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Tunneling of two-dimensional surface polaritons through nanogaps in atomically thin crystals
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We theoretically investigate the tunneling of two-dimensional surface polaritons (2DSPs) through nanometer-
wide gaps in atomically thin crystals. For quantitatively accurate results, we developed a rigorous model based
on the diffraction of 2DSPs for strongly confined surface polaritons (i.e., the polariton wavelength much shorter
than the free-pace photon wavelength). We find distinctive features of the tunneling of 2DSPs. First, radiation
loss during the tunneling is shown to be negligible. Second, the reflection coefficient R and tunneling coefficient
T are shown to exhibit an anomalous logarithm singularity in their dependency on the gap width. Even for a
gap size over two orders of magnitude smaller than the surface polariton wavelength, an appreciable reflection
coefficient was observed in our calculation. Finally, we show that when the gap size increases, the phase of R
saturates very rapidly to a nontrivial value of π/4. Based on these results, we further examine resonant tunneling
of 2DSP through two identical gaps separated by a distance L, and establish a resonance condition defined by
L ≈ λsp(4n − 1)/8 with a positive integer n.
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I. INTRODUCTION

Two-dimensional (2D) surface polaritons (SPs), coupled
excitation of photons and conduction electrons [1–4], optical
phonons [5,6], or excitons residing in atomically thin 2D
crystals [7–10], exhibit deep subwavelength confinement and
hold great promise for nanoscale integration of polariton
optics [2,11–15]. Understanding of propagation behaviors
of 2DSPs is at the core of further manipulation of low-
dimensional polariton optics. Recently there have been exten-
sive studies of the reflection of 2DSPs at the crystal’s edge,
which have enabled direct visualization of 2DSPs in near-field
infrared nanoscopy [16–19]. The edge reflection of 2DSP
has almost a unity reflection amplitude, but the reflection
phase is nonzero due to the near-field evanescence wave
close to the 2D crystal edge [16–18]. The existence of the
evanescent wave naturally leads to the question of near-field
coupling, i.e., 2DSP tunneling across a finite-sized gap in a 2D
crystal. Such near-field tunneling of 2DSP was investigated
by recent works [20]. Due to the reduced dimensionality
of atomically thin 2D crystals, the tunneling of 2DSP can
exhibit different gap-size-dependent tunneling efficiency and
phase shifts compared with conventional evanescence wave
coupling.

In this paper we investigate theoretically the behavior of
strongly confined 2DSPs tunneling through nanometer-sized
gaps in atomically thin 2D crystals. Through our model that
guarantees quantitative accuracy, we find several distinctive
properties of the tunneling of strongly confined 2DSPs (i.e.,
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λsp � λ0 where λsp and λ0 are wavelengths of polaritons and
free-space photon, respectively). First, for ideal lossless 2D
crystals, radiation loss during the tunneling is shown to be
negligible, implying that the tunneling always satisfies the
conservation |T |2 + |R|2 ≈ 1 where T and R are tunneling
and reflection coefficients, respectively. Second, we find that
the tunneling efficiency shows a strong gap-size dependence
when the gap size approaches zero: the reflection and tun-
neling coefficient of 2DSP shows a logarithm singularity
close to a zero gap, in contrast to a smooth exponential
decay of conventional evanescence wave coupling across a
three-dimensional gap. This logarithm singularity is found
to originate from the multiple interaction between the plane-
wave modes in the gap and the unbounded modes in the
2D crystal region. Finally, we reveal that the phase of the
reflection coefficient also changes rapidly with the increase
of the gap size, and saturates at a nontrivial value of π/4
for large gap size. This unusual phase information allows
further examination of resonant tunneling of 2DSPs across
two identical nanogaps in 2D crystals, and we show that the
resonant tunneling condition is defined by L ≈ λsp(4n − 1)/8
where L is the distance between the two gaps and n is a
positive integer.

