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Enhanced discretization of surface integral equations for resonant scattering
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The surface integral equation (SIE) method, discretized with the method of moments, is a well-established
methodology for the scattering analysis of subwavelength plasmonic nanoparticles. SIEs are usually discretized
with low-order basis functions that preserve the normal continuity of the surface currents across the edges arising
in the meshed boundary, such as Rao-Wilton-Glisson (RWG) functions. However, the plasmonic enhancement
modeling on sharp-edged particles is an extremely challenging task, especially due to the singular fields exerted
at sharp corners, exposing a slow (or no) convergence in the computation of the scattering and absorption
spectra. In this paper, we propose an alternative discretization strategy based on a discontinuous basis function
set in conjunction with a volumetric-tetrahedral testing scheme. We demonstrate the potential of the proposed
discretization scheme by studying scattering and absorption spectra of three canonical plasmonic polyhedra, i.e.,
a hexahedral, an octahedral, and a tetrahedral silver inclusion. The results expose an improved accuracy and
faster convergence in both far-field and near-field regions when compared to the standard RWG implementation.
The proposed discretization scheme can offer faster and more accurate routes towards the exploration and design
of the plasmonic resonant spectrum of sharp-edged nanoparticles and nanoantennas.
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I. INTRODUCTION

When metallic nanoscale particles are excited with elec-
tromagnetic fields at optical frequencies, localized free-charge
oscillations, known as localized surface plasmons, are induced
on metal interfaces [1]. Plasmonic effects at the nanoscale
are especially interesting because they produce strong near-
field enhancement giving rise to new interesting applications
in photovoltaic systems, waveguiding, optical metamaterials,
nanoantennas, photodetectors, and nonlinear optics [2–10].
Therefore, efficient and accurate electromagnetic modeling of
these phenomena is called for.

Among the plethora of numerical methods available for
the analysis of plasmonic nanostructures, such as the dis-
crete dipole approximation (DDA) [11–13] and the finite
difference time domain (FDTD) [14] method, the surface
integral equation (SIE) approach, sometimes alternatively
called the boundary element method, is particularly attractive
for open-region (scattering) problems and for problems in
which the important physical phenomena take place close to
the boundaries. In that method, both the unknowns and the
analysis lie on the interfaces between different homogeneous
regions and the radiation condition at infinity is inherently
satisfied [15–17]. At lower frequencies (radio or microwave
frequencies) metals can be well approximated as perfect elec-
tric conductors (PECs). In the optical regime, however, the
penetration of the fields into the particle and the plasmonic
effects have to be accurately taken into account.

For penetrable objects, SIEs can be expressed in many
alternative forms. One of the most popular formulations is the
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PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai) inte-
gral equation formulation [18–20], recently applied widely
also in the analysis of nanoplasmonic systems [21–23]. In the
standard Galerkin method of moments (MoM) discretization
of the PMCHWT equations [24], where the current expansion
(basis) functions are identical to field-testing functions, the
unknown equivalent electric and magnetic surface current
densities are expanded with the Rao-Wilton-Glisson (RWG)
basis functions [25]. These basis functions are associated
with mesh edges, straddling two edge-adjacent triangles. They
provide a linear approximation of the unknown surface cur-
rent density inside each triangular facet and guarantee the
normal-continuity across adjacent mesh elements; whereby
they represent a low-order set of basis functions. RWG basis
functions are divergence-conforming, since they span a finite-
dimensional subspace inside vector Sobolev divergence space
of fractional order, which represents the mathematical space
of electric and magnetic surface currents. The discretized
equations are cast into matrix form by means of testing the
tangential field components with the same set of functions.
This discretization of PMCHWT equations is conforming
with respect to the aforementioned vector Sobolev space
mappings, hence providing converging solutions within these
spaces as the number of degrees of freedom is increased
[26,27].

