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Spin valves consisting of heterostructures of single-layer hexagonal crystal on an antiferromagnetic substrate
or of bilayer hexagonal crystal intercalated between two (anti)ferromagnetic insulators, with the current-in-plane
geometry, are proposed. The two-dimensional hexagonal crystals such as graphene, silicene, germanene, and
stanene are modeled by the tight-binding model of honeycomb lattice. The magnetization orientation of the
antiferromagnetic substrate(s) controls the band gap and topological properties of bulk, which in turn control the
transport of three types of spin valve geometries: (i) the in-plane transport of bulk; (ii) the transport of topological
edge states along nanoribbon with bulk gap; (iii) the transport of the chiral edge state along the domain wall. The
heterostructures are investigated by a tight-binding model with an (anti)ferromagnetic exchange field, Hubbard
interaction and (or) spin-orbital coupling. For the first type of spin valve geometry, the Hubbard interaction
could enlarge the effective band gap of bulk, which in turn improves the sensitivity of the spin valves to the
antiferromagnetic exchange field. For the second and third types of spin valve geometries, the topological phase
diagrams of varying types of heterostructures with spin-orbital coupling serve as a guideline for designing the
spin valve. The coexistence of the Hubbard interaction and the spin-orbital coupling could enlarge the topological
gap in bulk and improve the quality of the chiral edge states at the domain walls between regions with different
topological numbers.
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I. INTRODUCTION

Spintronics has been proposed as a physical foundation
for information processing and storage systems. The phe-
nomenon of spin-dependent transport based on the physics of
giant magnetoresistance [1,2] and tunnel magnetoresistance
[3,4] have been intensively studied, which led to the concept
of the spin valve [5], which controls electronic conductivity by
magnetization orientation. To reduce the power consumption
and device size of spintronic systems, antiferromagnetic ma-
terials have been proposed to replace the ferromagnets [6,7].
Spintronic devices based on antiferromagnetic materials have
multiple advantages over ferromagnetic spintronic devices
[8], such as the absence of parasitic stray fields and ultrafast
magnetization dynamics. Therefore, recent efforts have been
devoted to developing spin valves based on antiferromagnetic
materials [9]. Antiferromagnetic insulators with high Néel
temperature have been experimentally synthesized [10–13],
including materials with hexagonal crystal structure [10,11].

Two-dimensional (2D) hexagonal crystals such as
graphene, silicene, germanene, and stanene have been
considered as a preeminent candidate for spintronic systems
[14–17]. Graphene has high electron mobility [18,19] and
long spin relaxation lifetime [20–23]. The generation and
manipulation of spin current by electronic [24,25] and
optical [26–31] methods have been proposed theoretically
and studied experimentally [32–34]. Single-layer graphenes
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(SLGs) and bilayer graphenes (BLGs) with the substrate
proximity effect [35–37] or adatom doping [38] exhibit
large values of spin-orbital coupling (SOC) that make
the spintronic effect observable at room temperature.
Specifically, in systems of graphene on transition-metal
dichalcogenides (TMDCs), staggered and Rashba SOC is
introduced in the graphene, resulting in interesting spin
effects and topological properties [39–44]. The proximity
effect of graphene on the ferromagnetic insulator induces
a ferromagnetic exchange field [45]. The coexistence of
the ferromagnetic exchange field and Rashba SOC drive
the SLGs into a quantum anomalous Hall (QAH) phase
[36,46,47]. The topological zero-line mode at the domain
wall of the QAH phase host topological edge states with
localized one-way charge transportation [48]. Moreover, van
der Waals spin valves based on BLG heterostructures with
ferromagnetic insulators [49] have been recently proposed
[50]. The presence of Hubbard interaction in the graphene
model induces spontaneous antiferromagnetic order at the
zigzag edge [51–53] and has been proposed for use as a spin
injector [54] or spin valve [55]. On the other hand, silicene
has larger intrinsic SOC and tunable staggered sublattice
potential [56], which could be designed as a varying type of
spin current generator [46,57].

To harness the advantages of both 2D hexagonal crystals
and antiferromagnetic spintronics, we propose spin valves
based on heterostructures containing 2D hexagonal crystals
and antiferromagnetic materials as substrates. The spin valves
have current-in-plane (CIP) geometry, i.e., the magnetiza-
tion orientation of the antiferromagnetic substrate control the
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in-plane conductivity (conductance) of the conducting layer
in bulk (nanoribbon). The conducting layer, which could
be single layer or bilayer graphene (or silicene), is de-
scribed by the tight-binding model of honeycomb lattice with
staggered sublattice exchange field. Such heterostructures
have recently been theoretically [57,58] and experimentally
[59,60] studied. Assuming that an antiferromagnetic insulator
with a surface lattice matched to graphene could be found
or engineered, a staggered sublattice exchange field would
be induced in the graphene. The staggered sublattice ex-
change field in silicene could be realized by sandwiching the
silicene between two perovskite layers [61]. We investigated
single layer honeycomb lattice models with an antiferro-
magnetic exchange field, bilayer honeycomb lattice mod-
els with antiferromagnetic exchange fields in both layers,
and bilayer honeycomb lattice models with a ferromag-
netic(antiferromagnetic) exchange field in the top (bottom)
layer. We applied the parameters for graphene (SLGs and
BLGs) in the models. If the parameters for silicene are used
instead, the conclusions would be qualitatively the same.