II. THEORETICAL MODEL

We model the system as an infinitely thin 2D sheet with
a gap of width g, as shown in Fig. 1. We assume that
the 2D sheet is embedded in a surrounding medium with
uniform permittivity of εs. The 2DSPs propagate along the
crystal in the +x direction and can be described by localized
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FIG. 1. Schematic of 2DSP tunneling through an abrupt free-space gap in a 2D crystal.

electromagnetic (EM) waves in the proximity of 2D crys-
tal surfaces [11,16,18]. Specifically, with the configuration
shown in Fig. 1, Maxwell equations characterize the z com-
ponent of magnetic field in terms of a surface-bounded mode
|p〉 of which the real-space representation 〈y|p〉 forms an an-
tisymmetric distribution, 〈y|p〉 = exp(iqy|y|)y/|y| with qy ≡√

εsk2
0 − q2

x , and k0 and qx are momenta of the photon and
the 2DSP, respectively [21]. Here, we assume that there is
no material loss in 2D crystals. Then, 2DSPs propagating
in the x direction can be described by taking into account
the phase change as |p〉 exp(iqxx). When 2DSPs arrive at
the edge of the crystal (x = 0), there is a mismatch between
eigenfunctions of the gap (0 � x � g) and crystal (x � 0)
regions. This results in the coupling to the reflected 2DSP as
well as diffracting waves. Bases for the diffracting waves can
be represented by unbounded modes |uky〉 in the 2D crystal
region and plane-wave modes | fky〉 in the gap that will be
coupled to |p〉 and |uky〉 at x = g [18]. In Figs. 2(a) and 2(b),
those 2DSP and diffracting waves are separately shown for an
exemplary tunneling case. The coupling between |p〉 and |uky〉
eventually determines the tunneling efficiency, and as shown
in Figs. 2(c) and 2(d), the efficiency changes dramatically with
the gap size.

All those macroscopic procedures can be explicitly de-
scribed by the following field expansion of z-component
magnetic field:

∣∣Hx�0
z

〉 = (eiqxx − Re−iqxx )|p〉 +
∫ ∞

−∞
dkyρky|uky〉e−ikxx,

∣∣H0�x�g
z

〉 =
∫ ∞

−∞
dkyαky| fky〉eikxx +

∫ ∞

−∞
dkyβky| fky〉e−ikxx,

∣∣Hx�g
z

〉 = T |p〉eiqx (x−g) +
∫ ∞

−∞
dkyτky|uky〉eikx (x−g). (1)

Here, R and T , respectively, are the reflection and tunnel-
ing coefficients of 2DSP that will be fixed later, and kx ≡√

εsk2
0 − k2

y . The real-space representations for |uky〉 and | fky〉,
respectively, are given by

〈y|uky〉 = y

|y|
(

eiky|y| + ky − qy

ky + qy
e−iky|y|

)
, 〈y| fky〉 = eikyy.

(2)

Note that |uky〉 describes unbounded diffracting waves in
the 2D crystal region. The completeness of our modal ex-
pansion in the crystal region is justified by the orthogonal
relationship between |p〉 and |uky〉 as

〈p|uky〉 =
∫ ∞

−∞
dy〈p|y〉〈y|uky〉 = 0,

〈uky1|uky〉 = 4πδ(ky − ky1) + ky1 + qy

ky1 − qy
4πδ(ky + ky1). (3)

After the diffraction at the nanogap, the coupling of inci-
dent 2DSP to the reflected 2DSP and diffracting waves can be
determined by the following basis dependencies:

〈 fky|uky1〉 = 1

i

4ky1

ky1 + qy
K (ky, ky1)

+ 2π
qy

ky1 + qy
[δ(ky − ky1) − δ(ky + ky1)],

〈 fky|p〉 = − 2iky

k2
y − q2

y

. (4)

Here, the kernel K is defined as

K (ky, ky1) ≡ ky

k2
y − k2

y1

. (5)

Corresponding electric fields can be easily obtained from
Eq. (1) by using the Maxwell equations. We can then readily
apply the boundary conditions. Boundary conditions require
the continuity of tangential components of EM waves at two
interfaces, x = 0 and x = g. The continuity of Hz and Ey at
x = 0 gives continuity conditions,

(1 − R)|p〉 +
∫ ∞

−∞
dkyρky|uky〉

=
∫ ∞

−∞
dky(αky + βky)| fky〉,

qx(1 + R)|p〉 −
∫ ∞

−∞
dkyρky|uky〉kx

=
∫ ∞

−∞
dky(αky − βky)| fky〉kx. (6)
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FIG. 2. Analytically calculated field maps of |Ey| for separated (a) diffracting waves and (b) 2DSP, obtained from superlattice approxi-
mation based on Eqs. (2) and (3). (c), (d) Maps of total field for two different gap sizes. The vertical dashed lines denote the two boundaries
between the crystal and the gap. We set εs = 1.

