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Exciton absorption spectra in narrow armchair graphene nanoribbons in an electric field
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We present an analytical investigation of the exciton optical absorption in a narrow armchair graphene nanorib-
bon (AGNR) in the presence of a longitudinal external electric field directed parallel to the ribbon axis. The
two-body two-dimensional Dirac equation for the massless electron and hole subject to the ribbon confinement,
Coulomb interaction, and electric field is employed. The ribbon confinement is assumed to be much stronger
than the internal exciton electric field which in turn considerably exceeds the external electric field. In the single
subband approximation of the isolated size-quantized subbands induced by the ribbon confinement, the exciton
electroabsorption coefficient is determined in an explicit form. The pronounced dependencies of the exciton peak
positions, widths, and intensities on the ribbon width and electric field strength are traced. The electron-hole
exciton attraction enhances considerably the Franz-Keldysh electroabsorption in the frequency region below
and significantly modifies it above the edges determined by the size-quantized energy levels. The ionization by
increasing the ribbon width is shown to occur. In the double-subband approximation of the interacting ground
and first excited subbands the total peak widths associated with the exciton electro- and autoionization caused by
the electric field and intersubband coupling, respectively, are determined analytically. Our analytical results are
in agreement with those obtained by numerical methods. Estimates of the expected experimental values for the
typically employed AGNR show that for a weak electric field the exciton quasidiscrete states remain sufficiently
stable to be observed in optical experiments, while relatively strong fields free the captured carriers to further
restore their contribution to the transport.
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I. INTRODUCTION

Following the early work in Ref. [1], especially during
the last decade, a large number of experimental and theo-
retical studies have been performed on the transport, elec-
tronic, and optical properties of armchair graphene nanorib-
bons (AGNRs) (see [2–5] and references therein) and related
structures [6]. AGNRs are spatially confined elongated strips
of graphene monolayer. This is in particular due to the fact
that in contrast to gapless unbound two-dimensional (2D)
graphene monolayers, AGNRs are favorable for the formation
of excitons (bound electron-hole pairs), which in turn strongly
affect the 2D graphene electronic and optical properties. In 2D
graphene the vanishing density of the electron and hole states
at the Dirac points prevents the formation of excitons, while in
the quasi-1D AGNRs possessing an open band gap the bound
exciton states can arise [7]. The existence of these states
provides several reasons for the strong interest in AGNRs. The
first reason is that AGNRs being the interconnects between
2D graphene monolayers must support their ultrahigh carrier
mobility in graphene-based nanoelectronic devices. At the
same time the exciton effect, i.e., electron-hole attraction,
transforms free electrons and holes into neutral excitons and
thereby suppresses the charge transport properties of graphene
monolayers. Note that excitons in AGNRs are bound much
stronger than their counterparts in quasi-one-dimensional

(1D) semiconductor structures, namely in the quantum wire
(QWR) and in a bulk crystal subject to a strong magnetic
field [diamagnetic excitons (DE)]. The binding energies E (b)

of the excitons in the AGNR of width d � 1 nm reach the
considerable value of E (b) � 1 eV [8], while for realistic
magnetic fields and QWR [9,10] E (b) � 10–20 meV. Thus, the
liberation mechanism for the AGNR charge carriers captured
by the excitons is a relevant question of immediate interest.

In addition, the exciton effect changes drastically the opti-
cal properties of the AGNR. In particular, this is the absorption
in the vicinity of the subband edges determined by the size-
quantized electron-hole energy levels. The square-root diver-
gency of the fundamental absorbtion profile specific for the
quasi-1D structures is replaced by the finite value, associated
with the peaks of the Rydberg series peaks broadening below
each edge.

The second reason is that quasi-1D structures, namely DE
[11], QWR [12], and AGNRs [13], are favorable for the
formation of not only strictly discrete but also metastable Fano
resonances [14] like exciton states adjacent to the excited size-
quantized energy levels. The nature of the Fano resonances
lies in the intersubband coupling between the discrete and
low-lying continuous Rydberg states. Narrow AGNRs outper-
form the mentioned 1D semiconductor structures in terms of
the impact of the binding energy of the exciton states, their
resonant energy widths, and related parameters. The exciton
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binding energies and widths are proportional to the exciton
Rydberg constant Ry [13]. For the semiconductor structures
the Rydberg constant does not depend on the confinement
parameters, i.e., on the radius [12] and magnetic field [15]
for the QWR and DE, respectively. For the AGNRs with
width d we have Ry ∼ d−1 [16]. Thus, for narrow AGNRs
dimensionality plays a crucial role and allows us to control
the relevant exciton properties.

External electric fields directed parallel to the graphene
ribbon axis strongly affect the excitonic and related carrier
mobility, the Fano resonances, and optical absorption spec-
trum. The process of electric field ionization can be used as
a tool for the release of the carriers bound within the strictly
discrete and quasidiscrete exciton states and thereby enhance
the conductance of both the AGNR and the nanoelectronic
devices these ribbons are incorporated into. As established
earlier for the bulk semiconductors, the electric fields act
significantly on both the fundamental (Franz-Keldysh effect
[17]) and exciton [18] absorption. They shift and broaden
the discrete exciton peaks and modify remarkably the exciton
spectrum both below [19] and above [20] the optical edge.

In addition, quasi-1D excitons in AGNRs subject to electric
fields allow us to study the process of exciton double channel
ionization. The excited metastable exciton Rydberg series
decay according to two channels: the autoionization channel,
open due to the intersubband Fano coupling [11,14], and the
channel of electric field ionization, caused by under barrier
tunneling [21].

Note that the majority of the theoretical approaches to
the problem of the exciton in GNR are based on numerical
calculations implying a considerable computational effort.
The discrete part of the exciton absorption spectrum of GNR
has been calculated numerically [8,22–24] using density func-
tional theory, employing the local density approximation,
and the Bethe-Salpeter equation. Jia et al. [5] and Lu et al.
[25] used the tight-binding approximation, while Alfonsi and
Meneghetti [3] employed a full many-body exact diagonaliza-
tion of a parametric Hubbard Hamiltonian in their calculations
of the exciton peak positions and intensities. Gundra and
Shukla [26] studied computationally the optical absorption in
the zigzag GNR in the presence of electric fields. The Pariser-
Parr-Pople-model Hamiltonian was employed, however the
exciton effect was not taken into account. Only few works rely
on analytical methods [2,13,16,27,28], while many numerical
studies of the electronic and optical properties of the GNR
have been performed (see Ref. [26] and references therein).
Numerical results are very helpful also for the detailed inter-
pretation of a specific experiment. At the same time analytical
approaches are appropriate to reveal the basic physics of
the underlying phenomena especially at the first stages of
the investigation. To our knowledge, analytical studies of the
exciton electroabsorption in AGNRs have not been performed
in the literature yet.

In the present work we develop an analytical approach
to the problem of the exciton states in the narrow AGNR
in the presence of an external electric field directed parallel
to the ribbon axis. The Coulomb electron-hole attraction is
taken to be much weaker than the influence of the ribbon
confinement and much stronger than the effect of the electric
fields. The two-body 2D Dirac equation for the massless

electron and hole in AGNR subject to the Coulomb and ex-
ternal electric fields is solved in the adiabatic approximation.
This approximation implies that the transverse electron-hole
motion governed by the ribbon confinement is much faster
than the longitudinal motion controlled by the Coulomb and
external electric fields. In the approximation of the isolated
size-quantized subbands the optical absorption coefficient in
the vicinity of the quasidiscrete exciton states (peak positions,
widths, and intensities) and within the continuous band as a
function of the ribbon width and electric field strength are de-
termined explicitly. In the double-subband approximation the
total widths of the first excited Rydberg series exciton peaks,
associated with the electric field ionization and intersubband
Fano coupling are investigated. Numerical estimates of the
expected experimental values for realistic AGNR parameters
and electric field strengths are made. The aims of this work are
to study the effect of the electric field and ribbon confinement
on the exciton absorption spectrum and to elucidate the mech-
anism of the ionization process of the excitons yielding the
increase of the carriers mobility in the AGNR. In addition, we
intend to trigger further experimental and theoretical studies.