Depending on the configuration of the conducting layer
and substrates, three types of spin valve in CIP geometries
are proposed. (i) Spin valve I: both conducting layer and anti-
ferromagnetic substrates are uniform bulk. The band gaps of
the conducting layer could be controlled by rotating the mag-
netization orientation of the antiferromagnetic exchange field.
The effect of realistic Hubbard interaction and SOC on the
band gaps has been examined. (ii) Spin valve II: the conduct-
ing medium is a zigzag nanoribbon, and the antiferromagnetic
substrates are uniform bulk. The zigzag nanoribbon has bulk
gap. The conductance of the zigzag nanoribbon is originated
from the zigzag edge states. The topological properties of the
corresponding bulk determined the properties of the zigzag
edge states. Rotation of the magnetization orientation of
the antiferromagnetic exchange field changes the topological
properties, which in turn control the presence or absence of the
conducting zigzag edge states. Topological phase diagrams of
varying types of heterostructures are discussed. Some phase
regimes have a nonzero Chern number but a small or vanish-
ing global band gap. For bilayer honeycomb lattice model,
the coexistence of SOC and Hubbard interaction modifies
the phase boundaries and enlarges the band gap, stabilizing
the QAH phase in these regimes. (iii) Spin valve III: the
conducting layer is zigzag nanoribbon with large width, and
the substrates are bulk with antiferromagnetic domain wall
along the axis of the nanoribbon. A kink of antiferromagnetic
exchange field is induced in the honeycomb lattice model. At
the two sides of the kink, the bulk band gaps are in the same
energy range, and the topological properties are different.
Thus, the kink hosts gapless localized chiral edge states. The
conductance of the zigzag nanoribbon is originated from the
chiral edge states. Rotation of the magnetization orientation
of the antiferromagnetic exchange field in one half of the
substrate controls the presence or absence of the kink, which
in turn controls the presence or absence of the conducting
chiral edge states.

For the single layer honeycomb lattice models, spin valve I
and spin valve III are proposed. For the bilayer honeycomb
lattice models, all three types of spin valves are proposed.
The paper is organized as follows: In Sec. II, single layer

honeycomb lattice models with antiferromagnetic exchange
fields are studied. The effects of Hubbard interaction to bulk
and zigzag nanoribbons are separately discussed in Secs. II A
and II B, respectively. The effect of SOC to bulk is discussed
in Sec. II C. In Sec. III, bilayer honeycomb lattice models with
(anti)ferromagnetic exchange field are studied. The effects
of Hubbard interaction and SOC are separately discussed
in Secs. III A and III B, respectively. The effect of the co-
existence of Hubbard interaction and SOC is discussed in
Sec. III C. The chiral edge states of the domain wall are
discussed in Sec. III D. Section IV presents the conclusion.

II. SINGLE-LAYER HONEYCOMB LATTICE

The Hamiltonian of the single-layer honeycomb lattice
model with antiferromagnetic exchange field is given as

H = H0 + HAF, (1)

where

H0 = −
∑

〈i, j〉,σ
tc+

iσ c jσ , (2)

HAF = λx
AF

∑
i,σ,σ ′

κi ŝ
x
σ,σ ′c+

iσ ciσ ′

+λ
y
AF

∑
i,σ,σ ′

κi ŝ
y
σ,σ ′c+

iσ ciσ ′

+λz
AF

∑
i,σ,σ ′

κi ŝ
z
σ,σ ′c+

iσ ciσ ′ . (3)

The Hamiltonian of a pristine SLG is H0, where t = 2.8 eV
is the hopping energy, σ = ±1 is the index of spin, i and j
are the indices of lattice sites, and c+

iσ (ciσ ) is the creation
(annihilation) operator of the electron at the ith lattice site
with spin index σ . The summation indices with 〈i, j〉 cover
the nearest-neighboring lattice sites. The antiferromagnetic
exchange field along the x, y, and z directions is modeled by
a spin dependent staggered sublattice potential. In Eq. (3), κi

is equal to 1 (−1) for the A (B) sublattice, ŝx,y,z are the Pauli
matrix of spins x, y, and z, and λ

x,y,z
AF is the strength of the

antiferromagnetic exchange field. For silicene being interca-
lated between perovskite layers, the magnitude of the anti-
ferromagnetic exchange field, which is designated as λAF =√