However, the RWG-PMCHWT scheme is no panacea. Re-
cent advances in nanofabrication have allowed the manipula-
tion of the shape of nanoparticles up to the subnanometer scale
[28–31] introducing atomically sharp tips around which elec-
tromagnetic energy can be successfully confined (so-called
“hot spots”) [32]. Therefore, the accurate modeling of the
singular field quantities induced around abrupt geometrical
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singularities is of great importance [33–36]. Unfortunately,
standard divergence-conforming bases, including the higher-
order versions, have difficulties in modeling this phenomenon
efficiently [37]. In turn, slow convergence in the scattering and
absorption spectra in the resonance domain has been reported
with respect to the number of degrees of freedom [21,36]. It is
clear that a better representation of the singular field quantities
is needed. Singular higher-order divergence-conforming bases
of the additive kind proposed by Graglia and Lombardi [37]
are constructed for this purpose. In addition to the regular
divergence-conforming subset, they incorporate the Meixner
subset [38] in order to capture the singular behavior of cur-
rents and charges near sharp corners better. However, these
bases have been applied to PEC objects only. Furthermore,
the coefficients of the singular terms have to be known a
priori, and they directly depend on the angle and the material
properties of the associated wedge.

Recently, the discretization of the PMCHWT integral
equation formulation with facet-based monopolar-RWG basis
functions, discontinuous across edges, in conjunction with
volumetric-tetrahedral testing has been introduced [39]. These
basis functions are identified with facets originating from
the surface tessellation and the corresponding discretization
scheme is nonconforming to the natural divergence function
spaces. Despite that, it has been shown by several exam-
ples that the monopolar-RWG discretization of PMCHWT
equations produces more accurate results in the near field
and far field than the standard RWG approach for the cases
of dielectric objects that exhibit singular or near-singular
field distribution near sharp edges [40]. Unfortunately, the
improved performance of the monopolar-RWG PMCHWT
approach was observed for a restricted range of heights of
the tetrahedral-testing elements [40,41]. A remedy to this
problem was given in [41] where a hierarchical decomposition
of the monopolar-RWG space is proposed. Although this
discretization scheme is edge-based (the basis functions are
associated with edges arising in the surface mesh), wider
ranges of testing-element heights with improved accuracy
have been noticed when compared to the monopolar-RWG
PMCHWT technique [41]. So far, the performance of this
nonconforming PMCHWT formulation has been tested on
subwavelength canonical sharp-edged ferromagnetic targets
out of the resonance domain [41]. The improvement in the far-
field accuracy, when compared to the standard RWG approach
with the same number of unknowns, was attributed to the
better singular field modeling near sharp edges.

In this paper, we focus on the scattering analysis of
subwavelength sharp-edged plasmonic nanoparticles in
the resonance domain. We show with several numerical
examples, including hexahedral, octahedral, or tetrahedral
silver inclusions, that better convergence in the scattering
and absorption spectra with the proposed nonconforming
PMCHWT implementation is achieved compared to the
standard RWG-PMCHWT technique. Also, we show
improved near-field results for the case of a hexahedral silver
inclusion computed with our nonconforming implementation
and compared to the RWG discretization. The convergence
of the resonances of sharp-vertex particles is a particularly
interesting example of plasmonic enhancement with a long
history [42] used as a test bed for current physics and

application-oriented plasmonic research [43–50]. Moreover,
the presented methodology could be extended for cases, such
as subnano particles and gaps, where enhanced quantum
phenomena affect the observed spectrum requiring quantum-
corrected classical approaches [51].

II. MATHEMATICAL FORMULATION

A. Surface integral equation formulation of the problem

Consider an arbitrarily shaped plasmonic nanoparticle
with orientable surface (∂�) and electromagnetic parameters
(ε2, μ2) embedded in a surrounding medium (usually free
space) with parameters (ε1, μ1). In this work, we assume that
the particles are made of silver and modeled according to the
Drude model [52]

ε2(λ) = ε0εAg(λ) = ε0

(
ε∞ − (λ/λp)2

1 − jλ/λd

)
, (1)

where ε∞ = 5.5, λp = 130 nm, λd = 30 μm, and ε0 is the
electric permittivity of vacuum. The time-harmonic incident
electromagnetic field (E inc, H inc) with angular frequency ω

is impinging upon the particle, and time dependency e jωt for
the fields and currents is assumed and suppressed throughout
the paper. The total fields in the region �i, outside (i = 1)
or inside (i = 2) the particle, (E i, H i ), are the sum of the
incident fields generated in region �1 and the scattered fields
(Es

i , Hs
i ) which in turn are generated by equivalent electric

and magnetic surface currents Ji = n̂i × H i and Mi = −n̂i ×
E i residing on the boundary-surface (∂�) inside region �i

(see Fig. 1). Here n̂i is the unit normal vector of ∂� pointing
into region �i. According to the equivalence theorem, total
fields, E i and H i, are zero in the equivalent problem outside
the respective regions.