The paper is organized as follows. In Sec. II the general an-
alytical equations are derived. The exciton electroabsorption
coefficient is determined in the single- and double-subband
approximations in Secs. III and IV, respectively. A discussion
of the obtained theoretical results and estimates of the ex-
pected experimental values is presented in Sec. V. Section VI
contains our conclusions.

II. GENERAL APPROACH

We consider the exciton optical absorption in electrically
biased AGNR with width d and length L placed on the x-y
plane and bounded by straight lines x = ±d/2. The uniform
electric field �F as well as the polarization of the involved
light wave are chosen to be parallel to the ribbon y axis. The
general approach to the problem of the exciton absorption is
based on Refs. [29,30] devoted to the interband optical ab-
sorption in AGNR and exciton absorption in semiconductors,
respectively. Since the mathematical details of this approach
have been presented in Ref. [13] only an outline of our
calculations will be provided below. The equation for the
exciton absorption coefficient has the form

α =
∑

N

α(N ), α(N ) = 1

nbε0c
σ (N )

yy , (1)

where nb is the refractive index of the ribbon substrate, c is
the speed of light, and σ (N )

yy is the component of the dynamical
conductivity,

σ (N )
yy = π p2e2

h̄S�N

∑
n,s

∣∣σ (N )
xn(s)

∣∣2δ(h̄ω − ENn(s) )δ�qph �K (2)

determined by the matrix element

σ
(N )
xn(s) = 〈�	 (0)(�ρ e, �ρ h)

∣∣σ̂xh

⊗
Îe + Îh

⊗
σ̂xe

∣∣�	 (x)
Nn(s)(�ρ e, �ρ h)

〉
(3)

of the Pauli matrix σ̂x calculated between the ground state
�	 (0) and exciton wave functions �	 (x)

Nn(s) of the bound (n) and
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continuous (s) states of the exciton, formed by an electron
and hole related to size-quantized energy subbands with the
common index N . The exciton states consisting of the electron
and hole associated with the different Ne �= Nh subbands are
optically inactive and can be excluded from expansion (8)
(see justification in [31] and references therein). As usual, the
symbol

⊗
denotes the tensor product of the Pauli σ̂x and unit

Î matrices. In Eq. (2) p = h̄vF (vF = 106 m/s) is the graphene
energy parameter, S = Ld is the area of the ribbon, and �N =
2εN is the effective energy gap between the electron and hole
subbands, branching from the size-quantized levels ±εN in the
conduction and valence bands, respectively. The δ functions
in Eq. (2) reflect the conservation laws in the system formed
by the absorbed photon with the energy h̄ω and momentum
h̄�qph plus the emersed exciton of the energy ENn(s) and total
momentum h̄ �K .

Following Elliot’s approach justified in detail in Ref. [30]
the wave function �	 (0) of the ground state of the electron-hole
pair in a semiconductorlike AGNR is chosen in the form

�	 (0)(�ρ e, �ρ h)

= δ(y)δ(xe − xh)
[��(0)

A

⊗ ��(0)
A + ��(0)

B

⊗ ��(0)
B

]
, (4)

where y = ye − yh is the relative y coordinate and

��(0)
A = 1√

2

⎧⎪⎪⎨
⎪⎪⎩

−1
0

1

0

⎫⎪⎪⎬
⎪⎪⎭, ��(0)

B = 1√
2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

1

0

−1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The exciton wave function �	 (x) obeys the equation

Ĥx �	 (x)( �ρe, �ρh) = E �	 (x)( �ρe, �ρh). (5)

In this equation

Ĥx = Ĥh(�̂kh)
⊗

Îe + Îh

⊗
Ĥe(�̂ke)

+ Îh

⊗
Îe[V ( �ρe − �ρh) − eF (ye − yh)] (6)

is the traditional exciton Hamiltonian [32] formed by the

electron and hole Hamiltonians Ĥj (�̂k j ), j = e, h correspond-
ing to the nonequivalent Dirac points �K (+,−) = ±K, 0 (K =
4π/3a0, a0 = 2.46 Å is the graphene lattice constant) [33] and

V (�ρ e, �ρ h) = − e2

4πε0εeff

√
(xe − xh)2 + (ye − yh)2

(7)

is the 2D Coulomb potential of the electron-hole attraction.
Here εeff = 1

2 (1 + ε + πq0) is the effective dielectric constant
determined by the static dielectric constant ε of the substrate
and by the parameter q0 = e2/4πε0 p � 2.2 [16,34].

Furthermore, we choose the exciton wave function �	 (x) in
the form

�	 (x)( �ρe, �ρh) = 1√
2

∑
N

∑
α=A,B

uNα (yh)

× ��Nα (xh)
⊗ ∑

β=A,B

uNβ (ye)��Nβ (xe), (8)

where ��NA(B)(xe(h) ) and uNA(B)(ye(h) ) are the wave functions
describing the electron (hole) transverse x and longitudinal

y states, governed by the ribbon confinement and exciton
V (�ρ e − �ρ h) (7) and electric field −eF (ye − yh) potentials,
respectively, in the A(B) graphene sublattices. In Eq. (8) the
sublattice wave functions ��NA(B) are as follows:

��NA(x j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ϕN (x j )

0

ϕ∗
N (x j )

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

��NB(x j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

ϕN (x j )

0

−ϕ∗
N (x j )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, j = e, h,

where the explicit form of the functions ϕN (x j ) is presented
in Ref. [35]. The electron (hole) energies (flat bands) corre-
sponding to the size-quantized transverse N states are equal
to +(−)εN with

εN = |N − σ̃ |π p

d
, N = 0,±1,±2, . . . ,

σ̃ = Kd

π
−
[

Kd

π

]
. (9)

Below, to be specific, we will consider AGNRs of the family
σ̃ = 1/3, providing a semiconductorlike gap structure.

Substituting the expansion of the wave function
�	 (x)( �ρe, �ρh) over the orthonormalized basis set
��Nα (xh)

⊗ ��Nβ (xe) (8) into Eq. (5) and in view of the
equations

Ĥj (k̂ jx )��NA(B)(x j ) = εN ��NB(A)(x j )

we arrive after routine manipulations to the set of the
equations for the expansion coefficients uNα (yh)uNβ (ye) (see
Eq. (14) in Ref. [13]) written in terms of the center of mass
Y = 1

2 (ye + yh) and relative y = ye − yh coordinates

uNα (yh)uNβ (ye) = eiQY

√
L

ξNαβ (y), ξNAA = ξN1,

ξNAB,(BA) = 1√
2

(ξN2 ± ξN3), ξNBB = ξN4,

h̄Q is the longitudinal component of the exciton total
momentum.