(λx
AF)2 + (λy

AF)2 + (λz
AF)2 , could be given by DFT calcu-

lations [61]. The DFT calculations of graphene proximity-
coupled to an antiferromagnetic insulator with large lattice
mismatching [62] show that only a ferromagnetic exchange
field is effectively induced. An antiferromagnetic substrate
with small lattice mismatching would induce antiferromag-
netic exchange field with a spatial Moiré pattern or the combi-
nation of ferromagnetic and antiferromagnetic exchange field.
In this paper, we assumed the sole presence of antiferro-
magnetic or ferromagnetic exchange field in the honeycomb
lattice model. The model Hamiltonian (1) can also describe
functionalized tin films X -Sn (where X = H, F, Cl, Br, and I)
[63] with honeycomb lattice structure.

The band structure of Eq. (1) in bulk exhibits a mas-
sive Dirac fermion with gap 2λAF. As a comparison, the
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nonmagnetic model with Hamiltonian

H = H0 + H�, (4)

where

H� = λ�

∑
i,σ

κic
+
iσ ciσ , (5)

also exhibits a massive Dirac fermion with gap 2λ�. How-
ever, the topological properties of the model Hamiltonian
(1) and (4) are different. The topological properties of the
bulk, such as the Chern number, valley Chern number, and
spin-dependent valley Chern number, can be calculated from
the band structure. The Chern number C is the integral of the
Berry curvature through the whole first Brillouin zone [36,46].
Because the Berry curvature value is large in the vicinity of
the K (K ′) point, the Chern number of each valley, designated
as CK (K ′ ), can be defined for the corresponding continuum
Dirac fermion model [64,65]. The difference between the
Chern number of K and the K ′ valley is the valley Chern
number CV = CK − CK ′ . For the Hamiltonian with no spin
flipping term, the Chern number of each spin component and
each valley can be defined for the corresponding continuum
Dirac fermion model as well, designated as Cσ

K (K ′ ). The spin-
dependent valley Chern number is defined as Cσ

V = Cσ
K −

Cσ
K ′ . The calculation results show that the spin- and valley-

dependent Chern number of the Hamiltonian (1) is Cσ
τ = τσ

with τ = ±1 labeling the K (K ′) valley. As a comparison,
the valley Chern number of the Hamiltonian (4) does not
depend on spin. The domain wall along the zigzag direction
between two regions with staggered sublattice potentials of
opposite sign [66,67] host chiral edge states. The velocities
of the chiral edge states at opposite valleys are opposite to
each other. For the geometry of spin valve III, the domain
wall separates two regions with opposite antiferromagnetic
exchange field. The chiral edge states of opposite spins have
opposite velocities. As a result, the chiral edge states support
dissipationless spin-valley current at the intrinsic Fermi level
[68].

A. Bulk band gap: Effect of Hubbard interaction

In the presence of Hubbard interaction, an additional term
HU is added to the Hamiltonian (1) and (4). The Hubbard
model is given as

HU = U
∑

i

niσ niσ̄ , (6)

where niσ is the operator of the particle number at the
ith lattice with spin indices σ and σ̄ = −σ . For realistic
graphene (or silicene), the interaction parameter is U = 1.6t
[69], which is used in the rest of this paper. For the inter-
acting model, the single-particle band structure is not well
defined. Instead, the single-particle Green’s function describes
the quasiparticle dynamic. The corresponding spectral func-
tion describes the distribution of quasiparticle in the energy-
momentum phase space. For bulk, the Green’s function is a
function of Bloch wave vector k and energy ε which can be
formally written as

G(k, z) = [z − Hfree(k) − �(k, z)]−1, (7)

FIG. 1. The shaded surface and blue solid lines are the spec-
tral function and band structure, respectively. Panel (a) represents
the Hamiltonian H0 + H� + HU in the bulk system. Panels (b)–
(d) represent the Hamiltonian H0 + HAF + HU (λx

AF = λ
y
AF = 0 and

λz
AF = 0.01t) in bulk, zigzag nanoribbon (60 unit cells) and zigzag

nanoribbon (120 unit cells) with a domain wall, respectively. The
magnetized orientation of the exchange fields of the nanoribbons in
(c) and (d) are shown by the arrows in the pictures below each figure,
with dashed lines marking the open boundaries and the domain
wall. Only the band structure and spectral function of the spin-up
component are plotted in (d).

where z = ε + i0 is the energy with a positive infinitesimal
imaginary part, Hfree(k) is the noninteracting part of the
Hamiltonian with Bloch phase, and �(k, z) is the self-energy.
Both G(k, z) and �(k, z) are a matrix with size being equal
to two times the number of lattice sites within one primitive
unit cell. For the strongly correlated model with U > t , cluster
perturbation theory (CPT) [70–75] is an efficient method to
calculate the Green’s function. Short-range dynamical corre-
lations as well as on-site correlations are captured by CPT.
The details of calculating the Green’s function by the CPT
method is presented in the Appendix. The spectral function
is defined as A(k, ε) = − 1