Also, at x = g, we have

T |p〉 +
∫ ∞

−∞
dkyτky|uky〉 =

∫ ∞

−∞
dky(αkyeikxg + βkye−ikxg)| fky〉,

qxT |p〉 +
∫ ∞

−∞
dkyτky|uky〉kx =

∫ ∞

−∞
dky(αkyeikxg − βkye−ikxg)| fky〉kx. (7)
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Then, we can project the first lines of Eqs. (6) and (7) onto |p〉 and |uky〉, and project the remaining second lines onto the
free-space plane-wave basis | fky〉 [16,18]. Projections onto |p〉 and |uky〉 yield four coupled integral equations:

1 − R = 1

〈p|p〉
∫ ∞

−∞
dky(αky + βky)〈p| fky〉, T = 1

〈p|p〉
∫ ∞

−∞
dky(αkyeikxg + βkye−ikxg)〈p| fky〉,

ρky = −1

2

qy

ky − qy
(αky + βky) − 1

2π i

ky

ky − qy

∫ ∞

−∞
dky1(αky1 + βky1)K (ky1, ky ),

τky = −1

2

qy

ky − qy

(
αkyeikxg + βky e

−ikxg
) − 1

2π i

ky

ky − qy

∫ ∞

−∞
dky1(αky1eikx1g + βky1e−ikx1g)K (ky1, ky ), (8)

where T , R, ρky, τky, αky, and βky can be determined by another set of two coupled integral equations obtained from the projection
onto | fky〉,

αky − βky + ρky
2qy

ky + qy
= (1 + R)

1

2π

qx

kx
〈 fky|p〉 + 2

π i

∫ ∞

−∞
dky1ρky1

kx1

kx

ky

ky1 + qy
K (ky1, ky),

αkyeikxg − βkye−ikxg − τky
2qy

ky + qy
= T

1

2π

qx

kx
〈 fky|p〉 − 2

π i

∫ ∞

−∞
dky1τky1

kx1

kx

ky

ky1 + qy
K (ky1, ky). (9)

Here, kx1 ≡
√

εsk2
0 − k2

y1 . Note that integral equations in Eq. (3) are in the Fredholm form. The complexity of Eqs. (8) and
(9) is due to the presence of the kernel K (ky1, ky), which originated from the nonvanishing dependency between two vectors
|uky1〉 and | fky〉 with ky 	= ky1. To solve the coupled integral equations, we adopt a superlattice approximation (SLA) that allows
semianalytic treatment via the quantization of the integrals.

III. SUPERLATTICE APPROXIMATION

SLA is a method to approximate the system as a periodic one with sufficiently large periodicity, allowing quantitatively
accurate calculation via quantization of the bases. To make a periodic system, consider that the 2D crystal is embedded in two
perfect electric conductor (PEC) plates, located at y = ±d and parallel to x-axis. We assume that d is much larger than the 2DSP
wavelength. The system is now effectively periodic in y-direction through the PEC boundary condition,

∂

∂y
〈y|Hz〉

∣∣∣∣
y=±d

= 0. (10)

By Eq. (10), the momenta of diffracting waves can be quantized. After the same field expansions and projection procedures,
we can rewrite Eq. (8) as