Furthermore, this set is solved in the adiabatic approxima-
tion. This implies that the fast transverse x and slow y motions
affected by the ribbon confinement and exciton attraction plus
weak electric field, respectively, are adiabatically separated.
The adiabaticity parameter q, i.e., the Coulomb potential
strength (7) scaled with the graphene energetic parameter p
and the imposed adiabatic condition, are as follows:

q = e2

4πε0εeff p
, q � 1. (10)

Under this condition the set for the functions ξN j , j =
1, 2, 3, 4 [13] transforms into that for the functions ξN1 =
ξN4 = 1√

2
ξN2 ≡ ξN , ξN3 � ξN1,

− h̄2

2μN
ξ

′′
N (y) + [VNN (y) − eFy − WN ]ξN (y)

+
∑

N ′ �=N

VN ′N (y)ξN ′ (y) = 0. (11)
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These equations describe the relative motion of the 1D ex-
citon with center-of-mass momentum Q = 0, reduced mass
μN = h̄2�N

4p2 , and energy WN = E − �N in the presence of the
external electric −eFy and quasi-Coulomb VN ′N (y) potentials,
where

VN ′N (y) = 1

d2

∫ + d
2

− d
2

dxe

∫ + d
2

− d
2

dxhV (�ρ )

× cos

[
(N − N ′)π

(
xe

d
− 1

2

)]

× cos

[
(N − N ′)π

(
xh

d
− 1

2

)]
, �ρ = �ρ e − �ρ h ,

(12)

determined by Eq. (7) for the potential V (�ρ ) with

VN ′N (y) = − e2

4πε0εeff|y|
[
δN ′N + O

(
d2

y2

)
δ|N ′−N |(2s+1)

]
,

s = 0, 1, 2, . . . at |y| � d. (13)

Other parameters related to the N th subband are the ex-
citon Bohr radius aN = 4πε0εeff h̄

2

μN e2 , exciton Rydberg constant

RyN = h̄2

2μN a2
N

(=�N q2

8 ), and dimensionless electric field fN =
F
FN

, which is the external electric field F scaled with the

exciton electric field FN = RyN
eaN

.

Using Eqs. (4) and (8) for the ground state �	 (0) and exciton
�	 (x) wave functions, respectively, we determine the matrix
element (3) of the dipole exciton optical transition in the
form σ

(N )
xn(s) = −√

LξN (0). As expected, for the noninteracting
electron-hole pair with the wave quantum number s for which
ξN (y) = 1√

L
eisy the matrix element of the fundamental optical

transition reads |σ (N )
xn(s)| = 1 [29]. The contribution α(N ) [see

Eqs. (1) and (2)] to the coefficient of the exciton absorption
α in the vicinity of the edge �N takes on the following
appearance:

αN (ω) = α(0) 4π p2

nb�N d

∑
n(s)

|ξN1(0)|2δ(h̄ω − ENn(s) ), (14)

where α(0) = e2/4ε0 h̄c � 2.3×10−2 is the absorption of
the suspended graphene. As mentioned above the details
of the calculations of Eq. (14) including the explicit forms

of the Hamiltonians Ĥe,h(�̂ke,h) in Eq. (6), sublattice wave
functions ��NA(B)(x) in Eq. (8), and set of functions χN1 − χN4

can be found in Ref. [13].

III. SPECTRUM OF THE EXCITON
ELECTROABSORPTION: SINGLE-SUBBAND

APPROXIMATION

Here we employ the single-subband approximation ignor-
ing the coupling between the electron-hole subbands with
the different indices N . It follows from Eq. (13) that in the
narrow ribbon with small width d the diagonal potentials VNN

dominate the off-diagonal ones in the set of Eq. (11). This
allows us to set VN ′N = VNδN ′N , omit the �N ′ from Eq. (11),
and arrive at the equations for the functions χN (y) governed

by the diagonal Coulomb contribution

VN (y) = 2

d
qp

⎡
⎣ln

|y|
d

1 +
√

1 + y2

d2

+
√

1 + y2

d2
− |y|

d

⎤
⎦

=
{

qp
d ln y2

d2 ,
|y|
d � 1,

− qp
|y| ,

|y|
d � 1,

(15)

and the electric field potential −eFy.
These equations are solved by matching in the intermedi-

ate regions the wave functions valid in the inner 0 � |y| �
aN , Coulomb d � |y| � (|yN |aN )1/2, and “electric” |y| �
(|yN |aN )1/2 regions, determined by the exciton Bohr radius aN

and turning point yN = −WN
eF for vanishing classical momen-

tum P (y) = √
2μN (WN + eFy). In the inner and Coulomb

regions the exciton electric field FN considerably exceeds
the external electric field F , while in the electric region the
exciton potentials VN (y) can be treated as a small perturbation
to the external field effects. The exciton absorption coefficient
is determined for the photon energies h̄ω = E below the ab-
sorption edge 0 > h̄ω − �N � −RyN

n2 , n � 0, 1, 2, . . . close to
the energies of the bound Rydberg states, for the frequencies
h̄ω − �N < 0 positioned far away from the Nn exciton peaks
and for the frequency region above the edge h̄ω − �N > 0.

The approach presented in this section closely resembles those
in the works [12,36] dedicated to the exciton electroabsorption
in QWR and impurity states in AGNRs subject to electric
fields, respectively. Here we focus only on the main features
leaving aside the details.

A. Frequency region h̄ω − �N < 0

At this stage it is convenient to introduce the exciton quan-
tum number κN and reciprocal length νN defined by WN =
−RyN/κ2

N and νN = 2(κN aN )−1, respectively. In the inner
region an iteration method is employed. Double integration
of Eq. (11) without the term involving

∑
N ′ �=N with the trial

function and its derivative ξ
(0)
N (y) = cN , ξ

(0)′
N (y) = 0 relevant

to the optically active excitons [see Eq. (14)] generates the
function

ξN (y) = cN

[
1 − 2

y

aN

(
ln

2y

d
− 1

2

)]
. (16)

In the Coulomb region the general solution to Eq. (11)

ξN (y) = ANWκN , 1
2
(τ ) + BN MκN , 1

2
(τ ), τ = νN y (17)

can be written in terms of the Whittaker functions WκN , 1
2

and
MκN , 1

2
[37]. In the electric region Eq. (11) reads

ξ
′′
N (x) − GN (x)ξN (x) = 0, (18)

where

GN (x) = x + 2 f −1/3
N

x − κ−2
N f −2/3

N

, x = − y

bN
+ κ−2

N f −2/3
N ,

bN (F ) =
(

h̄2

2μN eF

)1/3

.
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Following the comparison equation method [38] the general
solution normalized according to δ(WN − W ′

N ),

ξN (y) = C̃N

[
3
2 SN (x)

]1/6

GN (x)1/4

{
sin ϑN Ai

[(
3

2
SN (x)

)2/3
]

+ cos ϑN Bi

[(
3

2
SN (x)

)2/3
]}

, (19)

is written in terms of the Airy functions Ai and Bi [37]. In
Eq. (19)

SN (x) =
∫ x

0
G1/2

N (u)du, C̃2
N = 1

EN bN
, EN (F ) = h̄2

2μN b2
N

,

and ϑN is an arbitrary phase.
A comparison of functions (16) and (17) for τ � 1 and

then the asymptotic expansions of functions (17) for τ � 1
and (19) for SN � 1 [37] lead to the set of equations

cN − AN

�(1 − κN )
= 0, (20)

ANYN (κN ) + BN�(−κN ) = 0, (21)

AN − BN
cos πκN

�(1 + κN )
− C̃Nπ−1/2κ

1/2
N f 1/6

N cos ϑN�−1
N = 0,

(22)