π
Im{tr[G(k, z)]}. The band gap is

extracted from A(k, ε).
The two models with a Hamiltonian in Eqs. (1) and (4)

respond to the Hubbard interaction differently. To compare the
two models, we perform calculation by CPT, assuming the pa-
rameters λAF = 0.01t (λx

AF = λ
y
AF = 0 and λz

AF = 0.01t) and
λ� = 0.01t in the former and latter model, respectively. The
noninteracting band structures of the two models are the
same, as shown in Figs. 1(a) and 1(b). In the presence of
interaction, the spectral function given by CPT is plotted as
a shaded surface in Figs. 1(a) and 1(b). For the Hamiltonian
H0 + H� + HU , the gap of the Dirac fermion is suppressed to
near zero, as shown in Fig. 1(a). A similar conclusion was
given by the theoretical calculation of the Hubbard model
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with dynamical mean-field theory [76,77]. In contrast, for the
Hamiltonian H0 + HAF + HU , the gap is enlarged, as shown in
Fig. 1(b). This phenomenon can be understood by inspecting
the self-energy of the two models. The diagonal elements of
the self-energy at the ith site equate approximately to con-
stants, �iσ,iσ ∝ U 〈niσ̄ 〉. The 〈niσ 〉 at the A sublattice is larger
(smaller) than that at the B sublattice if the local potential
of the opposite spin at the A sublattice is smaller (larger)
than that at the B sublattice. The self-energy is approximately
equivalent to another staggered sublattice potential. For the
models with H0 + H� + HU , the self-energy partially cancels
out the staggered sublattice potential. In contrast, for the
models with H0 + HAF + HU , the self-energy has the same
sign as the spin-dependent staggered sublattice potential, and
thus, the gap is enlarged. Because the self-energy contains
nonzero nondiagonal elements, which effectively change the
nearest-neighbor hopping energy, the Fermi velocities of the
interacting systems (the slopes extracted from the spectral
function) are smaller than those of noninteracting systems.
Because the band structure and spectral function are indepen-
dent of the direction of the antiferromagnetic exchange field,
the single layer honeycomb lattice model of Eq. (1) in bulk
does not function as spin valve I.

B. Zigzag nanoribbon

A zigzag nanoribbon of the model Hamiltonian (1) has a
band gap between two flat bands, as shown in Fig. 1(c). In
the presence of Hubbard interaction, the flat bands become
slightly dispersive. Because the band structure and spectral
function is independent of the direction of the antiferromag-
netic exchange field, the systems do not function as spin
valve II.

Reversing the antiferromagnetic exchange field in one half
of the nanoribbon, as shown in Fig. 1(d), creates a domain
wall in the middle of the nanoribbon, which hosts gapless
spin-dependent chiral edge states. The system functions as
spin valve III. For a noninteracting model in an infinitely
wide nanoribbon, the dispersion of the chiral edge state is
ε = στ h̄vF ky, where ky is the wave number along the domain
wall. Because of the finite-size effect, the chiral edge state
at the domain wall is mixed with the zigzag edge states at the
open boundaries, so that the dispersion deviates from linear, as
shown by the blue (solid) line in Fig. 1(d). The presence of the
Hubbard interaction enlarges the bulk band gap and weakens
the finite-size effect. Thus, the dispersion of the chiral edge
states remains linear for a larger bandwidth, as shown by the
spectral function in Fig. 1(d).

C. Topological phase diagram: Effect of SOC

The presence of SOC in single layer honeycomb lattice
models with antiferromagnetic exchange field could induce
topological phase transition or metal-insulator phase transi-
tion. Rotation of the antiferromagnetic exchange field be-
tween in-plane and out-of-plane direction could induce a
metal-insulator phase transition, so that the bulk could func-
tion as spin valve I.

If the single layer hexagonal crystal, such as graphene,
is in proximity to TMDCs, the Rashba SOC and staggered

sublattice intrinsic SOC are induced [39,40,43]. The system
is modeled by the Hamiltonian

H = H0 + HAF + HR + HsI . (8)

The Rashba SOC is modeled by

HR = 2iλR

3

∑
〈i, j〉,σ,σ ′

[(ŝ × di j )z]σ,σ ′c+
iσ c jσ ′ , (9)

where di j is the unit vector from the ith to the jth lattice
site, and ŝ is the vector of three Pauli matrices for spin. The
Rashba SOC can be tuned by the adatom doping of heavy
metallic atoms [78]. The staggered sublattice intrinsic SOC is
modeled by