1 − R = 1

〈pp〉
∞∑

m=1

〈p| fky,m〉(αm + βm), T = 1

〈p|p〉
∞∑

m=1

〈p| fky,m〉(αmeikx,mg + βme−ikx,mg),

ρn0 = 1 + e−2iκy,nd

2d + sin(2κy,nd )
κy,n

∞∑
m=1

(αm + βm)
ky,m

k2
y,m − κ2

y,n

,

τn = 1 + e−2iκy,nd

2d + sin(2κy,nd )
κy,n

∞∑
m=1

(αmeikx,mg + βme−ikx,mg)
ky,m

k2
y,m − κ2

y,n

, (11)

and Eq. (9) as

αm − βm = 1

d

qx

kx,m
(1 + R)〈 fky,m|p〉 − 1

d

∞∑
n=1

ρn
κx,n

kx,m

2ky,m

k2
y,m − κ2

y,n

(1 + e2iκy,nd ),

αmeikx,mg − βme−ikx,mg = T
1

d

qx

kx,m

〈
fky,m|p〉 + 1

d

∞∑
n=1

τn
κx,n

kx,m

2ky,m

k2
y,m − κ2

y,n

(1 + e2iκy,nd ). (12)

Here, ky,m ≡ (2m − 1)π/2d is the quantized momentum of diffracting waves in the nanogap with mode number m, and
kx,m ≡ √

εsk2
0 − k2

y,m. The momentum of diffracting waves in the 2D crystal region is denoted by κy,m that can be obtained by the
following eigenvalue equation:

2qyeiqyd+iκy,md − qye2iκy,md − κy,me2iκy,md = qy − κy,m. (13)
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Then, κx,m ≡
√

εsk2
0 − κ2

y,m can also be fixed. One can find that Eq. (13) satisfies the orthogonal relationship between bases of
2DSP and diffracting waves. We note that, to simplify the problem, the momentum of 2DSP is not quantized. This assumption
is a reasonable approximation when d is much larger than the 2DSP wavelength.

Now, we can truncate the total number of the quantized modes, and rewrite the second and third lines of Eq. (11) and Eq. (12)
in the following coupled matrix equations:

ρ = Ma(α + β), τ = Ma(G+α + G−β),

α − β = (1 + R)c − Mbρ, G+α − G−β = T c + Mbτ. (14)

Here, ρ, τ, α, β, and c are column vectors defined as

ρT ≡ [ρ1, ρ2, · · · , ρN ], τT ≡ [τ1, τ2, · · · , τN ], αT ≡ [α1, α2, · · · , αN ], βT ≡ [β1, β2, · · · , βN ],

cT ≡ [c1, c2, · · · , cN ], cm ≡ 1

d

qx

kx,m
〈 fky,m|p〉, (15)

and Ma, Mb, G+, and G− are N × N matrices with matrix elements

Ma(m, n) ≡ 1 + e−2iκy,md

2d + sin(2κy,md )
κy,m

ky,n

k2
y,n − κ2

y,m

, Mb(m, n) ≡ 1

d

κx,n

kx,m

2ky,m

k2
y,m − κ2

y,n

(1 + e2iκy,nd ),

G±(m, m) ≡ e±ikx,mg. (16)

N is the number of considered quantized modes. Note that
G± are diagonal matrices. After some manipulations, Eq. (14)
can be simplified as

α = −T Mf1c + (1 + R)Mf2c,

β = (1 + R)G+Mf1c − T G+Mf2c, (17)

where Mf1,2 are defined as

Mf1 ≡ (M±G+M−1
∓ M±G+ − M∓)−1,

Mf2 ≡ (M±G+ − M∓G−M−1
± M∓)−1,

M± ≡ (I + MbMa )G−, M∓ ≡ (I − MbMa )G+. (18)

Here, I is the identity matrix. By inserting Eq. (17) into
the first line of Eq. (11), we can finally obtain reflection and
tunneling coefficients R and T as

T = 2B2

B2
1 − B2

2

, R = −1 + 2B1

B2
1 − B2

2

, (19)

with B1 and B2 given by

B1 ≡ 1 + aT (Mf2 + G+Mf1)c, B2 ≡ aT (Mf1 + G+Mf2)c,

aT ≡ [a1, a2, · · · aN ],

a(m) ≡ 〈p| fky,m〉
〈p|p〉 =

∫ d
−d dy y

|y|e
iqy|y| sin(ky,my)∫ d

−d dye2iqy|y|
. (20)