BN
1

�(1 − κN )
− C̃N

1

2
π−1/2κ

1/2
N f 1/6

N sin ϑN�N = 0. (23)

In this set

YN (κN ) = π cot πκN − 1

2κN
− ln κN + ψ (1 + κN ) + ln q

+ ln
|N − σ̃ |π

2
+ 2C − 1

2
, (24)

where C = 0.577 is the Euler constant, ψ (1 + κN ) is the
logarithmic derivative of the � function,

�N = exp

{
− 2

3 fNκ3
N

+ κN ln
8

fNκ3
N

}
. (25)

Solving the set of Eqs. (20)–(23) with respect to the co-
efficients cN , AN , BN , C̃N by the determinantal method, we
determine the phase ϑN and then the coefficient c2

N = ξ 2
N (0),

c2
N = 1

2π pq

κN�2(−κN )

Y 2(κN )
�2

N

{
1 + �4

N�4(1 − κN )

4κ2
N

[
1

YN (κN )
− sin 2πκN

2π

]2
}−1

, (26)

which provides us with the absorption coefficient (14) αN =
α(0) 2p

nb|N−σ̃ |c
2
N . The obtained results are valid under the condi-

tion fNκ3
N � 1, resulting in �N � 1.

1. Exciton electroabsorption

Expanding function (24) in the vicinity of the discrete exci-
ton energies, specified by the quantum numbers κNn calculated
from equation

YN (κNn) = 0, κNn = n + βNn, βNn < 1,

n = 0, 1, 2, . . . , (27)

Eq. (26) is rearranged to

c2
Nn = q�N

4pκ3
Nn

∣∣ ∂YN
∂κNn

∣∣�Nn(WN ),

(28)
∂YN

∂κNn
=
{

−(2κ2
Nn

)−1
, n = 0, κNn = βN0,

−β−2
Nn , n = 1, 2, . . . , κNn = n + βNn,

where the function �Nn(WN ) describing the Lorentzian form
of the optical absorption peak reads

�Nn(WN ) = �
(el)
Nn

2π
{[

WN − WNn − �W (r)
Nn

]2 + �
(el)2
Nn
4

} ,

WN = h̄ω − �N . (29)

In Eq. (29) WNn = −RyN (n + βNn)−2, �
(el)
Nn , and �W (r)

Nn ∼
�

(el)
Nn �2

Nβ−1
Nn � �

(el)
Nn are the exciton energy levels in the

absence of the electric field counted from the energy gap

�N and the resonant widths and shifts of the optical peaks,
respectively, caused by the electric field ionization of the
exciton states. We have omitted here the negligibly small
Stark corrections to the energies WNn caused by the weak
electric fields (see Sec. V A 1) and further ignore the resonant
shifts �W (r)

Nn . The reasons for the latter approximation are as
follows: (i) the shifts are much smaller than the corresponding
widths and (ii) they do not change the form of the exciton
spectrum. The widths �

(el)
Nn transform the δ-function peaks in

an unbiased AGNR [13] into the maxima of finite width �
(el)
Nn .

An explicit form of the width �
(el)
Nn and maximum of

the absorption coefficient c2(max)
Nn determined by Eqs. (26)

and (28), respectively, are as follows:

�
(el)
Nn = 2(1 + δn0)

RyN�2
N

κ2
Nn�

2(1 + κNn)
,

c2(max)
Nn = 2β2

Nn�
2(1 + κNn)

π pqκNn�
2
N

, (30)

where δn0 is the Kronecker symbol. The quantum defects
βNn and factor �N can be found from Eqs. (27) and (25),
respectively. As expected, in the absence of the electric fields
F = 0, �N = 0 Eqs. (28) and (29) transform into those de-
scribing the δ-function type exciton peaks in an electrically
unbiased AGNR [13]. In principle, the resonant widths �

(el)
Nn

and shifts �WNn ∼ �2
Nn

βNn
�

(el)
Nn of the exciton peaks can be found

as the imaginary components of the complex energies of
the quasidiscrete Nn states [36]. These states are relevant to
the poles of the scattering matrix S(ϑN ) = exp(2iϑN ) [39].
Setting in the set of Eqs. (20)–(23) cot ϑN = i and then
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solving this set by the determinantal method we find the com-
plex quantum numbers κNn and the complex energies WN =
WNn + �WNn − i

2�
(el)
Nn comprising the unperturbed Rydberg

levels WNn = −RyN/κ2
Nn, resonant width �

(el)
Nn (30), and shift

�WNn ∼ �2
Nn

δNn
�

(el)
Nn .

2. Franz-Keldysh exciton absorption

Here we consider the frequencies h̄ω < �N , positioned
away from the quasidiscrete exciton Nn peaks. It allows us to
neglect in Eq. (26) the small term ∼�4

N�4(1 − κN )κ−2
N . This

equation becomes

c2
N = c2

N (FK)TN , (31)

where

c2
N (FK) = 1√

2π p

(
�N − h̄ω

�N

)−1/2

exp

{
−4

3

(
1

fNκ3
N

)3/2
}

(32)

is the electroabsorption coefficient in the AGNR associated
with the photon-assisted intersubband tunneling of the free
carriers (FK effect [17]) and

TN = �2(−κN )

4Y 2
N (κN )

exp

{
2κN ln

8

fNκ3
N

}
(33)

is the factor describing the exciton influence on the FK absorp-
tion. Equations (31)–(33) are derived for the frequency shift
�N − h̄ω significantly exceeding the energy EN ( fNκ3

N � 1).
As expected, in the absence of the exciton effect (κN → 0)
�(−κN )2 = 4Y (κ2

N ), TN (κN ) = 1, and c2
N = c2

N (FK). For the
zeroth electric fields F = 0 the coefficient c2

N (FK) = 0 which
in turn leads to the zeroth absorption c2

N = 0 for the frequen-
cies distant from the exciton peaks.

B. Frequency region h̄ω − �N > 0

For these energies we introduce the quantum number
ζN and parameter sN defined by WN = RyNζ−2

N and sN =
2(ζN aN )−1, respectively. In the Coulomb region the general
solution to Eq. (11) has the form

ξN (y) = DN
[
ei�N WiζN , 1

2
(t )+e−i�N W−iζN , 1

2
(−t )

]
, t = −isN y,

(34)

where �N is an arbitrary phase.
In the ‘electric’ region Eq. (11) reads

ξ
′′
N (x) − G̃N (x)ξN (x) = 0, (35)

where

G̃N (x) = x + 2 f −1/3
N

x + ζ−2
N f −2/3

N

, x = − y

bN
− ζ−2

N f −2/3
N ,

with the general solution

ξN (y) = C̃N

[
3
2 S̃N (x)

]1/6

G̃N (x)1/4
Ai

[(
3

2
S̃N (x)

)2/3
]
, (36)

decreasing towards the region y � yN (yN < 0) and normal-
ized according to δ(WN − W

′
N ). In Eq. (36)

S̃N (x) =
∫ x

0
G̃N (u)du

and C̃N is the same as that in Eq. (19).
A comparison of functions (16) and (34) within the inner

region and then the asymptotic expansions of functions (34)
and (36) for |t | � 1 and S̃N � 1, respectively, lead to the set
of equations

cN = −2DN

(
sinh πζN

πζN

)1/2

sin (�N + σN ), σN = arg�(iζN ),

(37)

2DN e
πζN

2 = C̃Nπ−1/2ζ
1/2
N f 1/6

N , (38)

�N = 2

3 fNζ 3
N

− ζN ln
8

fNζ 3
N

− π

4
. (39)

This set results in the coefficient cN = ξN (0) with

c2
N = 1

π p

(
�N

h̄ω − �N

)1/2

ZN sin2

(
2

3 fNζ 3
N

+ π

4
+ ��NZ

)
(40)

totally determining the absorption coefficient (14) αN =
α(0) 2p

nb|N−σ̃ |c
2
N in the frequency region h̄ω − �N > 0.