HsI = iλsI

3
√

3

∑
〈〈i, j〉〉,σ,σ ′

κiνi j ŝ
z
σ,σ ′c+

iσ c jσ ′ (10)

where νi j = (+1) − 1 for a (counter)clockwise path. The
summation indices with 〈〈i, j〉〉 cover the next-nearest-
neighbor lattice sites. On the other hand, if the single layer
hexagonal crystal is doped with adatoms that induce Rashba
SOC and uniform intrinsic SOC [79], the system is modeled
by the Hamiltonian

H = H0 + HAF + HR + HI . (11)

The uniform intrinsic SOC is modeled by

HI = iλI

3
√

3

∑
〈〈i, j〉〉,σ,σ ′

νi j ŝ
z
σ,σ ′c+

iσ c jσ ′ . (12)

We separately study the phase diagrams of the two model
Hamiltonians (8) and (11). Without the antiferromagnetic
exchange field, the first Hamiltonian is in the quantum valley
Hall (QVH) phase with C = 0 and CV = 2sgn(λsI ); the second
Hamiltonian is the well-known Kane-Mele-Rashba model,
which is in either a trivial or the quantum spin Hall (QSH)
phase [80].

The phase diagram of the model Hamiltonian (8) with
out-of-plane antiferromagnetic exchange field (λx

AF = λ
y
AF =

0, λz
AF = 0.01t) are plotted in Fig. 2(a). The solid curve

λR = √
λz

AF(λz
AF − λsI ) separates the phase diagram into

two regimes with CV = 2sgn(λsI ) to the right and CV =
0 to the left. Across the curve, the band gap at K and
K ′ closes and reopens. The regime with CV = 0 is fur-
ther separated into two regimes by the dashed curve λR =
1
2

√
(λz

AF)2 − λ2
sI . To the left of the dashed curve, the global

band gap is finite, and the systems are in the BI phase.
The band structure of a typical system in the BI phase is
plotted in Fig. 2(b). To the right of the dashed curve, the global
band gap vanishes because the band gaps of the K and K ′ val-
leys cover different energy ranges. The intrinsic Fermi level
crosses the conductor (valence) band of the K (K ′) valley,
and this phase is thus designated the semimetal (SM) phase.
The regime with CV = 2sgn(λsI ) is also further separated into
two regimes by the vertical dashed line λsI = λz

AF. To the left
of the dashed line, the global band gap vanishes. This phase
regime is designated as SM with nonzero valley Chern number
(SM-C). The band structure of a typical system in the SM-C
phase is plotted in Fig. 2(c). To the right of the dashed line, the
global band gap is finite, and the systems are in a QVH phase.
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FIG. 2. (a) The phase diagram in the λR − λsI space of the
Hamiltonian H0 + HAF + HR + HsI with out-of-plane antiferromag-
netic exchange field (λx

AF = λ
y
AF = 0, λz

AF = 0.01t). The typical band
structures of band insulator (BI), semimetal with nonzero Chern
number (SM-C), quantum valley Hall (QVH), and spin-valley-
polarized metal (SVPM) phases are plotted in (b)–(e), respectively.
In (e), the band structures of the spin-up and spin-down components
are plotted as red (solid) and blue (dashed) lines, respectively.

The band structure of a typical system in the QVH phase is
plotted in Fig. 2(d). When λR is equal to zero in this regime
(thick line in the phase diagram), a typical band structure is
plotted in Fig. 2(e), which is gapless. The band structures of
the two spin components have opposite valley polarization,
and this phase is thus designated spin-valley-polarized metal
(SVPM). If the absolute value of the Fermi level is tuned to be
greater than λsI − λz

AF, the systems exhibit coupled spin and
valley physics that is similar to that of the TMDCs [81].

The phase diagram of the model Hamiltonian (11) with
out-of-plane antiferromagnetic exchange field (λx

AF = λ
y
AF =

0, λz
AF = 0.01t) is shown in Fig. 3(a). In the absence of HAF,

the Hamiltonian could be in a QSH phase with topological
number Z2 = 1 [80]. The presence of the antiferromagnetic
exchange field breaks the time-reversal symmetry and drives
the system into the topological trivial phase with C = 0 and
CV = 0. The four phases are characterized by global and
valley band gaps. The typical band structure of each phase
is plotted in Figs. 3(b)–3(e). The three straight lines that
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FIG. 3. (a) The phase diagram in the λR − λI space of the
Hamiltonian H0 + HAF + HR + HI with out-of-plane antiferromag-
netic exchange field (λx

AF = λ
y
AF = 0, λz

AF = 0.01t). The typical band
structures of each phase are plotted in (b)–(e).

separate the four phases are λR = λI − λz
AF, λR = λI , and

λR = λI + λz
AF. The phase in Fig. 3(c) is valley half-metal

(VHM), because the intrinsic Fermi level crosses the valence
band of the K valley. The phases in Figs. 3(d) and 3(e) are
both SMs.