Mathematically this surface equivalence principle can be
formulated as follows:

δi1E inc
i (r) + ηiT i[Ji](r) − Ki[Mi](r) =

{
E i(r), r ∈ �i,

0, r ∈ �c
i ,

(2)

FIG. 1. Schematic representation of the surface equivalence the-
orem for the case of a single penetrable object.
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δi1H inc
i (r) + 1

ηi
T i[Mi](r) + Ki[Ji](r) =

{
H i(r), r ∈ �i,

0, r ∈ �c
i ,

(3)

with δi1 = 1 if i = 1, δi1 = 0 if i = 2. The impedance of
medium i, occupying region i, is ηi = √

μi/εi, and the surface
integral operators in (2) and (3) are

T i[F i](r) = 1

jki
∇∇ ·

∫
∂�

Gi(r, r′)F i(r′) dS′

− jki

∫
∂�

Gi(r, r′)F i(r′) dS′, (4)

Ki[F i](r) = ∇ ×
∫

∂�

Gi(r, r′)F i(r′) dS′. (5)

Above, �c
i is the complement of �i, i.e., the region outside �i

excluding the surface, and F i(r′) is the electric or magnetic
surface current. The integral operators including differentia-
tion should be interpreted in the Cauchy principal value sense
if the field point is on the surface. Function Gi represents

the fundamental solution of the scalar Helmholtz equation in
3D corresponding to the homogeneous (source-free) problem
associated with region i; that is,

Gi(r, r′) = e− jkiR

4πR
, R = |r − r′|, (6)

where constant ki designates the wave number of medium i,
occupying region i, and defined as ki = √

εiμi. The fields E i

and H i given by (2) and (3), satisfy source-free Maxwell’s
equations in �i, and on the interface ∂� they are subject to
the tangential boundary conditions

γt E1 = γt E2 and γt H1 = γt H2. (7)

Here, the tangential trace operator γt acts on an arbitrary
vector function X as

γt X = −n̂ × n̂ × X |∂�, (8)

and n̂ is the unit normal vector on ∂� pointing outwards (from
region 2 to region 1). Substituting field representations (2)
and (3) into (7), with appropriate trace theorems, results in
the following equations,

η1γtT 1[J1](r) − η2γtT 2[J2](r) − γtK1[M1](r) + γtK2[M2](r) = −E inc
1 (r), r ∈ ∂�, (9)

1

η1
γtT 1[M1](r) + 1

η2
γtT 2[M2](r) − γtK1[J1]r − γtK2[J2](r) = −H inc

1 (r), r ∈ ∂�, (10)

known as the PMCHWT integral equation formulation [18].
Here, due to the interface conditions, the surface currents
satisfy J1 = −J2 and M1 = −M2. To summarize, we note
that the original problem of finding the electromagnetic fields
E i and H i everywhere outside and inside the particle is refor-
mulated as SIEs for the equivalent surface current densities.
Once these currents are found they can be used to evaluate the
scattered electromagnetic fields everywhere in space. These
fields, in turn, can be used to determine, e.g., the scattering
and absorption efficiency of the particle.

B. Discretization strategy

In a usual MoM strategy, the surface of the target is
partitioned into Nt triangular elements and the unknown
currents are expanded with the set of known subsectional
basis functions with the local support on the mesh. In this
work, we approximate the currents with two subsets resulting
from the hierarchical decomposition of the space spanned by
triangle-based monopolar-RWG set (mn) [53], namely even
monopolar-RWG subset (me

n) and odd monopolar-RWG sub-
set (mo

n) [54]. Even and odd monopolar-RWG basis functions
are edge-based and defined on two triangles (S1

n ∪ S2
n) sharing

the nth edge (ln) as follows:

me
n(r′) =

{ 1
2A1

n

(
r′ − r1

n

)
, r′ ∈ S1

n,

− 1
2A2

n

(
r′ − r2

n

)
, r′ ∈ S2

n,
(11)

mo
n(r′) =

{ 1
2A1

n

(
r′ − r1

n

)
, r′ ∈ S1

n,

1
2A2

n

(
r′ − r2

n

)
, r′ ∈ S2

n,

1 � n � Ne,

(12)

where A1
n and A2

n denote the areas of the corresponding edge-
adjacent triangles, S1

n and S2
n , respectively (see Fig. 2). The

position vectors of the free vertices opposite to the nth edge
are designated by r1

n and r2
n, and Ne is the number of edges

in the mesh of the surface. According to (11) and Fig. 2, the
even monopolar-RWG subset can be interpreted as a RWG
set without the edge normalization because it maintains the
continuity of the normal component of the current across
the edges. On the other hand, in light of Eq. (12), the odd
monopolar-RWG subset enforces the normal component of
the current on both sides of the common edge to have the same
absolute value but the opposite sign (see Fig. 2).