The Sommerfeld factor ZN and phase shift ��NZ both re-
sponsible for the influence of the exciton on the FK absorption
associated with the unbound electron-hole pair are given by

ZN = e−πζN
sinh πζN

πζN
and ��NZ = −ζN ln

8

fNζ 3
N

− π

2
+σN ,

(41)

respectively. Equations (40) and (41) are valid for frequency
shifts from the edge by an amount h̄ω − �N considerably ex-
ceeding the energy E ( fNζ 3

N � 1). In the absence of the exci-
ton effect (ζN → 0) we arrive at the Sommerfeld factor ZN =
1 and phase shift ��NZ = −π . This transforms Eq. (40) into
that for the FK oscillations. In the case of a vanishing electric
field F = 0 the rapidly oscillating function transforms into
1/2 and we obtain the coefficient c2

N in Eq. (40) for the exciton
absorption in the continuous spectrum region [13].

IV. SPECTRUM OF THE EXCITON
ELECTROABSORPTION: DOUBLE-SUBBAND

APPROXIMATION

In this section we consider the influence of the coupling
between the continuous and discrete states emanating from
the ground �0 and adjacent to the first excited �1 size-
quantized energy levels, respectively. We focus on the exciton
electroabsorbtion in the frequency region �0 < h̄ω < �1 in
the vicinity of the resonant peaks h̄ω − �1 = −Ry1/κ

2
1n. The
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common resonant energy E = h̄ω of the interacting states is

E = �1 − Ry1

κ2
1

= �0 + Ry0

ζ 2
0

. (42)

The corresponding twofold set of equations follows from
the general one (11) limited to N, N ′ = 0, 1. To avoid rou-
tine and cumbersome calculations only an outline of the
mathematical procedure will be given below. The needed
details can be found in works in which the problems of the
exciton electroabsorption in QWR [12] and impurity states in
electrically biased AGNRs [36] have been studied. Using the
trial functions and its derivatives ξ

(0)
1 (y) = c1, ξ

(0)
0 (y) = c0,

ξ
(0)′
1 (y) = 0, ξ

(0)′
0 (y) = 0 and double integrating the twofold

set we arrive at the functions ξ1(y) and ξ0(y) valid in the inner
regions d � y � κ1a1 and d � y � ζ0a0. Matching these
functions with the functions (17) for τ � 1, N = 1 and (34)
for |t | � 1 N = 0, respectively, we obtain

A1

�(−κ1)
+ κ1c1 = 0, (43)

A1

�(−κ1)
Y1(κ1) + B1 − κ1γ01c0 = 0, (44)

c0 + 2D0

(
sinh πζ0

πζ0

)1/2

sin (�0 + σ0) = 0, (45)

c0η0(ζ0) + γ01c1 = 0. (46)

In these equations

η0(ζ0) = λ0(ζ0) − π

1 − e−2πζ0
cot (�0+σ0), σ0 = arg�(iζ0),

λ0(ζ0) = 1

2
[ψ (1 + iζ0) + ψ (1 − iζ0)] − ln ζ0

+ ln
|σ̃ |π

2
+ 2C − 1

2
+ ln q. (47)

The parameter

γ01 = 1

2d2

∫ d
2

− d
2

dxe

∫ d
2

− d
2

dxh ln |xe − xh| sin
π

d
xe sin

π

d
xh

= 0.387

describes the coupling induced by the off-diagonal potentials
V10 = V01 (12). The function Y1(κ1) is given by Eq. (24) for
N = 1.

Comparing functions (17) for τ � 1 and (19) for S � 1
both for N = 1 we obtain Eqs. (22) and (23) both for N = 1.
The relationship between the phases ϑ1 and �0 is derived by
equating the phases in the asymptotic expansions of functions
(19) for S � 1 and (34) for |t | � 1 to give

�0 + σ0 = −ϑ1 + 2

3 f1κ
3
1

− κ1 ln
8

f1κ
3
1

− π

4
. (48)

Solving the set of Eqs. (43)–(46), (22), and (23) for N =
1 with respect to the coefficients c0, c1, A1, B1, D0, C̃1 by the
determinantal method, we obtain the equation containing the
phase ϑ1 and �0 + σ0 linked by Eq. (48):

η0(�0)

{
Y1(κ1) −

[
sin 2πκ1

2π
+ 2 cot ϑ1

κ1�2(−κ1)�2
1

]−1
}

− γ 2
01 = 0.

(49)

As expected, the just derived set of equations and Eq. (49)
satisfy the limiting transitions. In the single subband ap-
proximations neglecting the coupling parameter γ01, Eq. (49)
decomposes into two ones. Determining cot ϑ1, by setting to
zero the curly bracket, we arrive at the absorption coefficient
α1 ∼ c2

1 (26) describing the exciton electroabsorption in the
frequency region h̄ω < �1. For a vanishing electric field F =
0, �1 = 0 Eq. (49) generates the equation η0 = γ 2

01Y
−1

1 that
in turn allows us to determine cot(�0 + σ0). Using Eqs. (43)–
(46) with B1 = 0 and D0 = (4π pq)−1/2ζ

1/2
0 e−πζ0/2 providing

the normalization of function (34) to δ(W0 − W ′
0 ), we arrive

at the absorption coefficient α1 ∼ (c1 + c0)2. This coefficient
is determined by Eqs. (28) and (29) in which the resonant
width �

(el)
1n and corresponding resonant shift are replaced by

the Fano resonant width �
(F)
1n and shift ∼q3�

(F)
1n . The latter

have been calculated in Ref. [13] to give

�
(F)
1n = 8qγ 2

01Ry1√
3κ3

1n

∣∣ ∂Y1
∂κ1

∣∣ . (50)

Note that this resonant width can be calculated as the imag-
inary part of the complex energy determined by the com-
plex quantum number κNn in solving Eqs. (43) and (44) for
B1 = 0 and (46) for cot(�0 + σ0) = i by the determinantal
method.

Here we consider the case of the resonant state 1n for
which both ionization channels are open. In view of ζ0 �
q/2

√
2 � 1 [see Eq. (42)] and the resonant state condition

cot ϑ1 = i [39] we calculate from Eq. (48) cot(�0 + σ0) = i
and then from Eq. (49) the complex quantum number κ∗

1n. The
imaginary part of the energy W1n(κ∗

1n) leads to the energetic
width �

(t )
1n of the corresponding quasidiscrete state with

�
(t )
1n = �

(el)
1n + �

(F)
1n , (51)

where the widths �
(el)
1n and �

(F)
1n are determined by Eqs. (30)

and (50), respectively. Now in view of cot ϑ1 = cot(�0 + σ0)
we find from Eq. (49) and from the set of Eqs. (43)–(46), (22),
and (23) for N = 1 the absorption coefficient α1 ∼ (c1 + c0)2.
In the vicinity of the resonant states specified by the quantum
numbers κ∗

1n the absorption coefficient acquires the forms (28)
and (29), in which the width �

(el)
1n is replaced, as expected, by

the total width �
(t )
1n from Eq. (51).

