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Hydrodynamic and ballistic AC transport in two-dimensional Fermi liquids
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Electron transport in clean 2D systems with weak electron-phonon (e-ph) coupling can transition from
an Ohmic to a ballistic or a hydrodynamic regime. The ballistic regime occurs when electron-electron (e-e)
scattering is weak whereas the hydrodynamic regime arises when this scattering is strong. Despite this difference,
we find that vortices and a negative nonlocal resistance believed to be quintessentially hydrodynamic are
equally characteristic of the ballistic regime. These non-Ohmic regimes cannot be distinguished in DC transport
without changing experimental conditions. Further, as our kinetic calculations show, the hydrodynamic regime
in DC transport is highly fragile and is wiped out by even sparse disorder and e-ph scattering. We show that
microwave-frequency AC sources by contrast readily excite hydrodynamic modes with current vortices that are
robust to disorder and e-ph scattering. Indeed, current reversals in the non-Ohmic regimes occur via repeated
vortex generation and mergers through reconnections, as in classical 2D fluids. Crucially, AC sources give rise
to strong correlations across the entire device that unambiguously distinguish all regimes. These correlations in
the form of nonlocal current-voltage and voltage-voltage phases directly check for the presence of a nonlocal
current-voltage relation signifying the onset of non-Ohmic behavior as well as also for the dominance of bulk
interactions, needed to confirm the presence of a hydrodynamic regime. We use these probes to demarcate all
regimes in an experimentally realizable graphene device and find that the ballistic regime has a much larger
extent in parameter space than the hydrodynamic regime.
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I. INTRODUCTION

Charge transport in conductors is typically dominated
by electrons scattering against phonons and defects, re-
sulting in momentum relaxation (MR) over a time scale
Tr ~ 1071%=10715 s and a corresponding length scale I, ~
1072103 um. In comparison, the time scale Ty ~ 10712 s
of momentum-conserving (MC) scattering [primarily due to
electron-electron (e-e) scatteringl] is negligible [1], with the
corresponding length scale I, ~ 1 um. Electrons scattering
against phonons or defects give rise to the characteristi-
cally diffusive Ohmic transport. However, in clean systems
with weak electron-phonon scattering, the length scale of
momentum relaxation can approach the device scale’ (e.g.,
I ~ a few pum in graphene [2]). Electrons in this ballistic
regime scatter predominantly against device boundaries. If e-e
scattering is then increased upon adjustment of experimental
conditions such as carrier concentration and/or temperature
such that /;;,. is made sufficiently smaller than the device scale,
electron transport can be hydrodynamic. In this regime of slow
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'Note that electron-electron Umklapp scattering relaxes momen-
tum, while small-angle electron-phonon scattering at low tem-
peratures does not; we work with momentum-conserving and
momentum-relaxing time scales to avoid this ambiguity.

2We are considering devices with dimensions slightly smaller than
I but much larger than the phase coherence length scale so as to
preclude interference effects.
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MR and fast MC scattering,® electrons are expected to move
collectively as in a fluid whose dynamics are governed by
macroscopic conservation laws, i.e., the Navier-Stokes equa-
tions. Candidate materials for hydrodynamic charge trans-
port require large I,. These include (Al,Ga)As heterostruc-
tures [3-5], GaAs [6], PdCoO, crystals [7], WP, [8,9], and
graphene [10-13].

Signatures and novel consequences [14-37] of a hydrody-
namic regime in a Fermi liquid (also referred to as a viscous
regime) have recently been the focus of intense activity, since
the regime arises from enhanced MC interactions. Calcula-
tions based on fluid models indicate that DC charge transport
by viscous electrons obeys a nonlocal current-voltage relation
and produces a negative nonlocal resistance [30,31], in sharp
contrast to the local current-voltage relation of the Ohmic
regime; clearly, interactions do not simply renormalize the
conductivity. Perhaps even more striking is the possibility of
generating current vortices in a hydrodynamic flow [30-33],
which are absent in an Ohmic regime.

Distinct from the hydrodynamic regime is the ballistic
regime, which arises when both MR and MC interactions
are rare. The absence of MR interactions implies that this
regime also conserves momentum in the bulk. This results in
a degeneracy in DC transport between the hydrodynamic and
ballistic regimes. We show that both have negative resistances

3Qur discussion pertains to Fermi liquids. Hydrodynamics is then
a regime of weakly interacting (so that quasiparticle excitations are
well defined) but fast MC interactions.
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FIG. 1. Summary: (a) Current streamlines and potential in a graphene device with dimensions 5 um x 10 um connected to a 10 GHz AC
source. The momentum-conserving and momentum-relaxing time scales are {Tyc, T} = {0.2, 5} ps. Vortices are generated near the driving
leads (y = [4.5, 5.5] um on the left and right edges), close to the half cycle of the source (t = 150 ps). In contrast, there are no vortices and
no regions of negative resistance in DC transport for the same set of parameters [Fig. 2(c)]. (b) The normalized time series of the current
source /() and the measured voltage V,(¢). The vertical line indicates the time at which the snapshot in (a) is shown. The measurement leads
the source producing a ¢(ly, V2) > 0. (c) Summary of the correlation signatures of all the regimes. Identifying a regime uniquely requires
two voltage measurements as shown by the placement of probes in (a). However, a single measurement anywhere on the edge can distinguish
Ohmic and non-Ohmic regimes. (d) Regime boundaries for the device geometry shown in (a), identified using the signatures shown in (c). The
hydrodynamic regime requires Ly, 2 L and I, < 0.3L, where L is the width of the device.