We approximate the unknown equivalent electric and
magnetic currents, Ji and Mi, over the two sides of the

FIG. 2. Hierarchical decomposition of the triangle-based dis-
continuous monopolar-RWG set in terms of the edge-based even-
monopolar-RWG subset and the odd-monopolar-RWG subset.
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boundary of a plasmonic target (i = 1, 2) with the even and
odd monopolar-RWG subsets as follows [41]:

Ji(r′) ≈
2Ne∑
n=1

Ji
nmn =

Ne∑
n=1

ai,e
n me

n +
Ne∑

n=1

ai,o
n mo

n, (13)

Mi(r′) ≈
2Ne∑
n=1

Mi
nmn =

Ne∑
n=1

bi,e
n me

n +
Ne∑

n=1

bi,o
n mo

n, (14)

where the sequences {Ji
n} = {ai,e

n , ai,o
n } and {Mi

n} = {bi,e
n , bi,o

n }
represent the sets of unknown coefficients in the expansion
of the currents. In view of expressions (13) and (14), our
nonconforming implementation defines two basis functions
for each mesh edge, thus leading to twice the number of de-
grees of freedom compared to the standard RWG expansion,
which defines one basis function per edge. The approximated
scattered electric and magnetic fields generated by the even
and odd monopolar-RWG subsets yield

Ẽ
s,e/o
i =

Ne∑
n=1

ηiT i,e/o
n ai,e/o

n −
Ne∑

n=1

Ki,e/o
n bi,e/o

n , (15)

H̃
s,e/o
i =

Ne∑
n=1

Ki,e/o
n ai,e/o

n +
Ne∑

n=1

1

ηi
T i,e/o

n bi,e/o
n , (16)

with associated integral operators defined as

Ki,e/o
n (r) = ∇ ×

∫∫
S1

n∪S2
n

Gi(r, r′)me/o
n (r′)dS′, (17)

T i,e/o
n (r) = 1

jki

(
∇∇ ·

∫∫
S1

n∪S2
n

Gi(r, r′)me/o
n (r′)dS′

+ k2
i

∫∫
S1

n∪S2
n

Gi(r, r′)me/o
n (r′)dS′

)
. (18)

The even-odd (EO) monopolar-RWG function discretized
PMCHWT formulation imposes the tangential electric and
magnetic field boundary conditions over the meshed boundary
of the target S̃ = ⋃Nt

t=1 St as follows:

Ne∑
n=1

γt
(
η1T 1

n + η2T 2
n

)e/o

S̃ ae/o
n

−
Ne∑

n=1

γt
(
K1

n + K2
n

)e/o

S̃ be/o
n ≈ −γt E inc

S̃ , (19)

Ne∑
n=1

γt
(
K1

n + K2
n

)e/o

S̃ ae/o
n

+
Ne∑

n=1

γt

(
1

η1
T 1

n + 1

η2
T 2

n

)e/o

S̃

be/o
n ≈ −γt H inc

S̃ , (20)

where ae/o
n = a1,e/o

n = −a2,e/o
n and be/o

n = b1,e/o
n = −b2,e/o

n is
assumed such that the continuity of the surface currents is
satisfied. We cast the discretized equations (19) and (20) into
a matrix form by means of testing the tangential fields with
an appropriate set of testing functions. The standard Galerkin
MoM procedure, which adopts the same set for testing the

FIG. 3. Odd monopolar volumetric testing functions defined over
a pair of facet-adjacent tetrahedra attached to the corresponding
triangular facets and defined inside the region 1 (free-space) and
region 2 (plasmonic nanoparticle).

fields and for the expansion of the unknown currents, leads to
the following statements:

∫∫
S1

p∪S2
p

(
Ẽ

s,e/o
1 − Ẽ

s,e/o
2

) · me/o
p dS = −

∫∫
S1

p∪S2
p

E inc · me/o
p dS,

(21)

∫∫
S1

p∪S2
p

(
H̃

s,e/o
1 − H̃

s,e/o
2

) · me/o
p dS = −

∫∫
S1

p∪S2
p

H inc · me/o
p dS,

1 � p � Ne.