V. DISCUSSION

In this section we discuss the exciton electroabsorption
spectrum obtained both for the isolated subbands, i.e., the
exciton peaks (Sec. V A 1) and continuous Franz-Keldysh
exciton absorption (Secs. V A 2 and V B) and in view of
intersubband Fano coupling (Sec. V C). We focus on the
dependencies of the spectral characteristics on the ribbon
width and electric field strength. Estimates of the expected
experimental values and comparison of our results with those
obtained numerically by other authors are given.

A. Single subband approximation

In the single subband approximation the electroabsorption
spectrum consists of a periodic sequence of N subbands each
comprising the Rydberg series of the quasidiscrete peaks
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adjacent to the edges �N from below. In addition, there is
continuous bands covering the spectral regions both below
and above the edges. The intensities of the quasidiscrete
peaks, their electrically induced widths, and the shape of
the continuous band depend on both the ribbon width d and
electric field strength F . The peak positions are predominantly
determined by the ribbon width.

1. Exciton electroabsorbtion h̄ω < �N

Here we address the Rydberg series of spectral maxima
described by Eqs. (28) and (29) in which we ignore both
the Stark �W (S)

Nn and the resonant tunneling �W (r)
Nn shifts

of the energy level WNn. The reason for this is that for
weak electric fields F for which fNκ3

Nn � 1 the contributions
of both shifts to the peak positions are negligibly small.
In order to justify this we set in Eq. (11) the corrections
�ξN0 ∼ fN to the ground state n = 0 wave function ξN0 ∼
exp(−τ/2) [see Eq. (17) for τ ] and to the energy �W (S)

N0 ∼
− f 2

N (redshift). We obtain |�W (S)
N0 |/WN0 = (5/4) f 2

Nκ6
N0 � 1.

This result coincides with that calculated by Ratnikov and
Silin [40] by the Dalgarno-Lewis perturbation theory method
[41]. For the excited exciton peaks the electric field effect is
equally small. The resonant shift W (r)

Nn in Eq. (29) calculated
from Eq. (26) becomes �W (r)

Nn ∼ �
(el)
Nn (�2

N/βNn). It turns out
to be not only much smaller than the energy WNn but also
width �

(el)
Nn .

The dependence of the binding energies E (b)
Nn = −WNn ∼

�N with �N ∼ d−1 and exciton peak positions h̄ωNn = �N −
E (b)

Nn on the ribbon width d is the same as that in the unbiased
AGNR [13]. The narrowing ribbon leads to an increasing
binding energy and blueshift of the exciton peak.

While it does not significantly change the peak positions,
the electric field modifies drastically the shape of the absorp-
tion peaks. The δ-function form for the unbiased ribbon [13]
is replaced by a Lorentzian one determined by the width �

(el)
Nn

and finite absorption intensity maximum α
(max)
Nn , derived from

Eqs. (14) and (30):

α
(max)
Nn = mα(0) 8

nb|N − σ̃ |πq

β2
Nn�

2(1 + κNn)

κNn�
2
Nn

,

n = 0, 1, 2, . . . . (52)

It follows from Eqs. (30) and (52) that with increasing the
ribbon width d and electric field strength F the width �

(el)
Nn

increases, while the exciton absorption peak maximum α
(max)
Nn

decreases in magnitude (see Figs. 1 and 3 for �
(el)
00 and

α
(max)
00 ∼ c2(max)

00 , respectively). Thus, in contrast to the quasi-
1D semiconductor structures (QWR, DE) in which the exciton
ionization is provided only by the electric field, in the AGNR a
dimensional ionization can be realized. The ribbon widening
leads to the ionization, while the electric field remains con-
stant. The rate of the dimensional ionization surpasses that
of the electric field because of the square ∼(d−1)2 and linear
∼F−1 dependencies of �Nn (25) on the reciprocal ribbon
width d and electric field strength F , respectively. The width
�

(el)
00 of the ground exciton state in the AGNR placed on the

sapphire substrate (q = 0.24) as a function of the ribbon width
d and electric field strength F is depicted in Fig. 1. Isowidth

d [nm]

F [kV/cm]

(el)

0.02

0.06

0.10

20

15

10

5

1
2

3
4

5

FIG. 1. The width �
(el)
00 of the ground exciton peak versus the

ribbon width d and electric field strength F . The width �
(el)
00 , quantum

number κ00, and factor �00 are determined via Eqs. (30), (27), and
(25), respectively, for the ribbon placed on the sapphire substrate
q = 0.24.

lines Fd2 � const. providing the constant width �
(el)
00 (F, d )

are given in Fig. 2.
Equation (30) shows that within the N Rydberg series

the lowest absorption line considerably surpasses the excited
peaks in narrowness �

(el)
N0 � �

(el)
Nn and intensity α

(max)
N0 �

α
(max)
Nn , n = 1, 2, . . .. Figure 3 demonstrates the dependence

of the ground exciton peak maximum c2(max)
00 on the ribbon

width d and electric field strength F .
Equation (25) allows us to introduce the parameter of the

exciton state relative stability QNn in the ribbon with width d
exposed to the electric field F . This parameter generated by

0.2 0.4 0.6 0.8 1.0

50

100

150

FIG. 2. The isowidth curves �
(el)
00 (d, F ) = const. for the ground

exciton peak, quantum number κ00, and factor �00 are determined
from the same equations and for the same ribbon substrate as those
used in Fig. 1. The values of �

(el)
00 are chosen to be 0.10, 0.06, 0.02 eV.
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FIG. 3. The dependence of the ground exciton peak maximum
c2(max)

00 on the ribbon width d and electric field strength F . The co-
efficient c2(max)

00 , quantum number κ00, and factor �00 are determined
from the same equations and for the same substrate as in Fig. 1.

the condition fNκ3
Nn = 1 becomes

QNn(q) = π2 p

8e
|N − σ̃ |2 q3

κ3
Nn

,
π2 p

8e
= 0.82 V nm, (53)

where κNn(q) is the root of Eq. (27). Under the condition
Fd2 > QNn(q) the Nn state is practically ionized, while in
the opposite case Fd2 < QNn(q) the state in question remains
relatively stable. An electric field providing the relatively
small width of the ground peak κN0 < 1 would be sufficiently
strong to ionize completely the excited states κNn > n, n =
1, 2, . . .. Note that the parameter QNn(q) possesses a universal
character as far as it depends only on the dimensionless
exciton potential strength q.

2. Franz-Keldysh exciton absorption h̄ω < �N

As pointed out originally by Merkulov and Perel [19] the
mechanism of the interband electroabsorption in bulk mate-
rials in the spectral regions distant from the exciton maxima
is the FK effect [17] (i.e., optical transition assisted by the
interband carriers tunneling) strongly modified by the exciton
attraction. This is completely in line with Eqs. (31)–(33)
relevant to the exciton electroabsorption and FK effect in the
AGNR. In the latter this spectrum depends both on the electric
fields F and ribbon width d , while in the semiconductor
structures, i.e., in bulk crystals as well as in those subject
to strong magnetic fields [42] and QWR [12] mostly, only
electric fields F influence the optical absorption spectrum. It
follows from Eqs. (31)–(33), in which

1

fNκ3
N

= (�N − h̄ω)3/2

( |N − σ̃ |π
8e2 pF 2d

)1/2

,

that the stronger the electric field F or/and ribbon width d
is, the larger are the exciton electroabsorption c2

N (31), FK
absorption c2

N (FK) (32), and the smaller is the exciton attraction
influence TN (33). Note that along with this the exciton peak
maxima decrease. The exciton effect increases for frequencies
close to the exciton peaks for which YN � 1 and then de-