Shown in Fig. 3 are gap-size-dependent tunneling and
reflection coefficients. We find that the tunneling efficiency
decays anomalously rapidly with deep sub-λsp gap size, e.g.,
g < 0.01λsp, while it exhibits much slower decay when the
gap size gets larger. For comparison, we also calculated
the coefficients by using the finite-difference time-domain
(FDTD) method. Results from SLA, based on Eq. (8) and (9),
are in excellent agreement with FDTD results. We also note
that the radiative loss involved by the tunneling is negligibly
small for strongly confined 2DSP (qx � k0) with ideal loss-
less crystals, as |T |2 + |R|2 in Fig. 3 is very close to 1. This

means that the diffracted waves in both free-space and crystal
regions are mostly in the form of evanescent waves that do not
transfer the electromagnetic energy to the far field.

IV. BORN APPROXIMATION

SLA as we have discussed so far allows very accurate re-
sults, but it is not easy to find a closed form of 2DSP tunneling
behavior in this approximation. To understand the surprisingly
strong gap-size dependency of the tunneling behavior with
g → 0 limit, we apply the Born approximation (BA) to the

FIG. 3. Analytically (SLA) and numerically (FDTD) calculated
tunneling and reflection amplitudes against varying gap size. For
both analytic and numerical calculations, we set qx/k0 = 50, which is
close to the momentum ratio of graphene plasmons near 6-μm pho-
ton wavelength. In the FDTD numerical calculation, the thickness of
2D crystal is set to be λsp/400, which corresponds to a crystal with
0.3-nm thickness and 120-nm 2DSP wavelength. For both cases, we
set εs = 1.
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integral equations to obtain closed forms of T and R. A
straightforward calculation with the first BA gives rise to the
closed forms of tunneling and reflection coefficients [22]:

TBA = 2I2

I2
1 − I2

2

, RBA = −1 + 2I1

I2
1 − I2

2

. (21)

Here, for an extremely narrow gap (g � λsp), two factors
I1 and I2 can be written as

I1 ≈ 1 − 2

3π

qx

qy
ln

(
− iqyg

2

)
, I2 ≈ − 2

3π

qx

qy
ln

(
− iqyg

2

)
.

(22)

Also, for a strongly confined 2DSP, qy can be approximated
as qy ≡

√
εsk2

0 − q2
x ≈ iqx[1 − O(εsk2

0/q2
x )], and this gives

rise to

TBA ≈ 1 − 1

1 + 4i
3π

ln
(

πg
λsp

) , RBA ≈ 1

1 + 4i
3π

ln
(

πg
λsp

) . (23)

Equation (23) clearly shows that the tunneling and re-
flection coefficients are governed by anomalous logarithmic
dependency on the gap size, which is consistent with an
earlier study [20]. This leads to very strong reflection of 2DSP
even with an extremely narrow gap although no reflection is
expected for exact zero gap. The origin of the logarithmic
singularity is the multiple interaction between | fky〉 and |uky〉
at x = 0 and g [22]. However, it should be noted that in such
deep sub-λsp gap-size case, quantum effects are expected to
start playing important roles, especially when the gap size is
in subnanometer scale. Several models including the so-called
quantum-corrected model [23,24] and nonlocal hydrodynamic
model [25,26] can be adopted to take into account the quan-
tum effects.

We also note that, in Eqs. (21) and (22), the effect of
the surrounding medium only appears at qy =

√
εsk2

0 − q2
x

for a given qx. This suggests that, as long as |qx| � |εsk0| is
satisfied, the presence of a substrate does not have a significant

impact on the tunneling and reflection behavior, and that we
can use the same equations for T and R by considering only
the polariton momentum change induced by the substrate.