(22)

Since the odd monopolar-RWG functions are not divergence-
conforming, moving the gradients to the basis and testing
functions in the testing of the T i,e/o

n operator leads to double-
contour strongly singular integrals that are not integrable
in the Cauchy principal value sense. In fact, these integrals
become unbounded for self- or edge-adjacent interactions. In
this work, we circumvent this problem by the introduction
of volumetric non-Galerkin testing scheme defined over a
pair of facet-adjacent tetrahedral elements attached to the
corresponding edge-adjacent triangles originating from the
tessellation of the boundary (see Fig. 3). The testing ele-
ments are confined inside the region where, in accordance
with the surface equivalence theorem, the fields must be
zero [41]. These odd monopolar volumetric testing func-
tions [41] {Mi,o

p } are designed to best couple with odd
monopolar-RWG basis functions. They are defined over two
facet-adjacent tetrahedral elements as follows:

Mi,o
p (r) =

⎧⎨
⎩

1
3v

i,1
p

(
r − r1

p

)
, r ∈ V i,1

p ,

1
3vi,2

p

(
r − r2

p

)
, r ∈ V i,2

p .
(23)

Here, vi,1
p and vi,2

p stand for the volumes of the facet-adjacent
tetrahedrons V i,1

p and V i,2
p attached to the boundary, lying in

the region i and sharing the pth mesh edge.
We define the discretized EO-monopolar-RWG PMCHWT

equations directly from expressions (21) and (22) by keeping
the even surface testing and interchanging the odd surface
testing with odd volumetric testing strategy. The odd vol-
umetrically tested components of the matrix equation now
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become∫∫∫
V 2,1

p ∪V 2,2
p

Ẽ
s,e/o
1 · M2,o

p dV −
∫∫∫

V 1,1
p ∪V 1,2

p

Ẽ
s,e/o
2 · M1,o

p dV

= −
∫∫∫

V 2,1
p ∪V 2,2

p

E inc · M2,o
p dV, (24)

∫∫∫
V 2,1

p ∪V 2,2
p

H̃
s,e/o
1 · M2,o

p dV −
∫∫∫

V 1,1
p ∪V 1,2

p

H̃
s,e/o
2 · M1,o

p dV

= −
∫∫∫

V 2,1
p ∪V 2,2

p

H inc · M2,o
p dV, 1 � p � Ne. (25)

C. Numerical implementation

There are a couple of important points related to the
numerical implementation of the proposed nonconforming
discretization technique. First, special care has to be taken
when defining the geometry of volumetric-testing elements
near sharp wedges and corners since they may break out of
the null-field region and numerical error may appear (see
Fig. 3). In this work we define their geometry conformal to
the boundary [40] taking into account the angles formed by
the corresponding field triangle originating from the surface
tessellation and the three neighboring triangles. The accuracy
of this implementation can be fine-tuned by adjusting the
height of the testing tetrahedral elements (Hp) which in turn is
defined with the same value in both regions as a fraction of the
length of the pth edge, hp, shared by the corresponding field
triangles where the volumetric elements are constructed.

Another important point is that in order to minimize the
number of degrees of freedom, and maintain accuracy sim-
ilar to that in the EO-monopolar-RWG approach, we use
the hybrid version of the EO-monopolar-RWG discretization
scheme of the PMCHWT formulation, EO-PMCHWT[hyb].
This scheme assumes the odd monopolar expansion of the cur-
rents and the volumetric testing of the fields just over the edges
forming the physical sharp wedges and corners, and the

conventional RWG expansion of the currents and testing of
the fields over all the edges arising from the discretization.
Therefore, for a given discretization, this formulation handles
a number of degrees of freedom comparable to the RWG-
PMCHWT strategy, PMCHWT[R].

In the nonconforming EO-PMCHWT[hyb] scheme, we
compute the volumetric integrals over tetrahedra with 11-
point cubature rules. The surface and line integrals are com-
puted with a 9-point quadrature rule and the quasisingular
contributions of the kernel are computed analytically for the
inner integrals of all the interactions. In the RWG-PMCHWT
implementation, the quasisingular kernel contributions are
computed analytically for inner integrals and near interactions
only, while the far interaction integrals are computed directly
with a 4-point rule.