- 10 - 9 - 8 - 7 - 6 - 5 - 4
0

6

8

10

0.1

0.2

0.3

0.4

- 8.2 - 8.0 - 7.8 - 7.6 - 7.4 - 7.2

FIG. 4. The spectra of the exciton electroabsorption in the vicin-
ity of the ground exciton peak (black line) and of F-K absorption
(blue line) as a function of the reciprocal frequency shift −κ−2

0 =
Ry0/(h̄ω − �0 ) with respect to the ground threshold �0. The coeffi-
cients c2

0 and c2
0(FK), functions Y0 and �0 are calculated from Eqs. (26)

and (32), (24), and (25), respectively, for N = 0. The dimensionless
electric field is chosen to be f0 = 5; sapphire substrate q = 0.24 is
implied.

creases for intermediate frequencies corresponding to the re-
gions 0 < κN < βN0, n + βNn < κN < n + 1, n = 0, 1, 2, . . ..
However, even for these frequencies the exciton effect con-
tributes significantly to the optical absorption. As the fre-
quency shifts away from the ground exciton peak N = n = 0
inside the gap (κN → 0) the exciton effect becomes negligibly
small, �2(−κN ) � 4Y 2

N and c2
N � c2

N (FK). The spectrum of
the exciton and FK electroabsorption in the vicinity of the
ground exciton peak and below and above in the intermediate
frequency regions is given in Fig. 4. In this figure one can see
that in accordance with Eqs. (31) and (33) in the vicinity of the
ground exciton peak the exciton electroabsorbtion contributes
considerably, while the FK absorption (32) is nearly invisible.
As mentioned above the chosen electric field corresponds to a
relatively narrow ground peak and practically unites the first
excited broad peak with the region of the continuous spectrum
h̄ω > �N .

B. Franz-Keldysh exciton absorption h̄ω > �N

In the frequency region above the edge of the electroab-
sorption spectrum is described by Eqs. (40). The frequency
oscillations modulated by the reciprocal square-root factor
(1D FK effect [43]) are modified by the 1D exciton Sommer-
feld factor Z and the exciton phase shift ��NZ . In contrast
to semiconductor structures, in particular the bulk crystals
subject to strong magnetic field B [43] and QWR [12] in which
the oscillation period depends only on the electric fields F , in
the AGNR this period is affected by both the electric fields F
and ribbon width d . With increasing each of these parameters
the oscillation period increases, while the phase shift ��NZ

decreases. The Sommerfeld factor demonstrates that the exci-
ton attraction suppresses the low energy oscillations and has
only a small effect on those of high frequencies positioned
away from the edge �N .
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It is reasonable to compare the exciton absorption de-
pendencies on the electric field F and ribbon width d with
those of the quasi-1D semiconductor structures, i.e., with
the DE [42] and QWR [12]. The confinement radius r0

analogical to the ribbon width d is the magnetic length aB =
( h̄

eB ) or wire radius R, respectively. This radius was assumed to
be much smaller than the semiconductor exciton Bohr radius
a = 4πε0εh̄2

μe2 . The dependencies of the absorption spectrum
on the electric fields F are common for the AGNR and
semiconductor structures. The weak electric field does not
affect the peak positions and exciton binding energies, while
it modifies considerably the shape of the spectrum. With
increasing electric field the exciton peaks become broader
and lower in intensity [Eq. (30)], absorption grow in the
interpeak regions [Eq. (31)] and frequency oscillations above
the edge [Eq. (40)] become rare. In contrast to the electric field
effect the influence of the ribbon width d is more pronounced
compared to that of the wire radius R or magnetic field B.

The exciton binding energies E (b)
Nn in the AGNR in-

crease linearly with narrowing the ribbon E (b)
Nn ∼ �N ∼

d−1, while in the semiconductor structures this dependence
has the less pronounced logarithmic character E (b)

N0 ∼ ln2 r0
a

for the ground state n = 0 and is practically invisible for
the excited states n = 1, 2, . . .. In the AGNR the confine-
ment dependence of the exciton peak widths [Eq. (30)]
are mostly governed by the exponential factor �Nn ∼
d−1 exp (− const.

Fd2 ). This results in a peak widths decrease
with the ribbon narrowing. In the semiconductor structures
the ground peak n = 0 becomes wider with decreasing ra-
dius r0 �N0 ∼ ln2 r0

a , while the excited peak widths �Nn, n =
1, 2, . . . remain constant. In the AGNR the absorption max-
ima (30) α

(max)
Nn ∼ exp ( const.

Fd2 ). In semiconductor structures
the confinement provides only the power growth modi-
fied by the logarithmic factor α

(max)
Nn ∼ (r0 ln r0

a )−2, n �= 0,
α

(max)
N0 ∼ r−2

0 | ln r0
a |−1. However, there is an exception from

the above regarding the similar dependence of the peak
positions. With increasing the confinement (decreasing the
radius r0 and width d) the exciton peaks shift towards higher
frequencies in all structures.

In the frequency region below the edge h̄ω < �N the FK
optical absorption in the AGNR (32) and the effect of the ex-
citon attraction (33) depend on the parameters F and d expo-
nentially and by power law, respectively. In the semiconductor
structures the coefficient of the FK absorption demonstrates
the less pronounced power dependence α(FK) ∼ r−2

0 , while the
effect of the electron-hole attraction does not depend on the
confinement. In the spectral region above the edge h̄ω > �N

the oscillations of the FK absorption (40) become large in
period with widening the AGNR, while in the semiconductor
structures the confinement does not modify the oscillation
period.

C. The double subband approximation

Note that all exciton states related to the excited Rydberg
series N � 1 are initially metastable. This stems from their
coupling to the states of the continuous spectra emanating
from the energetically low-lying thresholds �N−1. At F = 0
the latter causes the autoionization and transforms the N �= 0
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FIG. 5. The ground n = 0 exciton peak widths �
(el)
10 (30) cor-

responding to different electric fields F1 = 8, F2 = 10, F3 = 15,

F4 = 20, F5 = 25 in units kV/cm (color lines), �
(F)
10 (50) induced

by intersubband coupling (black line) and the binding energy E (b)
10 =

|W10| (29) (dashed line) versus the ribbon width d . The first excited
Rydberg series N = 1 is addressed. The ribbon is placed on the
sapphire substrate q = 0.24.

series of the strictly discrete states into the quasidiscrete ones
(Fano resonances) with the energy widths �

(F)
Nn ∼ �N ∼ d−1

[Eq. (50)], which increase with decreasing the ribbon width
d [35]. The optical absorption coefficient caused by the tran-
sitions to these exciton resonant states has been calculated in
Ref. [13]. In the presence of an electric field F the electroion-
ization superimposes on the autoionization that in turn leads
to the summation of the width �

(el)
Nn and �

(F)
Nn determined by

Eqs. (30) and (50), respectively. However, the contribution of
each of those widths to the total width �

(t )
Nn = �

(el)
Nn + �

(F)
Nn is

different for the wide and narrow ribbons. The reason for this
is that the widths �

(el)
Nn and �

(F)
Nn change with varying ribbon

width d in the opposite way. The larger the d the less is the
Fano width �

(F)
Nn and the width �

(el)
Nn becomes larger. Thus, for

the narrow AGNR the Fano coupling surpasses the electric
field tunneling and �

(F)
Nn > �

(el)
Nn . With further ribbon widening

both effects become equal and then the electric field ionization
dominates that of autoionization. For stronger electric field
F the critical ribbon width dF decreases providing the peak
widths equality �

(F)
Nn = �

(el)
Nn . As it follows from Eqs. (30) and

(50) the latter condition implies the relationship d2F � const.
The exciton peak widths �

(F)
Nn and �

(el)
Nn as a function of the

ribbon width d for the different electric field strengths F are
presented in Fig. 5. Note that our results for the ground n = 0
exciton state related to the ground Rydberg series N = 0 are
qualitatively valid for any states and any series.