V. PHASE OF R, AND THE RESONANT TUNNELING

Another important physical quantity that should be taken
into account is the phase information of T and R. Near-field
infrared nanoscopy measurements enable real-space visual-
ization of 2DSPs where the phase of R directly determines the
positions of nodes and antinodes of the 2DSPs interference
patterns. Understanding the phase information is critical for
quantitative interpretation of near-field studies. Figure 4(a)
shows phases of T and R, calculated by SLA. In the zero-gap
limit, we can see that the phase of R and T goes to π/2
and 0, respectively. However, as the gap size gets larger, the
phases of R saturates very rapidly to π/4, the known value of
phase shift of edge-reflected (infinitely large gap) 2DSP in the
limit qx/k0 → ∞ [18]. The phase of T is shown to saturate
to −π/4 with increasing gap size. Here, we note that the
difference between those two phases is shown to be π/2 inde-
pendent of the gap size. This fact is quite interesting because
the π/2 phase difference can be found in other completely
different systems such as the tunneling of a free-space plane
wave through a lossless metallic slab.

So far, we have discussed properties of tunneling of 2DSPs
in terms of gap-dependent tunneling efficiency and phase
shift. In analogy with resonant quantum tunneling through
multiple potential barriers, 2DSP resonant tunneling can also
happen with additional nanogaps in the 2D crystal. The
simplest structure is a 2D crystal with two identical gaps
separated by a 2D crystal island of width L, as shown in
Fig. 4(b). To be rigorous, we can use the same field expansions
as in Eq. (1) for all five separated regions. However, as shown
in Fig. 2(a), the diffracting waves exhibit a rapid decay with
increasing distance from the nanogap. This nature suggests
that the interaction between two nanogaps is mainly mediated

FIG. 4. (a) Phases of T and R against the gap size. The horizontal dotted line denotes π/4, the limiting value of phase of R with infinitely
large gap size [18]. (b) Tunneling of 2DSP through two identical gaps. The gaps are separated by an island 2D crystal of width L. Two green
vertical dashed lines denote the first two resonance conditions predicted by Eq. (25). For both (a) and (b), qx is set as 50k0. We considered
freestanding crystals (εs = 1).
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by the 2DSP |p〉 and the role of unbounded diffracting modes
|uky〉 in the nanogap interaction is relatively small, especially
when two nanogaps are separated by a sufficiently wide 2D
crystal island. Then, the system can be reduced to a simple
cavity in which only a multiple reflection of 2DSP on the
island needs to be taken into account. This simple cavity
model immediately gives rise to the tunneling and reflection
coefficients Tdouble and Rdouble as

Tdouble = T 2eiqxL

1 − R2e2iqxL
, Rdouble = R + T 2Re2iqxL

1 − R2e2iqxL
, (24)

where T and R, respectively, are tunneling and reflection
coefficients in Eq. (19). Figure 4(b) shows tunneling of 2DSP
with varying island width L. We can clearly see that resonant
tunneling arises periodically with the island width. Also, for
three exemplary gap sizes, 0.05λsp, 0.1λsp, and 0.2λsp, the
resonance condition is shown not to be highly dependent on
them. This stems from the rapid saturation of phase of R with
increasing gap size, as shown in Fig. 4(a). Therefore, when
the gap size is not extremely small, the phase of R is close to
π/4, and we can approximately define the resonant tunneling
condition as

Lres ≈ λsp

8
(4n − 1), n = 1, 2, 3... (25)

The first two solutions for Eq. (25) are denoted as two
vertical dashed lines in Fig. 4(b). We also point out that, owing
to the nearly nonradiative nature of the tunneling, resonant
tunneling with almost 100% efficiency is possible with an
ideal lossless 2D crystal. Overall, analytic results based on

the simple cavity model show good agreement with FDTD
results, justifying our assumption that the interaction between
two gaps is dominated by |p〉, and that role of |uky〉 in the
resonant tunneling is small.