[Fig. 2(c)] and, remarkably, even current flows ordered into
vortices (Fig. 3). Thus, a negative resistance only indicates
a non-Ohmic regime (hydrodynamic/ballistic) resulting from
the absence of MR interactions, not the dominance of bulk
MC interactions. Experiments [3,4,7,10-12] currently resolve
the hydrodynamic-ballistic degeneracy by changing temper-
ature, carrier concentration, or device/contact geometry and
fitting against an expected hydrodynamic or ballistic response
to the altered conditions [14-18].

In this paper, we introduce and exploit AC transport as
a powerful technique for studying non-Ohmic regimes. We
show that each of the hydrodynamic, ballistic, and Ohmic
regimes can be directly identified using spatiotemporal corre-
lations in AC transport without any change in experimental
conditions. Further, we show that vortex formation can be
accessed in AC transport with much less fine tuning compared
to DC transport. A snapshot of the key results is presented in
Fig. 1.

We illustrate each of these points by considering graphene
(for concreteness) in a generic device geometry. We show that
DC sources fail to generate vortices in the presence of even
a modest amount of MR scattering (tp,; ~ 10 ps) and show
that these are easily generated by switching to AC sources
of experimentally accessible frequencies (~GHz). In fact,
vortex dynamics are crucial for AC transport to proceed both
in the hydrodynamic and ballistic regimes. The associated
current reversals occur via repeated vortex formation and
mergers through reconnection and annihilation, mechanisms
seen widely in classical two-dimensional fluids.

We obtain our results by solving for the dynamics of
quasiparticles using a deterministic high-resolution numerical
scheme which converges much faster than statistical particle
methods. The kinetic approach naturally gives rise to all
three transport regimes by simply varying 7., and Tpc. In

particular, the ballistic regime cannot be accessed by effective
fluid models and requires solving for the full time-dependent
nonequilibrium distribution function over the entire device.
This is made possible using an efficient implementation of our
numerical scheme in the package BOLT [38] that exploits the
massive computational power of GPU computing clusters.

The paper is structured as follows. In Sec. II, we de-
scribe the kinetic model which we solve for the graphene
device outlined in Sec. III. We then study DC transport
for this device in Sec. IV and highlight the challenges of
using DC signatures to discern the different regimes. Next,
we proceed to AC transport and present vortex dynamics
and the distinct spatiotemporal correlations of the regimes in
Sec. V. In Sec. VI, we exploit these correlations to map all
the regimes in the {7y, T} phase space for the device and
contact geometry considered. Finally, we provide an argument
in Sec. VII to understand why vortex ordering occurs in both
the hydrodynamic and ballistic regimes and then conclude
in Sec. VIII. Additionally, in Appendix A, we show how
our kinetic calculations incorporate the effect of long-range
Coulomb interactions and also show how they appear in
fluid models in Appendix B. The appendices also discuss
two different approximations used to compute current-voltage
characteristics and verify that they are consistent with each
other.

II. KINETIC MODEL

We consider graphene (a) well above the charge neutrality
point, where quasiparticle excitations are well defined, and (b)
over length scales (~um) where quantum interference effects
are washed out. Transport is then described by the Boltz-
mann equation that governs the evolution of a charge carrier
distribution f(x, p, #) in the four-dimensional phase space of
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spatial X = (x, y) and momentum p = (py, py) coordinates,

of Ly _ =R =T

ot X Tmr Tmc

ey

where the velocity v = 9£/0dp and £(p) is the band energy.
For doped graphene in the upper band, E(p) =vp p= Vv =
v P, where vg &~ 10° m/s = 1 um/ps is the Fermi velocity.
The terms on the right are the MR and MC collision opera-
tors, parametrized in a relaxation time approximation by Ty,
and Ty, respectively. In writing (1), we are working in the
w/(kgT) > 1 regime where the lower band is not needed.

Electrical transport is set up through current injection at
device boundaries which gives rise to a chemical potential
gradient. We show in Appendix A that backreaction —¢E -
df/0p (e = charge magnitude) of the self-consistent electric
fields E is incorporated at linear order, even though the term
is not explicitly present in (1).

The collision operators relax f(x,p,?) to stationary
and drifting local Fermi-Dirac distributions, fi" (tmr, Tmr)
and  fi"(ttme +P - Vg, Timc),  respectively.  The  spa-
tiotemporal Lagrange multipliers {umc(X,?), mc(X, 1)},
{Tnr (X, 1), T (X, 1)}, and v4(x,t) are needed for charge,
energy, and momentum conservation, respectively. These are
solved for by imposing the matching conditions,

(o) = () = (") )
EDRM) = EDf) =(EDR) A3)
(pf) = (pfy), )

where () = N/(2xh)* [ d*pand N = 4.

The model thus evolves the four-dimensional electron dis-
tribution function f(x, p, ¢) by additionally solving the six La-
grange multiplier constraints (2, 3, 4) at every time step. The
free parameters in the model are 7, T,,,. We treat these as
numerical inputs in units of picoseconds and do not invoke any
functional dependence on thermodynamics quantities such as
temperature and number density. However, the model incor-
porates temperature smearing of the Fermi surface, although
we find that all results are independent of this effect. We
numerically integrate this computationally expensive system
on a GPU cluster using BOLT [38], a fast, massively par-
allel high-resolution solver for kinetic theories based on a
finite volume method to achieve O(Ax?, Ap?, At?) accuracy,
where Ax, Ap, and At are the sizes of discrete elements in
real space, momentum space, and time, respectively.