III. NUMERICAL RESULTS

We present numerical results of the scattering analysis of
three sharp-edged plasmonic nanoparticles, namely, a hexa-
hedron, an octahedron, and a tetrahedron, discretized with
geometrically conformal meshes in which adjacent triangles
share the same edge. We choose such particles since their
modeling is especially convoluted due to the singular field
behavior induced near sharp edges and corners. In addition,
for these particles, the redshift (resonances shift to the higher
wavelengths) in scattering and absorption spectra and the
improvements in the near field computed with our noncon-
forming EO-PMCHWT[hyb] implementation when compared
to the PMCHWT[R] implementation are especially evident.
In all examples, the incident plane wave is x-polarized, prop-
agating from the +z direction, and the currents are computed
through the direct solution of the resulting linear system. All
particles analyzed here are of equal volume (V = 503 nm3).

A. Scattering and absorption spectra in resonance domain

We focus on scattering and absorption spectra around two
main resonances. For all three particles, we present three
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FIG. 4. Scattering (a) and absorption (b) spectra for a hexahedron (cube) with edge length a = 50 nm. The first resonance (I) exposes
strong coupling with the incident field (scattering efficiency ≈17). Resonance (II) shows moderate scattering amplitude (scattering efficiency
≈7), but the absorption maximum is about the same magnitude as with the first resonance.
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(a) (b)

FIG. 5. Normalized absolute values of electric and magnetic charges and currents around dipole (I) and quadrupole (II) resonances for a
cube with edge length a = 50 nm. The colors indicate minimum (blue) to maximum (yellow) normalized charge and current values. Electric
charge densities [(I.a) and (II.a)] and magnetic current densities [(I.d) and (II.d)] exhibit extremely singular nature around corners for both
resonances.

different sets of results. First, we compute the resonant ef-
ficiencies with our nonconforming EO-PMCHWT[hyb] im-
plementation and several values of the heights of the testing
elements H to illustrate the effect of H on the accuracy of
the results. We compare these results to the ones computed
with the PMCHWT[R] discretization technique. Next, we
plot the equivalent electric and magnetic surface charges
and currents for the first two resonances, indicating the
strongly singular behavior over the sharp edges and corners
of the particle. Finally, a comparative convergence plot of
the main resonant peaks is presented, illuminating further
the achieved enhancement of the proposed new discretization
technique versus the standard scheme. The scattering and
absorption efficiencies are computed directly from the surface
currents and MoM matrices according to the expressions
given in [55]. All the meshes used in the computation of
scattering and absorption spectra are structured without h
refinements.

1. Plasmonic hexahedron (cube)

The electromagnetic response of a hexahedron, or com-
monly known as the cube, has been studied intensively during
the last 50 years (see [36] and references therein). From Fig. 4
we can notice the redshift of the first (dipole) and second
(quadrupole) resonances obtained with nonconforming EO-
PMCHWT[hyb] and N = 7440 unknowns when compared to
the resonances obtained with PMCHWT[R] and N = 8712
unknowns for both electric and magnetic currents. Further-
more, for the best performing H, where the height of testing
elements is equal to the mesh parameter, H = h, the observed
redshift is even more pronounced, surpassing the spectra
computed with PMCHWT[R] and 18 432 unknowns. In Fig. 5
we can notice singular surface currents and charges around
sharp corners. In particular, the surface electric charge density
and surface magnetic current density show extremely singular
nature around sharp vertices for both resonances. In Fig. 6
we show the convergence trends of the resonant wavelengths

FIG. 6. Convergence of the resonant wavelengths of two main resonances in scattering spectra (a) and absorption spectra (b) versus the
number of degrees of freedom for the same hexahedron inclusion as in Fig. 4.
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FIG. 7. Scattering (a) and absorption (b) efficiency spectra for the octahedral inclusion of edge length a = 64.245 nm. In this case the
maximum scattering and absorption efficiency values are close to 10 and 5, respectively.

for the first two resonances in the scattering and absorption
spectra, respectively, versus the number of degrees of freedom
N. The results are computed with the EO-PMCHWT[hyb]
and best performing H and compared to the results com-
puted with the standard PMCHWT[R] discretization. Our
nonconforming scheme exhibits faster convergence of res-
onant wavelengths compared to the RWG implementation
when the number of unknowns is increased. In particular, the
dipole and quadrupole resonances computed with our non-
conforming scheme, and H = h, have been marked around
the incident wavelengths of 428 nm and 393 nm, respectively,
using around 16 560 unknowns for the electric and magnetic
currents (see Fig. 6).