VI. CONCLUSION

In conclusion, we have discussed the tunneling of two-
dimensional surface polaritons through nanogaps in 2D crys-
tals, applicable to all types of 2DSPs that support strong
electromagnetic field in the proximity of the crystal’s sur-
face. Through rigorous analytic calculations based on the
Maxwell theory, three main properties of the 2DSP tunneling
are revealed including anomalous logarithmic singularity in
the gap-dependent tunneling efficiency, nearly nonradiative
nature, and phase information. Our theory provides not only
a quantitative understanding of the 2DSP tunneling through
nanogaps in 2D crystals which is essential for further develop-
ment of relevant theories in low-dimensional polaritonics and
applications, but also full details of the electromagnetic field
configuration of the system, particularly important for the
understanding of the near-field infrared nanoimaging studies.
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APPENDIX: FIRST BORN APPROXIMATION

The first BA is equivalent to letting 〈uk1| fky〉 = 0 with k 	= k1 in Eqs. (4), (8), and (9), by ignoring the coupling between two
different diffracting waves in the nanogap and the 2D crystal. The first BA applied to the third and fourth lines of Eq. (8) yields

ρky ≈ −2
qy

ky − qy
(αky + βky), τky ≈ −2

qy

ky − qy

(
αkyeikxg + βky e

−ikxg
)
, (A1)

and from Eq. (9), we have

αky − βky ≈ (1 + R)
1

2π

qx

kx
〈 fky|p〉 − ρky

2qy

ky + qy
,

αkyeikxg − βkye−ikxg ≈ T
1

2π

qx

kx
〈 fky|p〉 + τky

2qy

ky + qy
. (A2)

From Eqs. (A1) and (A2), we can suppress ρky and τky, and obtain

αky + βky = 〈 fky|p〉[Fky(1 + R) − GkyT ],

αkyeikxg + βkye−ikxg = 〈 fky|p[Gky(1 + R) − FkyT ], (A3)

with Fky and Gky given by

Fky ≡ 1

2π

qx

kx

((
k2

y − 2q2
y

) + e2ikxgk2
y

)(
k2

y − q2
y

)
(
k2

y − 2q2
y

)2 − e2ikxgk4
y

, Gky ≡ 1

2π

qx

kx

2eikxg
(
k2

y − q2
y

)2

(
k2

y − 2q2
y

)2 − e2ikxgk4
y

. (A4)

By substituting Eq. (A3) into the first line of Eq. (8), we arrive at Eq. (21) with two factors I1 and I2 defined by

I1 ≡ 1 + 1

〈p|p〉
∫ ∞

−∞
dky|〈 fky|p〉|2Fky, I2 ≡ 1

〈p|p〉
∫ ∞

−∞
dky|〈 fky|p〉|2Gky, (A5)

which can be reduced to Eq. (22) with the logarithmic dependency.
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To find the origin of the logarithm dependency, we look at Eqs. (A1) and (A2) again. We note that, under the first Born
approximation, the factor –qy/2(ky − qy) in Eq. (A1) is a result of projection of | fky〉 onto |uky〉, representing the dependency
between two vectors. Likewise, the factor 2qy/(ky + qy) is a result of the reversed projection. By defining Cf →u ≡ –qy/2(ky − qy)
and Cu→ f ≡ 2qy/(ky + qy), we can rewrite Eq. (A2) as

αky(1 + Cu→ f Cf →u) − βky(1 − Cu→ f Cf →u) = (1 + R)
1

2π

qx

kx
〈 fky|p〉,

αkyeikxg(1 − Cu→ f Cf →u) − βkye−ikxg(1 + Cu→ f Cf →u) = T
1

2π

qx

kx
〈 fky|p〉. (A6)

The physical meaning of the factor Cu→ f Cf →u is the coupling strength between | fky〉 and |uky〉, determining the electromag-
netic coupling of two different vectors at given interfaces (x = 0 and g). Here, we introduce the coupling strength W such that

W ≡ Cu→ f Cf →u = − q2
y

k2
y − q2

y

. (A7)

Then, αky and βky can be simplified as

αky = 1

2π

qx

kx
〈 fky|p〉−(1 + R)(1 + W )e−ikxg + T (1 − W )

eikxg(1 − W )2 − e−ikxg(1 + W )2 ,

βky = 1

2π

qx

kx
〈 fky|p〉−(1 + R)(1 − W )eikxg + T (1 + W )

eikxg(1 − W )2 − e−ikxg(1 + W )2 . (A8)

Clearly, the terms involving W and g in Eq. (A8) are in the multiple reflection form, implicating the multiple interaction
between | fky〉 and |uky〉 at x = 0 and g. These terms are the origin of the logarithmic dependency.
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