Current-voltage relationship

A key quantity of interest is the current-voltage relation-
ship. After f(x, p, t) has been solved for, the current j(x, t) is
easily computed using j(x,) = —e(pf). However, to obtain
the voltage V(x, z,t), one needs to solve the 3D Poisson
equation,

V- (&VV) =4mend(z — 20), ()

where n(x, t) = (f) is the 2D charge carrier density, zy is the
location of the 2D sample in the perpendicular direction, and
€:(x) is the dielectric function.

To proceed, we assume a graphene field-effect transistor
geometry with a dielectric substrate €, of thickness d < L,

where L ~ um is a lateral device scale. The mean carrier
density ng can be set to a desired level by applying a backgate
voltage V(x,z = 0) =V, on the substrate (located at z = 0)
beneath the dielectric. This is given by
CV,
no=—-, (6)
e

where C = €,/(4md) is the capacitance per unit area.

Further, we require the relationship between charge inho-
mogeneities and in-plane voltage fluctuations. For the field-
effect geometry, an analytic solution of the 3D Poisson equa-
tion in the 2D plane of the device has been computed by
Tomadin and Polini [26]. To O(d /L), this solution simplifies
to

e
AV ~ ——An, 7
con D

where AV and An are the in-plane voltage and charge den-
sity differences, respectively. Note that while (6) and (7)
appear similar, they relate different quantities. The approx-
imation (7), referred to as “gradual channel” in Ref. [26]
and “local capacitance” in Ref. [27], thus relates f obtained
by solving (1) to the voltages measured. As explained in
Appendix A, this computation is a post-processing step and
is not required for the evolution of (1) to linear order.

III. SETUP

We consider a 5 um x 10 um graphene device, with
drive contacts 1 um wide at the center of the left and right
edges [see Fig. 1(a)]. We assume an electron density of n =
10'2 cm~2, and ideal Ohmic contacts, i.e., the Fermi level of
the contact metal is the same as the electron chemical potential
in graphene (at the chosen carrier density). At the contacts, we
impose Dirichlet boundary conditions that implement a cur-
rent source/sink, with the distribution at both contacts set to a
shifted Fermi-Dirac (f™) with the drift velocities v = vk =
(v(2),0), where L and R denote the left and right contacts,
respectively, and v(¢) is a time-dependent magnitude. For DC
calculations, we set v(t) = vg = 10™* v, corresponding to a
current injection of ~0.1 uA. For AC calculations, we set
v(t) = vosin(2m ft), where f is the source frequency. We
present results for f = 10 GHz, but they are valid over a wide
range of frequencies as discussed later.

On the device boundary outside of the contacts, we impose
perfect reflection on the electrons (specular scattering). This
corresponds to “free-slip” boundaries in the parlance of fluid
models, as opposed to “no-slip” boundaries. The question
of what boundary conditions are correct is an open one, but
there is increasing evidence in support of free-slip bound-
aries because of the suppression of the Gurzhi effect [14] in
graphene, which becomes dominant only in the presence of
no-slip boundaries [10,31].

IV. DC TRANSPORT

We first examine signatures of a hydro regime in DC trans-
port. For fast MC and very slow MR interactions, {Timc, Tmr} =
{0.2, 50} ps = Tmr/Tme = 250, we get current vortices flow-
ing against the drive [Fig. 2(a)], the distinctive features
of a fluid. Further, the nonlocal resistance computed using
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FIG. 2. DC transport (Sec. IV): Current streamlines and poten-
tials in the symmetric top half of the device shown in Fig. 1(a) for
{Tme» Tmr} = () {0.2, 50} ps, (b) {0.2, 10} ps. (c) Resistance V (v)/1,
where V () is the potential for y € (5.5, 10] um and [ is the injected
current through contacts between y = [4.5,5.5] um. The negative
resistance for 7, = 0.2 ps (fast MC interactions) is nonlocal for
(a) Tmr = 50 ps, becomes local for (b) 7, = 10 ps (shaded region
~0.5 um), and disappears everywhere for t,,, =5 ps. All these
cases are hydrodynamic in AC transport. The ballistic regime (zero
MC interactions, red) is degenerate with hydro (blue); it also has a
negative resistance and a flow profile similar to (a) (shown in Fig. 3).

voltage measured far from the driving leads divided by the
injected current is negative [Fig. 2(c)], as shown using fluid
models [30-33]. Now consider {tnc, T} = {0.2, 10} ps =
Tmr/Tme = 50, still expected to be deep in the hydro regime.
However, the vortices no longer appear [Fig. 2(b)]. We have
verified their absence everywhere in the domain down to
25 nm (~0.1x e-e mean free path), well below the length
scale at which a hydrodynamic description is expected to
apply. In addition, the nonlocal resistance is negative only lo-
cally, within 0.5 pm of the driving leads [Figs. 2(b) and 2(c)].
A further reduction in Ty t0 5 pS (Tme/Tme = 25) leads to a
disappearance of this negative resistance as well [Fig. 2(c)].

Hydrodynamic-Ballistic degeneracy

Consider now the ballistic regime set by the parameters
{Tme = 00, Tr = L/vp =5} ps, ie., zero MC interactions
and weak MR interactions. The ballistic flow is qualitatively
indistinguishable from a hydrodynamic flow (both shown in
Fig. 3) and produces a negative resistance all along the edge
[Fig. 2(c)].