For the metallic phases (SMs and VHM) in Figs. 2(a) and
3(a), rotation of the antiferromagnetic exchange field to the
in-plane direction (λy

AF = λz
AF = 0, λx

AF = 0.01t) drives the
systems into the band insulator, whose band gaps of the two
valleys have the same energy range. Thus, spin valve I could
be constructed by utilizing the metal-insulator transition of the
systems in these phases. In the additional presence of Hubbard
interaction, the band gap of each valley is either opened or
enlarged. Consequently, if the strength of the Rashba SOC is
small (λR < 2.3λAF), the metallic phases in Figs. 2(a) and 3(a)
become insulator, so that the antiferromagnetic driven metal-
insulator transition is absent. The band structures of nonin-
teracting models and the spectral functions of the interacting
models of two typical systems with Rashba SOC strength
being large enough (λR = 2.3λAF) are shown in Fig. 4. The
two systems function as spin valve I. For the system with
Hamiltonian (8) and out-of-plane antiferromagnetic exchange
field, the spectral function in Fig. 4(a) shows that the band
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FIG. 4. The band structure and spectral function of single layer
honeycomb lattice with out-of-plane (λx

AF = λ
y
AF = 0, λz

AF = 0.01t)
and in-plane (λy

AF = λz
AF = 0, λx

AF = 0.01t) antiferromagnetic ex-
change field in the left and right columns, respectively. The strength
of Rashba SOC is λR = 2.3λAF in all subfigures. Staggered sublattice
intrinsic SOC with λsI = 0.5λAF in (a) and (b); uniform intrinsic
SOC with λI = 0.5λAF in (c) and (d).

gap of each valley is enlarged by Hubbard interaction, while
the global band gap remains zero. For the same system with
in-plane antiferromagnetic exchange field, Hubbard interac-
tion enlarges the global band gaps, as shown in Fig. 4(b).
Thus, the sensitivity of the band gap to the rotation of the
antiferromagnetic exchange field is enhanced by Hubbard
interaction. Similar phenomena are found for the systems with
Hamiltonian (11) in Figs. 4(c) and 4(d). In Fig. 4(c), the band
gap in each valley is opened by Hubbard interaction.

III. BILAYER HONEYCOMB LATTICE

For bilayer honeycomb lattice, the exchange fields could
have three configurations: (i) antiferromagnetic heterostruc-
ture with antiferromagnetic exchange fields for both layers;
(ii) antiferromagnetic/ferromagnetic heterostructure with fer-
romagnetic exchange field for top layer and antiferromag-
netic exchange field for bottom layer; (iii) ferromagnetic
heterostructure with ferromagnetic exchange fields for both
layers. The Hamiltonians for the three configurations are

H =
∑
ι=1,2

(H0,ι + HAF,ι) + H⊥, (13)

H =
∑
ι=1,2

(H0,ι) + Hz
FM,1 + HAF,2 + H⊥, (14)

H =
∑
ι=1,2

(
H0,ι + Hz

FM,ι

) + H⊥, (15)

where ι is an additional layer index with ι = 1 (2) standing
for top (bottom) layer. The interlayer hopping is described by

the Hamiltonian

H⊥ = t⊥
∑

〈i, j〉⊥,σ

c+
iσ c jσ , (16)

where t⊥ = 0.39 eV, and the summation indices 〈i, j〉⊥ cou-
ple the B lattice sites of the ι = 1 layer and the nearest A
lattice site of the ι = 2 layer. The ferromagnetic exchange
field, given as

Hz
FM = λz

FM

∑
i,σ,σ ′

ŝz
σ,σ ′c+

iσ ciσ ′ , (17)

could be induced by proximity to the ferromagnetic substrate.
The coefficients λz

FM could be extracted from the density
functional theory (DFT) calculation [50,82–84].

The ferromagnetic heterostructure is a conductor (insu-
lator) if the exchange fields of the two graphene layers
are parallel (antiparallel) [50]. The antiferromagnetic and
antiferromagnetic/ferromagnetic heterostructures exhibit a
similar property to function as spin valve I: the bulk band
gap depends on the magnetization orientation of the antifer-
romagnetic exchange field. The following four subsections
discuss the details of four issues: (i) the presence of Hubbard
interaction changes the band gap or induces metal-insulator
phase transition; (ii) the presence of Rashba SOC drives
the topological phase transition to Chern insulator; (iii) the
coexistence of Hubbard interaction and Rashba SOC enlarge
the band gap of the Chern insulator; and (iv) the domain wall
between two heterostructures with different Chern numbers
supports topological edge states.

A. Bulk band gap: Effect of Hubbard interaction

The presence of Hubbard interaction is modeled by the ad-
ditional Hubbard terms in the Hamiltonians (13)–(15), whose
spectral functions are calculated by CPT. For varying types of
heterostructures, the band structures of noninteracting models
and the spectral functions of the interacting models are plotted
in Fig. 5.

