex and containing W = 100 unit cells in
the �ey direction. The intrinsic SOC term t2 = 0.5 is now larger
than the alternating doping, μ = 0.1, such that each graphene
layer independently realizes a quantum spin-Hall phase. At

kz = 0, the mirror Chern number CM = 2 means that surface
states with the same mirror eigenvalue propagate in the same
direction, such that they cannot be gapped out. In contrast,
at kz = π , there are surface modes with opposite velocities
in each mirror eigenspace, allowing the interlayer coupling to
produce a gapped surface.

Finally, notice that for this system the topological surface
modes would persist even in the limit of vanishing doping,
μ = 0. In this case, the unit cell would be halved, containing
a single monolayer, and the heterostructure would realize a
weak topological insulator, protected by time-reversal sym-
metry and translation along the stacking direction. However,
the additional mirror symmetry Eq. (8) leads to an increased
protection of the surface Dirac cones, allowing them to persist
even as μ 
= 0, due to the system’s nontrivial mirror Chern
number.

IV. CONCLUSION

We have shown that multilayers of graphene can exhibit
a topological crystalline insulating phase protected by re-
flection symmetry. We considered a heterostructure formed
by graphene monolayers sandwiched between oppositely ori-
ented 2D polar spacers, such as BiTeX [48] or ultra-thin
ferroelectric polymers [51,52]. The spacers may lead both
to an alternating doping as well as to a proximity induced
SOC in the graphene sheets. Both limits were shown to
lead to a mirror-symmetry protected TCI phase, hosting two
Dirac cones on each surface. When the polar spacers are
made of light elements, such that they induce a negligibly
small SOC, the heterostructure can be treated as an effec-
tively spinless system. In this case, we have shown that
due to the alternating electron and hole doping of adjacent
graphene layers, they form quantum Hall phases with opposite
Chern numbers under a uniform magnetic field. The resulting
phase is an “intrinsically magnetic TCI,” one which requires
the breaking of time-reversal symmetry in order to exist.
In the opposite limit, when SOC is larger than the doping,
the system instead realizes a time-reversal-symmetric TCI
with a mirror Chern number of 2. Similarly to KHgX (X =
As, Sb, Bi) [53], the surface modes can be understood as
originating from two quantum spin-Hall systems which are
forbidden to gap each other out in the presence of mirror
symmetry.

Our work focused only on toy models and discussed
the possibility for TCI heterostructures to exist as a proof
of principle. We hope that this study will motivate fu-
ture ab initio approaches to graphene heterostructures and
their potential for realizing TCIs. There are a large num-
ber of 2D materials which may be combined in van der
Waals heterostructures [54–56] and which show a vari-
ety of physical properties, such as polarity, magnetism,
or SOC. It would be interesting to combine machine-
learning algorithms with density-functional theory meth-
ods to automate the search for topologically nontrivial
heterostructures.

On the experimental side, we expect that such layered
systems will first be fabricated using only a few graphene
sheets, so that the system is not fully three dimensional. In the
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small thickness regime, it may be possible to gate the sample
using external electrodes, such that the doping of adjacent
graphene monolayers can be more readily controlled. Further,
studying heterostructures composed of a few layers would
open the possibility of observing the “even-odd effect” in
TCIs. The latter was originally discussed in WTIs [57] and
states that a system containing an even number of layers may
be gapped by interlayer coupling, whereas one containing
an odd number must host topologically protected gapless
modes on its surface. For the systems studied here, the same
criterion applies with respect to the parity of the number of

graphene sheets, both in the time-reversal-symmetric and in
the magnetic TCI limits.

Note added. In the final stages of writing this manuscript,
we became aware of the similar proposal of Ref. [40],
which considers alternating electron and hole doping
in stacked silicene layers in order to produce higher-
order TIs.
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