Thus, we see that not only are DC sources inefficient at
exciting hydrodynamic behavior in parameter regimes that are
clearly MC dominated but also fail to distinguish between
ballistic and hydrodynamic regimes. Note that the specific

{TmC7 Tmr} (pS)
Hydro{0.2, 50}  Ballistic{oo, 5}

FIG. 3. Hydrodynamic-Ballistic degeneracy (Sec. IV A): Current
streamlines and potentials in DC transport for (a) hydro regime with
{Tme> Tmr} = {0.2, 50} ps and (b) ballistic regime with {Tyc, T} =
{oo, 5}. The flow profiles are strikingly similar and the nonlocal re-
sistance computed using voltage measured along the edge is negative
for both cases [see Fig. 2(c)].

thresholds between regimes we report here are for the device
and contact geometry shown in Fig. 1(a), and these would vary
for other geometries. In particular, the geometry proposed
by Torre et al. [31] to investigate hydrodynamic effects has
contacts on the same side of the device and is much more con-
ducive to vortex generation in DC transport [32]. Our choice
of geometry, adopted from Levitov & Falkovich [30], has
been made so as to demonstrate vigorous vortex production
even in the least favorable setup, as we shall see in the next
section.

V. AC TRANSPORT

The situation improves dramatically if we use an AC
source with frequency f < vg/L =200 GHz. As long as
Imr = TmeVF 2, L, MC scattering (either specular boundary or
bulk e-e) excites collective modes involving vortices that are
continuously generated and destroyed at the rate f. This con-
dition in AC is far more enabling for vortex generation in the
hydrodynamic regime (I,c < L) than in DC which requires
D ~ Vg /TmcTmr/2 2 L/(¥/27), where D is the vorticity dif-
fusion length [32]. Therefore, vortex generation occurs in AC
even for parameter regimes where current streamlines appear
distinctly Ohmic in DC. For example, with {tyc, T} =
{0.2, 10} ps, Iy & 2 - L enabling vortices in AC as shown in
Figs. 4(b)—4(d), but D ~ 0.6 - L/(+~/27) resulting in Ohmic-
like DC transport in Fig. 2(b). Indeed, vortices form in AC
even for the marginal case of {Tyc, Tmr} = {0.2, 5} ps, where
Inr =~ L [Fig. 1(a)].
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Time = 2 ps

FIG. 4. Vortex dynamics (Sec. V A): Current streamlines and potentials. (a)—(d) Time evolution of a hydrodynamic mode excited by a
10 GHz AC source for {Tpyc, T} = {0.2, 10} ps [same parameters as Fig. 2(b)], through contacts between y = [4.5, 5.5] um. The device is
reflection symmetric about its center and we present the top half. The source reverses at t = 0 ps. At (a) t = —5 ps, the voltage everywhere
along the edge goes against the source. Evolution proceeds through (b) vortex generation, (c) and (d) merger through reconnection. Note
that the voltage in the entire device has changed sign at # < O ps. In contrast, AC transport in an Ohmic regime (e)—(h), shown here for
{Tme» Tmr} = {0.2, 1} ps, proceeds by (g) wave fronts that originate at the source and (h) propagate into the device. For movies, see Ref. [46].

A. Vortex dynamics

Figures 4(a)-4(d) show the flow structure of the hydro
mode excited by a 10 GHz source for {7y, T} = {0.2, 10}
ps. As the source is about to change sign near the half cycle,
vortices form symmetrically at the left and right contacts
resulting in a quadrupolar mode [Fig. 4(b)]. These vortices,
with the same sign of vorticity, grow and merge through
reconnection [Fig. 4(c)], as in 2D classical fluids. There is
now a dipolar mode in the device with vortices in the top and
bottom halves having opposite signs of vorticity [Fig. 4(d)].
These then annihilate in the middle and allow the flow to
reverse. In contrast, Ohmic AC transport proceeds through
wave fronts [Fig. 4(g)] that originate from the contacts and
travel into the device [Fig. 4(h)]. We note that ballistic AC
transport also proceeds through vortex dynamics, albeit with
an altered choreography; vortices form at the top/bottom
boundaries and move inwards.

B. Spatiotemporal correlations

The persistent time dependence of an AC source produces
several useful spatiotemporal correlations. We consider the
phase ¢ (14, V') between a nonlocal voltage V () measured by
contacts on the edge [top of Fig. 1(a)] and the current source
I4(t) [center of Fig. 1(a)]. An Ohmic regime is defined by a
local current-voltage relationship; an injected current causes
local changes in voltage (<) which then propagate into the
device [Figs. 4(g) and 4(h)]. Therefore, the measured V lags
the source Iy [Fig. 5(a)] and the phase ¢ is negative.

A transition from a negative to a positive phase [Fig. 5(a)]
signifies the breakdown of a local current-voltage relation and
the onset of a non-Ohmic regime [Fig. 5(b)] with a non-local

current-voltage relation (see Refs. [30-33] for hydro). This
arises whenever MR interactions are weak, which is a neces-
sary but not sufficient condition for a hydrodynamic regime.
Hydrodynamic transport also requires strong MC interactions
that impose a local equilibrium in the bulk, unlike specular
scattering at the boundary in the ballistic regime.