For the antiferromagnetic heterostructures, the exchange
fields of the two graphene layers are parallel, perpendicular,
and antiparallel to each other in Figs. 5(a)–5(c), respectively.
The heterostructures were switched from insulator to conduc-
tor by rotating the magnetization orientation of one of the
two antiferromagnetic substrates. For the insulator phase, as
shown in Figs. 5(a) and 5(b), the Hubbard interaction enlarges
the band gap, because the self-energy effectively enhances the
spin-dependent staggered sublattice potential.

For the antiferromagnetic/ferromagnetic heterostructures,
the band gap is tuned by rotating the magnetization orienta-
tion of the antiferromagnetic exchange field while fixing the
ferromagnetic exchange field, as shown in Figs. 5(d)–5(f). For
the insulator phase, the Hubbard interaction slightly enlarges
the band gap [Fig. 5(d)]. For the heterostructures with larger
exchange fields, i.e., larger values of λF (= λz

FM,1 = λz
AF,2),

the Hubbard interaction more significantly enlarges the band
gap, as shown in Fig. 6. However, with λF being larger
than 0.036t , the trend reverses, and the Hubbard interaction
significantly suppresses the band gap. When the strength of λF

reaches the critical value at 0.061t , the band gap is closed by
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FIG. 5. The band structure and spectral function of the
antiferromagnetic heterostructures, with λz

AF,1 = λz
AF,2 = 0.01t in

(a), λz
AF,1 = λx

AF,2 = 0.01t in (b), and λz
AF,1 = −λz

AF,2 = 0.01t
in (c). The band structure and spectral function of the
antiferromagnetic/ferromagnetic heterostructures, with λz

FM,1 =
λz

AF,2 = 0.01t in (d), λz
FM,1 = λx

AF,2 = 0.01t in (e) and
λz

FM,1 = −λz
AF,2 = 0.01t in (f). The band structure and spectral

function of bilayer honeycomb lattice with nonmagnetic staggered
sublattice potential with λ�,1 = λ�,2 = 0.01t in (g). The band
structure and spectral function of the ferromagnetic heterostructures,
with λz

FM,1 = λz
FM,2 = 0.01t in (h) and λz

FM,1 = −λz
FM,2 = 0.01t in

(i). For all heterostructures in this figure, the SOCs are absent.

the Hubbard interaction, implying that the insulator-to-metal
phase transition is driven by the Hubbard interaction.

For comparison, the band structure of bilayer honeycomb
lattice with nonmagnetic staggered sublattice potential is
plotted in Fig. 5(g), which shows that the Hubbard interac-
tion suppresses the band gap [76]. For ferromagnetic het-
erostructures, the Hubbard interaction does not significantly
change the band gap, as shown in Fig. 5(i). In conclusion,
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FIG. 6. For antiferromagnetic/ferromagnetic heterostructures,
the bulk band gap vs λz

FM,1 = λz
AF,2 = λF with and without Hubbard

interaction is plotted as open and filled circles.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
(a)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
(b)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
(c)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
(d)

FIG. 7. The phase diagram of the Chern number of (a) anti-
ferromagnetic, (b) antiferromagnetic/ferromagnetic, and (c),(d) fer-
romagnetic heterostructures. The Rashba SOC strength is 2

3 λR =
0.1 eV in (a), 2

3 λR = 0.15 eV in (b), 2
3 λR = 0.06 eV < 1

3 t⊥ in (c),
and 2

3 λR = 0.15 eV > 1
3 t⊥ in (d).

with the same coupling strength, the Hubbard interaction
makes antiferromagnetic heterostructures more sensitive to
the rotation of magnetization orientation than ferromagnetic
heterostructures.

B. Topological phase diagram: Effect of SOC

The presence of SOC in the bilayer honeycomb lattice
models modifies the topological phase. Because both sur-
faces of the bilayer hexagonal crystals are in proximity to
(anti)ferromagnetic insulators, no proximity to TMDCs is fea-
sible. Thus, we neglect the presence of intrinsic SOC. Rashba
SOC could be induced by the intercalation of heavy metal-
lic atoms between two graphene layers [78]. We assumed
that the Rashba SOC strengths of the two hexagonal crystal
layers are the same, i.e., HR,1 = HR,2. The phase diagrams
of antiferromagnetic, antiferromagnetic/ferromagnetic, and
ferromagnetic heterostructures with Rashba SOC, which are
modeled by the Hamiltonian

H =
∑

ι

(
H0,ι + Hz

AF,ι + HR,ι

) + H⊥, (18)

H =
∑

ι

(H0,ι + HR,ι) + Hz
FM,1 + Hz

AF,2 + H⊥, (19)

and

H =
∑

ι

(
H0,ι + Hz

FM,ι + HR,ι

) + H⊥, (20)

are plotted in Figs. 7(a), 7(b) and 7(c) and 7(d), respectively.
For the antiferromagnetic heterostructures, the phase

boundary near the x axis is obtained by solving the
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Hamiltonian at point K , which is given as