2. Plasmonic octahedron

The octahedron has the dual shape of the cube and the
solid angle sharper than the cube, however, smoother than the
one of the tetrahedron [36]. Therefore, we expect that its two

main resonances are going to be redshifted when compared
to the cube, but blueshifted (shifted to lower wavelengths)
when compared to the tetrahedron [36]. Similarly to the cube,
the redshift of the two main resonances computed with EO-
PMCHWT[hyb] and different values of H with N = 6528
degrees of freedom compared to the resonances computed
with PMCHWT[R] and N = 7776 degrees of freedom is
recognized in Fig. 7. In light of Fig. 8, a strong concentration
of surface field quantities is found around sharp corners.

The two resonances cannot be distinguished solely by
looking in electric charge and magnetic current distribu-
tions because they are too singular and concentrated around
vertices. However, the surface magnetic charge and electric
current distributions reveal the different nature of the dipole
and quadrupole resonances. Furthermore, in view of Fig. 9,
faster convergence of the resonant wavelengths computed
with EO-PMCHWT[hyb] and H = h when compared to the
resonant wavelengths computed with PMCHWT[R] is ob-
served when the number of unknowns is increased. We were

(a) (b)

FIG. 8. Normalized absolute values of electric and magnetic charges and currents around two main resonances for an octahedron with
edge length a = 64.245 nm. Similarly to the cube, we notice strong singular field quantities induced near sharp edges and corners. The two
resonances can be distinguished by looking at the surface magnetic charge and electric current distributions.
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FIG. 9. Convergence of the resonant wavelengths of two main resonances versus the number of degrees of freedom for the scattering
(a) and absorption (b) efficiency of the octahedral inclusion. The EO-PMCHWT[hyb] scheme indicates faster convergence with respect to the
standard RWG discretization scheme.

able to spot the resonant wavelengths of the first and second
resonances around 436 nm and 400 nm, respectively, with our
nonconforming implementation and around 16 840 degrees of
freedom for the electric and magnetic currents (see Fig. 9).

3. Plasmonic tetrahedron

The tetrahedron is the sharpest member of the Platonic
solids and its plasmonic resonances are redshifted compared
to the other members [36]. In view of Fig. 10, we can
notice the redshift of the scattering and absorption spec-
tra computed with our nonconforming implementations and
N = 4104 unknowns with respect to the RWG implemen-
tation and N = 4800 unknowns. Similarly to the cube and
the octahedron, strong singular fields are present near sharp
features of the particle (Fig. 11). Again, the two resonances
are indistinguishable from the plots of surface electric charge
and magnetic current since they are focused near sharp

vertices. Instead, one should look at the surface magnetic
charge and electric current distributions, which show a distinct
nature for a particular resonance. According to Fig. 12, we
can detect faster convergence of the resonant wavelengths
computed with EO-PMCHWT[hyb] when compared to the
resonant wavelengths computed with PMCHWT[R] as the
number of degrees of freedom is increased. In particular,
we were able to spot the first and second resonance in
the scattering and absorption spectra around the incident
wavelengths of 565 nm and 490 nm, respectively, using our
EO-PMCHWT[hyb] implementation with H = h and around
16 000 unknowns for the electric and magnetic currents
(see Fig. 12).

B. Near-field computations in resonance domain

The results of the previous section indicate that faster
convergence in the far-field region can be obtained with
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FIG. 10. The scattering (a) and absorption (b) efficiency spectra for the tetrahedral particle of edge length a = 101.98 nm depicting the
first two resonances. We can spot the maximum scattering and absorption efficiency values around 12 and 10, respectively.
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FIG. 11. Normalized absolute values of electric and magnetic charges and currents around first (I) and second (II) resonances for a
tetrahedron with edge length a = 101.98 nm. Very strong singular behavior of surface electric charge and magnetic current densities is visible
near the sharp vertices.

the proposed EO-PMCHWT[hyb] scheme than with PM-
CHWT[R]. Next, we test the near-field accuracy of our EO-
PMCHWT[hyb] formulation around two main resonances in

the scattering spectra of a plasmonic cube with edge length
a = 50 nm. For this purpose, we define the root-mean-square
(rms) near-field relative error enear as follows [40]:

enear =
[ ∑K

j=1

∣∣Ẽs(r j ) − EREF
s (r j )

∣∣2 + η2
0

∑K
j=1

∣∣H̃s(r j ) − HREF
s (r j )

∣∣2]1/2

[∑K
j=1

∣∣EREF
s (r j )