This key difference in the ballistic regime is directly
captured by the two-point correlation ¢(Vi, Vo) = ¢ (4, Vo) —
¢4, V1), with a Vi(t) measured closer to the source
[schematic shown in Fig. 1(a)]. When voltage gradients
flow through bulk interactions (MC or MR), V, must lag
Vi and ¢(V,V2) < 0. This is evident from the negative
slope of ¢(I3, V) in both Ohmic and hydrodynamic regimes
[Fig. 5(b)]. The ballistic regime which only has boundary
scattering exhibits a positive slope in ¢(Iq, V) [Fig. 5(b)],
so that ¢(V;, V») > 0 and V, closer to the top boundary now
leads V.

C. AC vs DC signatures

The ¢(13, V) > 0 diagnostic of non-Ohmicity is similar to
negative resistance in DC, with both indicating a nonlocal
current-voltage relation. However, ¢(V;, V,) has no analog
in DC; the slope of resistance does not show any robust
pattern [Fig. 2(c)]. In addition, the spatial extent of the phase
correlations is much greater in a hydrodynamic regime. For
{Tmes Tmr} = {0.2, 10} ps, the negative resistance is confined to
within 0.5 um of the driving leads [Fig. 2(c)]. In contrast, the
phase at 10 GHz for even {0.2, 5} ps is positive over the entire
edge [Fig. 5(b)], and there is no negative resistance anywhere
for these parameters in DC [Fig. 2(c)].

165409-5



CHANDRA, KATARIA, SAHDEV, AND SUNDARARAMAN

PHYSICAL REVIEW B 99, 165409 (2019)

a)l f
() — Source I4(t)
= ~—— Ohmic
= 0 Non-Ohmic
—J_ - 1 1 1 I
200 220 240 260 280 300
Time (ps)
(b) {X 3}]3\”]‘>T1(
2 £ o~
— {()»243}11)'(11()
Vpm===z=====-—7f S o |
6 7 8 9 10
y (pm)

FIG. 5. Spatiotemporal correlations (Sec. VB): (a) The nor-
malized voltages V() measured by a 1 um contact between y =
[8.5, 9.5] um. Note that all the curves are sinusoidal with the source
frequency of 10 GHz and differ only by a well-defined phase
¢4, V). An Ohmic regime (here {zy, T} = {0.2, 1} ps) produces
a time series that lags the source (shaded in blue). However, the
signal in non-Ohmic regimes (shown for {0.2, 5} ps) lead the source
(shaded in red). (b) ¢(ly, V) vs distance from the driving leads.
The sign of ¢ is spatially highly extended [contrast with Fig. 2(c)].
While both hydro and ballistic regimes have ¢ > 0, the slope in
hydro is negative whereas it is positive in ballistic. This is measured
using the two-point correlation ¢(Vi, Vo) = ¢(ly, V2) — ¢(La, V1).
The shaded region shows the locations and widths of contacts used
to make the phase diagrams Figs. 6 and 7.

VI. PHASE DIAGRAM

We now use the phases ¢ = ¢(lyg, V1), ¢» = ¢y, V2),
and ¢, = ¢(V1,V,), measured using contacts shown in
Fig. 1(a), to map all regimes in the {tyc, Tmr} parameter space
for our device. We consider a wide range of these parameters,
all of which satisfy 7y, /Tmr < 1, parameters where the hydro-
dynamic regime could potentially arise.

Figure 6(a) shows ¢, > 0 for all 7, = 3 ps (same for
¢1, not shown), in accordance with the t,, = L/vg =5 ps
condition for non-Ohmic AC transport. Further, we find ¢, <
0 for all parameters in Fig. 6(a), indicating an Ohmic to hy-
drodynamic transition. To now transition from hydrodynamic
to ballistic, we vary Ty, for a fixed T,y = 5 ps in Fig. 6(b). We
indeed find non-Ohmicity (¢, ¢» > 0) over the entire range
of T but bulk scattering (¢, < 0) only for 7, < 1.7 ps
~ 0.3L/vg; consistent with the /,c = 7,.vp < L requirement
of a hydrodynamic regime. Thus we need both T, 2, 3 ps and
Tme < 1.7 ps, quantifying the weakness and strength of MR
and MC interactions needed for a hydrodynamic regime in
our device geometry.

Both conditions on MR and MC interactions are within
reach of current devices [10—12], with the requirement of
weak MR further mitigated by adjusting the lateral scale such
that L < Iy = T Up. As discussed in Sec. V, this condition
is much weaker than that required for vortices in DC where
the minimum t,,, scales as L2. The critical 7, in both AC and

o¢(Ida V2)|\y

N]

0

FIG. 6. Phase diagram (Sec. VI): (a) The phase ¢(/y, V,) mea-
sured at 10 GHz using a 1 um contact [contact 2 in Fig. 3(b)] on the
device shown in Fig. 1(a). A non-Ohmic regime corresponds to ¢ >
0. The condition for non-Ohmic AC transport, T, 2 L/vg = 5 ps, is
well satisfied. The two-point correlation ¢ (V;, V,) is negative for all
parameters here and so this plot shows an Ohmic to hydro transition.
The voltage V; is measured using contact 1 in Fig. 3(b). (b) Hydro to
ballistic transition: On varying t,, for a fixed T, = 5 ps, ¢V}, V»)
changes sign from negative to positive for 7, 2> 1.7 ps signaling a
transition into the ballistic regime. Note that ¢ (14, V1), ¢(ly, Vo) > 0
throughout.

DC is shown in Fig. 7 for a fixed 7, = 0.2 ps. This 7y is
well within the limit <0.3L/vg required for a hydrodynamic
regime for the smallest device considered (L = 1.8 um), once
the criterion on 7y, is satisfied. The regime boundaries for the
device geometry are summarized in Fig. 1(d). Notably, the
parameter space of the ballistic regime is much larger than
that of the hydrodynamic regime.