In an effort to connect our results closer to experiment, we
estimate the expected values for the AGNR with width 4 nm
of the family specified by σ̃ = 1

3 and placed on the sapphire
substrate q = 0.24. The peak positions h̄ω = ENn, binding
energies E (b)

Nn , widths �
(el)
Nn , peak absorption maxima c2(max)

Nn ,
exciton c2

N , and FK electroabsorption c2
N (FK) coefficients are

presented for the ground n = 0 and first excited n = 1 peaks
related to the ground subband N = 0. Using the quantum
numbers κ0n from Eq. (27) we obtain E00 = 316.1 meV,
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E01 = 338.7 meV and E (b)
00 = 23.9 meV, E (b)

01 = 1.38 meV
for the peak positions and binding energies, respectively.
Since the ground state binding energy significantly exceeds
that of the first excited state the critical electric field F̄00 �
24 kV/cm is much larger than F̄01 � 0.31 kV/cm. These
fields satisfying the condition F̄Nn = QNnd−2 [Eq. (53)] are
the upper bounds of the fields, providing the complete de-
pletion of the bound exciton state and the disappearance of
the peak from the optical spectrum. Note that the critical
fields providing the equality of the binding energies E (b)

Nn and
spectral widths �

(el)
Nn can be smaller by a significant factor

than those presented above. In the presence of an electric
field F = 7 kV/cm the ground peak width becomes �

(el)
Nn =

7.56 meV yielding for the lifetime τ (el) = h̄/�
(el)
00 = 0.082 ps.

This allows us to conclude that for weak electric fields of
the order of F � 10 kV/cm the ground exciton peaks N0

remain relatively narrow and accessible to an experimental
study, while for strong fields of several tens of kV/cm provide
a complete ionization of the exciton states and liberation of the
carriers in the AGNR with widths of several nanometers.

In the spectral region below the edge h̄ω < �0 the
electron-hole attraction considerably enhances the absorption
for the frequencies positioned far away from the exciton
peaks. It follows from Eq. (33) that in the presence of an elec-
tric field F = 7 kV/cm the exciton electroabsorption deeply
penetrating into the gap (�0 − h̄ω � 3.2E (b)

00 � 30Ry0) ex-
ceeds that of the FK by a factor of T0 � 8.6. In contrast to the
discrete part of the spectrum, for frequencies positioned above
the edge h̄ω > �0, the exciton effect significantly reduces the
magnitude of the FK oscillations which is reflected in the
Sommerfeld factor Z0 in Eq. (40). It follows from this equa-
tion that in the frequency region h̄ω − �0 � 4Ry0 and for the
electric field F = 7 kV/cm the reduction of the oscillating
magnitudes is given by Z0 = 0.30. The corresponding phase
is ��0Z = −0.44π .

Intending to compare our analytical results with those
calculated numerically we refer to Ref. [44] in which the
analogous quasi-1D structure, namely the QWR with radius
R subject to an electric field polarized along the wire axis
has been studied. The theoretical approach relied upon the
Dirac equation relevant to the electron (hole) dispersion law
E (k) = ±h̄vF

√
(2R)−2 + k2 [k is the longitudinal electron

(hole) momentum] similar to that for an AGNR [33]. The
following results for the exciton electroabsorbtion have been
reported. Narrow wires (R) show larger exciton binding en-
ergies E (b). Electric fields (F ) enhance the subgap (h̄ω < �)
optical absorption. The electric fields (F ) induce the FK oscil-
lations. Influence of a given electric field (F ) on the excitonic
absorption peak decreases as the Coulomb interactions (q) are
made stronger. Clearly these conclusions are qualitatively in
complete line with ours [see Eqs. (29) for E (b)

Nn = −WNn, (32)
and Fig. 4 for c2

N (FK), (40) for FK oscillations, and (25) for �N

and fN = F/FN with FN ∼ q3, respectively]. The differences
in AGNR and QWR topologies in our paper and in Ref. [44],
respectively prevents a detailed quantitative comparison.

As well known, the SiO2 substrate ε = 3.9 is widely used
in experiments. Nevertheless, we were forced to refrain from
the estimates of the possible experimental data related to this
material. The problem is here that the corresponding adiabatic

parameter q = 0.37 is not sufficiently small to provide the
needed accuracy implying q � 1. In principle, the case of
similar parameter values can be investigated by solving the
basic set of Eq. (11) numerically. Also, we avoid too narrow
ribbons with width of 1–2 nm, consisting of several 1D unit
cell distances, to be taken as a candidates for the above-
mentioned estimates. In these ribbons its discrete structure
manifests itself and the continual approach based on the Dirac
equation becomes inappropriate.

The presented analytical results and numerical estimates
show that in the AGNR with typical widths and subject to
laboratory electric fields the exciton effect manifests itself in
the optical absorption spectrum. An electron-hole attraction
on the one hand significantly modifies the absorption for a
very wide frequency region below and above the absorption
edge and on the other hand demonstrates that the exciton
peaks are sufficiently narrow and accessible to experimental
study. We believe that our developed analytical approach high-
lights the mechanism of the exciton electroabsorption in the
AGNR and the auto- and electroionization processes favoring
the deliberation of carriers. Also we hope that estimates of
the expected experimental values could be useful in further
studies of graphene nanoribbons and their applications in
opto- and microelectronics.

VI. CONCLUSION

In summary, we have developed an analytical approach to
the problem of the exciton absorption in a narrow armchair
graphene nanoribbon (AGNR) exposed to an external elec-
tric field directed parallel to the graphene axis. The effect
of the strong ribbon confinement was assumed to be much
stronger than that of the exciton Coulomb electric field,
which in turn considerably exceeds the external field. In the
approximation of the isolated size-quantized subbands the
exciton absorption coefficient of light polarized parallel to
the ribbon axis has been determined in an explicit form. We
traced the dependencies of the exciton peak positions, their
widths caused by the electric fields, and intensities of the
continuous absorption bands on the ribbon width and electric
field strength. With increasing electric field and widening
the ribbon the exciton peak increases in width and decreases
in intensity maximum. The exciton electron-hole attraction
strongly modifies the Franz-Keldysh (FK) absorption related
to the unbound carriers significantly increasing and reducing
the FK absorption in the interpeak regions below and above
the edge, respectively. In the double subband approximation
the double channel ionization of the exciton discrete states
adjacent to the first excited size-quantized energy level has
been considered. These channels are open due to the tunneling
caused by the electric field and autoionization induced by the
Fano coupling of these states to the states of the continuous
spectrum of the ground subband. The total exciton peak
widths caused by the electro- and autoionization have been
determined. The presented analytical results correlate well
with those previously calculated numerically.

Estimates of the expected experimental values for realistic
AGNRs and electric fields yield two aspects of the electric
field effect. Weak electric fields provide a significantly long
exciton lifetime and excitons remain available for an optical
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study and use in optoelectronics. A relatively strong field
ionizing the excitons make the carriers unbound and promote
the AGNR transport properties.
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