∣∣2 + η2
0

∑K
j=1

∣∣HREF
s (r j )

∣∣2]1/2 , (26)

where Ẽs and H̃s denote the scattered electric and magnetic
fields, respectively, computed with the EO-PMCHWT[hyb]
or PMCHWT[R] implementation. The reference scattered
fields, EREF

s and HREF
s , are computed with the standard PM-

CHWT[R] implementation on an unstructured mesh with h
refinement around sharp edges and corners and the maximum
number of degrees of freedom (18 432) for the electric and
magnetic currents. The near fields are computed on a set
of K points distributed along the line with length 100 nm
defined 2.5 nm above the edge of the cube [see Fig. 13(a)].

In our experiment, we adopt K = 200 and the fields Ẽs

and H̃s are computed using a structured mesh without h
refinement.

In Fig. 13(b) we show the relative rms near-field errors
versus the number of degrees of freedom N computed with
EO-PMCHWT[hyb] (H = h) and PMCHWT[R] implemen-
tations. In light of Fig. 13(b), we can observe smaller near-
field errors obtained with the EO-PMCHWT[hyb] scheme
and fewer numbers of unknowns when compared to PM-
CHWT[R].

FIG. 12. Convergence of the resonant wavelengths of two main resonances in scattering (a) and absorption (b) efficiency spectra versus
the number of degrees of freedom for the same tetrahedron as in Fig. 10.
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FIG. 13. (a) Distribution of the points near a plasmonic cube, above one of the edges, that are used in the near-field accuracy tests.
(b) Near-field relative error at the first and second resonances computed with the nonconforming [EO-hyb] and standard [R] implementations
versus the number of degrees of freedom N for a plasmonic cube with side a = 50 nm.

IV. CONCLUSIONS

We have introduced a nonconforming discontinuous
method of moments discretization of the PMCHWT integral
equation formulation applied to the scattering analysis of
plasmonic subwavelength nanoparticles with sharp vertices
in their resonance domain. Following the recently introduced
discretization strategy [41], the unknown electric and mag-
netic surface current densities are expanded with edge-based
even and odd monopolar-RWG subsets, which stand for a
hierarchical rearrangement of the monopolar-RWG set. To
make the problematic singular kernel contributions numer-
ically manageable, the fields are tested over pairs of small
tetrahedral elements attached to the triangles on the boundary
surface and lying in the null-field region.

The proposed technique appears to have improved per-
formance features in the scattering analysis of plasmonic
nanoparticles with sharp edges and corners. For these particles
singular field quantities around geometric singularities dom-
inate the physical result, creating a slow (or no) convergent
solutions, particularly if standard discretization techniques
are applied. The observed accuracy boost of the proposed
implementation is attributed to the better singular charge and
current modeling near the sharp edges and corners with a
discontinuous expansion of the currents together with the
volumetric testing of the fields close to the boundary of
the target. The accuracy of our results was tested for both
far-field and near-field characteristics, supporting an overall
improvement in both domains.

In particular, we observe that the redshift in the scatter-
ing and absorption spectra around two main resonances, for
the cases of canonical sharp-edged targets considered here,
becomes more evident as the height of testing elements H
increases up to the maximum value of the mesh parameter h.
Additionally, we noticed a slower convergence of the second

resonance compared to the resonant wavelength of the first
resonance as the number of degrees of freedom increases.
This indicates that the higher-order modes experience slower
convergence than the lower-order ones.

Three different particles were purposefully presented in
an increasing sharpness manner, i.e., the solid vertex for the
cube is π/2 (rad), for the octahedron 1.359 (rad), and for
the tetrahedron 0.551 (rad). With this categorization, we can
deduce that the proposed nonconforming EO-PMCHWT[hyb]
scheme exhibits faster convergence compared to the conven-
tional PMCHWT[R] scheme as the solid vertex decreases, i.e.,
sharper particles. Alternatively, the sharper the solid, the less
degrees of freedom are required for our nonconforming im-
plementation to reach the same accuracy as with the standard
RWG implementation. This fact can be of particular interest
for modeling even sharper naturally or artificially occurring
particles reducing at the same time the required mesh burden,
paving the way towards the efficient computational explo-
ration of the resonant physics and the design prospects of
sharp nanoscatterers. The same methodology could also be
utilized in incorporating quantum-corrected classical models
that require a hybrid surface-volume treatment that captures
electron tunneling and electron spill-out effects.
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