Consistency check

We additionally consider the transition from Ohmic to
ballistic by setting 7., = 00 and varying tn,. A correct iden-
tification of this transition requires a deep consistency within
the correlations; each of ¢, ¢,, and ¢, must change sign
from negative to positive at the same 1y, Figure 8 of the
phases versus 7, indeed shows this at t,, = 2.3 £0.1 ps,
with the small spread due to finite width (1 um) contacts
placed a finite distance (1 wm) apart in our setup.

VII. VORTICES IN HYDRO AND BALLISTIC REGIMES

The hydro regime is interaction dominated whereas the
ballistic regime occurs in the near absence of interactions.
However, the current flow patterns in both these regimes are
strikingly similar. Both regimes have flows organized into
vortices and therefore have a nonzero vorticity (w = V X vq).
Note that the vorticity is identically zero in the Ohmic regime
since vq o« VV.
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FIG. 7. Phase diagram (Sec. VI): (a) Phase vs t,, for devices
with varying widths L € [1.8, 5] um in increments of 0.2 um. All
the calculations are for a fixed 7, = 0.2 ps, i.e., fast MC in-
teractions. The solid lines are fits to the numerical data and are
used to evaluate the critical 7, for which ¢(l3, V») changes sign,
denoting a transition from an Ohmic to a non-Ohmic regime. The
non-Ohmic regime for all cases shown here is hydrodynamic since
Tme < 0.3L/vg for the smallest device considered. (b) The critical
Tmr for AC and DC. The critical timescale in AC (blue line) is within
the bound L/vg whereas it is [(2/m2)L?/1,.]/ve in DC [32].

Let us ask the question, can we deduce flow ordering in
both hydrodynamic and ballistic regimes without solving the
governing equation (1)? We provide here an argument using
Landau theory that the ordering principle for the flow is the
same in both regimes.

To proceed, we require an energy functional constrained by
the symmetries of the system. Consider no MR interactions

Time = OO
—— $(I3, V)
= (14, V&)
%
2
0
1.0 1.5 2.0 2.5 3.0

Tmr (PS)

FIG. 8. Consistency check (Sec. VI A): For the following calcula-
tion, we set T, = 00. In an Ohmic regime, all of ¢(Iy, V1), ¢(l4, V2)
and ¢(V1, Vo) = ¢4, Vo) — ¢4, V1) are negative, whereas they are
all positive in the ballistic regime. Therefore, consistency within
the correlations requires that as 7,,, is increased to transition from
an Ohmic to the ballistic regime, each of ¢(ly, V1), ¢(ly, V2), and
¢(V1, V2) should change sign from negative to positive at the same
Tnr- The above plot shows that this is indeed the case with a transition
at Ty, = 2.3 0.1 ps.

(Tmr = 00) and fast MC interactions resulting in vanishing
electron viscosity v ~ . — 0. We can then invoke a well-
known result that applies to inviscid 2D fluids, the conserva-
tion of “enstrophy,”

Fv4] = /d2r|V x val?, (8)

where vq is the local carrier drift velocity. The conservation
of enstrophy follows from momentum conservation of a fluid
element in two dimensions [39].

We interpret F[vq] as a Landau energy functional with
a local order parameter w. A vortex ordered state then has
F > 0 with F' = 0 denoting no ordering. A variation of F with
respect to the velocity field vq4 gives

5F=7§ds.(3vdxw)+fd2ravd.(wa). 9)

The first term on the right vanishes with évq =0 on the
boundaries, corresponding to the imposition of boundary con-
ditions. Demanding that the variation of F vanish,

SF=0=Vxw=0. (10)
Now applying the curl operator on (10),
Ve = 0. (11)

This is in fact the time-independent fluid momentum conser-
vation equation (B4) in the limit t,,, — oo, after an applica-
tion of the curl operator. Clearly, (11) admits solutions with
F > 0 depending on the boundary conditions, i.e., device and
contact geometry. Therefore, we see that the conservation of
enstrophy (8) allows for flow ordering in the form of vortices.

Now we note that the enstrophy (8) is also conserved in
the ballistic regime and thus we expect the same ordering
in this regime as well. Indeed, the ballistic regime preserves
an infinite number of invariants because the momentum of
every carrier is conserved, thus conserving the momentum of a
macroscopic fluid element. In contrast, the hydro regime only
conserves the momentum of the fluid element; the momenta
of individual carriers is thermalized by MC interactions.

The conservation of enstrophy (8) implies that any local
vorticity injected from the boundaries persists in the device.
The device and contact geometry adopted here is an example
where vorticity is zero globally but nonzero locally, near the
drive contacts. Since the invariant measure (8) is positive
definite, this geometry allows for vortex formation. A coun-
terexample is a wire geometry where the injected vorticity is
exactly zero. Note that the arguments presented in this section
only show that flow ordering is possible provided a conducive
geometry and do not inform on the interaction timescales
required.

VIII. DISCUSSION AND CONCLUSION

The hydrodynamic transport regime in Fermi liquids has
long been theorized, but its robustness has always been in
question. In particular, the specific requirements on defect
densities, and e-ph, e-e coupling needed to access this regime
in various device geometries have been open issues. Indeed,
we find that the regime is very delicate in DC transport,
requiring unreasonably low momentum-relaxing scattering or
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specially designed geometries in order for its effects to mani-
fest themselves. An even bigger concern is its high degeneracy
with the ballistic regime in which we find nearly identical
current vortex structures and negative resistances.

We have shown that both issues can be resolved by switch-
ing to AC transport. First, the requirement on momentum-
relaxing scattering for the hydrodynamic regime is greatly
mitigated, with the criterion simply being Iy 2 L as com-
pared to Iy = (0.2/Ine)L? in DC. Hydrodynamic modes rich
in vortices are therefore easily excited in AC transport, with
current reversals occurring through intricate vortex dynamics.
Note that the condition on /., in AC is independent of /.
whereas it becomes increasingly stringent in DC as [,c — 0.

Second, there exist strong spatiotemporal correlations in
AC transport that are able to uniquely and directly identify all
transport regimes [as summarized in Fig. 1(c)]. One of these
correlations, the phase between a nonlocal voltage and the
current drive, tests for the locality of the current-voltage rela-
tion and can thus differentiate between Ohmic and non-Ohmic
regimes. Further, the phase between two nonlocal voltages
tests for the presence of bulk interactions and can therefore
distinguish between the hydrodynamic and ballistic regimes.
These correlations extend over the entire device, allowing for
great flexibility in selecting the positions of probe contacts
in experiments. In contrast, we have shown that negative
resistances in hydrodynamic DC transport are tightly localized
to the immediate vicinity of the drive contacts (in the narrow
parameter range where they appear at all).

Using the correlation signatures, we have mapped out the
regime boundaries in AC transport [shown in Fig. 1(d)] for
the graphene device depicted in Fig. 1(a). The hydrodynamic
regime emerges for I, 2 L and Iy < 0.3L, with the region
Ime > 0.3L occupied by the ballistic regime. Transport for all
Imr = L, i.e., both the hydrodynamic and ballistic regimes,
occurs through vortex dynamics, a reflection of the high
degree of degeneracy between the two regimes. However,
the dynamics have different choreographies: For the device
shown, the vortices in the hydrodynamic regime form at the
drive contacts, whereas they form at the top and bottom
boundaries in the ballistic regime. We emphasize here that
the voltage-voltage correlation being used to discern the
two regimes probes the nature of signal propagation within
the device and is largely independent of the dynamics of
vortices.

A surprising outcome of our calculations is the presence of
current vortices in the ballistic regime, structures which are
typically associated with a fluid. We trace this back to the
fact that both non-Ohmic regimes conserve momentum and
present an argument using Landau theory that vortices arise
directly as a consequence of enstrophy conservation, which in
turn results from momentum conservation in two dimensions.

Our results have been obtained using BOLT [38], a package
we have developed to directly solve for quasiparticle transport
at the kinetic level with band structures and collision operators
as inputs. The kinetic framework is crucial to access the
ballistic regime, which is not amenable to effective fluid
models. The package uses a high-resolution numerical scheme
that deterministically discretizes the four-dimensional phase
space of 2D systems. While the computational complexity
involved is massive, it is nevertheless within reach of present

day GPUs. The package exploits these with sufficient effi-
ciency so as to allow time-dependent device simulations to be
routinely carried out in a matter of hours, with realistic device
dimensions and interaction time scales.

Finally, while our calculations were performed for a
Fermi liquid, our phase diagnostics in AC transport may
also hold for strongly interacting quantum systems that ad-
mit a hydrodynamic description [40], such as the Dirac
fluid which arises at charge neutrality in graphene [41-44].
Specifically, the current-voltage phase correlation is sensitive
to any nonlocality in the current-voltage relation, regard-
less of its precise form. So it will immediately detect the
presence of a hydrodynamic regime, whether this originates
from a collection of rapidly interacting quasiparticles or in
a strongly interacting system devoid of quasiparticles. Sim-
ilarly, the voltage-voltage phase correlation can be used to
ensure the dominance of interactions and rule out ballistic
effects.
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APPENDIX A: LONG-RANGE COULOMB INTERACTIONS

In writing the governing equation (1), we have omit-
ted the term —eE-0f/dp on the left hand side. This
term incorporates backreaction of the self-consistent long-
range Coulomb interactions and couples the Boltzmann
equation (1) to the 3D Poisson equation (5). Here we
show that the dynamical effects of this term are ac-
counted for at linear order through a renormalized chemical
potential.

We begin by assuming that the system is driven at constant
temperature using a small background chemical potential
gradient Vi = (0 /0x, ap/dy) ~ €(ug/L), where wg is the
Fermi level, L is the device scale, and € < 1 is a dimension-
less bookkeeping parameter. This gradient results in a dis-
tribution f = fo(&€, u, T) + 8f, where fy is the background
local equilibrium distribution and §f ~ O(e) is a small per-
turbation. We then have the force due to a self-consistent
electric field in the plane of the graphene strip, —eE(x) =
eVV (x,z = z9) ~ O(¢), where z = zg is the vertical location
of the strip. Substituting f in (1), now with —eE - df/ap
included, the LHS is

asf asf afo asf

L (E+Vu) 22— B =,

Al
ar TV ax ap op AV

where we have used v - 9 fp/0x = —Vu - (3 fy/0p); this trans-
formation makes it explicit that Vu is a long-range force.

As seen from (Al), in the presence of Coulomb inter-
actions, the effective long-range force to O(¢) is —V =
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—V(u — V). Further, (1) and (A1) are the same at linear
order. The last term in (A1) which is not included in (1) is
only O(e?) and is therefore ordered out.

The equivalence at linear order between (1) and (Al)
allows for a convenient computational scheme in which we
can solve the Boltzmann equation in a manner decoupled
from the Poisson equation, while still taking into account the
effect of long-range Coulomb interactions. We simply begin
with an equilibrium f set to a desired doping and set up
transport by imposing a nonequilibrium f at the location of
the driving contacts. The price to pay, however, is that we can
only measure i from the simulation and not V (or w).

A current-voltage experiment in fact measures V. To obtain
this, we still need to solve the 3D Poisson equation with
the appropriate boundary conditions and sourced by the 2D
carrier density n(x) = (f), where f is computed from (1)
[or equivalently (A1)]. Notably, this computation is a post-
processing step and is not required for the evolution. As
described in Sec. II A, we use an approximate solution to the
3D Poisson equation (7) for the FET geometry that is widely
used in experiments to obtain V.

1. Drift vs diffusion currents

We now proceed to check the relative contribution of each
term in the total long-range force —Vji. The term —V p gives
rise to a diffusion current whereas eVV generates a drift
current. Using (7) to express VV in terms of Va and writing
Vu = (0p/on)Vn, we have

Vi =Vu —eVV (A2)
e e

=(—+ —=)Vn, A3

(CQ+C) n (A3)

where Cq = €?9n/du is the quantum capacitance [45]. We
evaluate Cg for graphene using u = hvp/7n at an equilib-
rium carrier density ny corresponding to the Fermi energy
ur. Using C = ¢, /(4nd) for a single gated device with a
dielectric substrate €, and thickness d, the ratio of the drift
to the diffusion term is

8 - ttee + (kpd) > 1, (A4)
where aee = €2/(e;fivg) ~ O(1) is a dimensionless number
called the graphene fine-structure constant and kg = ug/(hvg)
is the Fermi wave number. With a typical d ~ 100 nm,
we have krd >> 1. From (A4), we see that the drift current
dominates.

2. Two different approximations to compute V

With the diffusion current being negligible, a simple way to
obtain voltages is to approximate —eVV & Vi, thus avoiding
the Poisson equation altogether. Recall that ji (written as u in
the main text) is obtained at every time step as a solution of the
constraints (2, 3, 4) that match f to a local equilibrium fy. The
voltage thus obtained is indeed consistent with that obtained
using the approximate solution to the Poisson equation (7),
since in fact (7) has been originally used in Appendix A 1 to
arrive at the conclusion that the diffusion current is negligible.

APPENDIX B: INCOMPRESSIBLE FLUID MODELS

Several calculations of current-voltage relations based on
fluid models (e.g., [30-32]) assume that the electron fluid is
incompressible, and therefore §n = 0. However, in a kinetic
calculation, density perturbations are inevitable since they ap-
pear at linear order, n = (§f) ~ O(e). Crucially, in this pa-
per, these compressible fluctuations 67 are used to compute V
using an approximate solution (7) to the 3D Poisson equation.
Two questions arise: (1) How are voltages calculated when
incompressibility is assumed?, and (2) Are they consistent
with the approach to compute voltages followed in this paper
which explicitly tracks compressible fluctuations?

Consider linearized fluid models described by the
charge (B1) and momentum (B2) conservation equations,

on v (B1)
— = —nNn Y
o 0 d
vy 1 e 2 Vd
— =——VP—- —E+vVvg——, (B2
ot mng m Tmr

where ng is the background charge density, P is the pressure,
m is an effective mass, and v is the kinematic viscosity of
the electron fluid. The last term in (B2) is a momentum loss
term parametrized by a phenomenological timescale 7. The
model requires a closure relation for the pressure P, which
to a good approximation in the w > kT limit is P >~ nup.
Equations (B1) and (B2) are adopted from Refs. [31,32] but
with the time derivatives and the pressure term included here.

The model thus has three unknowns, (n, v4, V'), and there-
fore requires three equations; the fluid equations (B1) and
(B2) along with the 3D Poisson equation (5). However, the
form of the force in (B2) allows for the unknowns to be re-
duced by absorbing P/(mng) and —(e/m)V into a single scalar
® = P/(mny) — (e/m)V. The fluid system is then forced by
the gradient of this effective scalar, analogous to & in the
linearized kinetic equation (Al).

Rewriting (B1) and (B2) in terms of & and taking the
steady-state limit (9/0t — 0),

V.ovi=0 (B3)

VD 4 Vi = L

Tmr

(B4)

Note that the steady-state limit removes the dependence of n
in (B1). There are now only two variables (vq, ®), for which
just the equations (B3) and (B4) are sufficient. This is similar
to the kinetic scheme discussed in Appendix A where the
3D Poisson equation is not necessary to compute f to linear
order.

However, just as described in Appendix A, the reduced
system only yields ® and not V. At this point, one can
invoke incompressibility (n = ny = constant) to set VP = 0.
This immediately reduces the unknowns to (vq, V'), thus fully
determining the current-voltage characteristics. It is then not
necessary to solve the 3D Poisson equation (5), which only
determines the background carrier density 7.

The incompressible approximation is equivalent to stating
that the diffusion current that arises due to compressible
fluctuations is zero. This is consistent with Appendix A 1
where it is seen that although both diffusion and drift currents
appear at linear order in a kinetic calculation, the ratio of the
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prefactors (A4) are such that diffusion is negligible. Further,
this ratio has been computed using (7), which we use to
obtain voltages in the main text. The voltages thus obtained

are therefore consistent with those obtained by fluid models
in the incompressible limit (whenever the fluid models are
applicable: [y, Iy < L).
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