λ̃z
AF,2 = 2λ̃z

AF,1 − 2
(
λ̃z

AF,2

)3 + λ̃z
AF,1(t̃⊥)2

2
[
1 − (

λ̃z
AF,2

)2] , (21)

where λ̃z
AF,1(2) = λz

AF,1(2)/λR, t̃⊥ = t⊥/λR. Along this phase
boundary, the band crossing at the K point has en-
ergy λz

AF,1. The phase boundaries near the y axis have
similar features. The phase boundaries around the cor-
ner of the phase diagram are numerically calculated. For
the antiferromagnetic/ferromagnetic and ferromagnetic het-
erostructures, there are two types of phase boundaries. Along
the phase boundaries with solid (black) lines in Fig. 7(b),
the band crossing occurs at point K . The phase boundaries
are either analytically expressed or numerically calculated.
Along the phase boundaries with dashed (blue) lines, the
band crossing occurs at three points that are at the three high
symmetric K-M lines with the same distance from the K point
[75]. The phase regimes that are surrounded by this type of
phase boundary have a Chern number of C = ±6. The shape
of these phase regimes depends strongly on the strength of
the Rashba SOC. For the ferromagnetic heterostructures, the
phase diagrams for the systems with λR < t⊥/2 and λR >

t⊥/2 are different, as shown in Figs. 7(c) and 7(d), respec-
tively. Both phase diagrams contain regimes with a large
Chern number, C = ±4. The former phase diagram contains
additional regimes with C = ±2 near the origin. For the
regimes with nonzero Chern number and a finite global band
gap, the heterostructures are in the QAH phase with quantized
charge Hall conductance of σyx = Ce2/h [36,46]. For the
antiferromagnetic and antiferromagnetic/ferromagnetic het-
erostructures, flipping the antiferromagnetic exchange field of
the bottom layer (λz

AF,2 ⇔ −λz
AF,2) could switch the systems

between QAH and BI phases. The nanoribbon of such systems
are switched between having and not having robust edge
states by flipping the antiferromagnetic exchange field, which
function as spin valve II.

C. Coexistence of Hubbard interaction and Rashba SOC

Although the phase diagrams of the noninteracting model
in Fig. 7 contain regimes with nonzero Chern number, some
systems in these phase regimes have small or vanishing global
band gap because the band gaps of the two valleys have
different energy ranges. If the global band gap vanishes, the
system is not in the QAH phase but is designated as a Chern
topological metallic (CTM) phase. In the phase diagrams
(Fig. 7), the CTM phase would distribute within the regimes
with nonzero Chern number and with small magnitude of the
exchange fields. For the noninteracting model of the CTM
phase, the band gap of each valley is small, and thus the
topological edge states at the open boundary [85] are weakly
localized.

In the additional presence of Hubbard interaction, the
phase boundaries are modified; the global band gap and
the band gap of each valley are enlarged. We use
the antiferromagnetic/ferromagnetic heterostructures with
λz

FM,1 = λz
AF,2 = λF as an example to demonstrate these fea-

tures. The Chern number is calculated by integrating the Berry
curvature of the topological Hamiltonian [86–91], which is

FIG. 8. (a) The phase diagram of the interacting model
of antiferromagnetic/ferromagnetic heterostructures with
λz

FM,1 = λz
AF,2 = λF vs λR. For the zigzag nanoribbon of

the antiferromagnetic/ferromagnetic heterostructures with
λz

FM,1 = λz
AF,2 = 0.4 eV and λR = 0.2 eV, (b) is the band structure of

the noninteracting model, and (c) and (d) are the spectral functions
of the interacting model of the left and right edges, respectively. The
total width of the ribbon is 21.3 nm. For another nanoribbon with
λz

FM,1 = λz
AF,2 = 0.1 eV and λR = 0.2 eV, (e) and (f) are the spectral

functions of the left and right edges, respectively. The total width of
the ribbon is 42.6 nm.

the inverse of the Green’s function at zero frequency given by
the CPT method. The numerical result of the phase diagram
is plotted in Fig. 8(a). Three regimes with Chern numbers of
+2, −2, and −4 are identified. In the regimes with C = −2
or C = −4, the global band gaps vanish, leaving the systems
in the CTM phase. In the regime with C = 2, the global band
gaps are finite.

To illustrate the topological global band gap that is en-
larged by the Hubbard interaction, the zigzag nanoribbon of
the heterostructures with λz

FM,1 = λz
AF,2 = 0.4 eV and λR =

0.2 eV is numerically investigated. The noninteracting model
of these heterostructures is trivial (i.e., C = 0). The band
structure of the nanoribbon is plotted in Fig. 8(b), which
exhibits features of SM. The interacting model of the same
heterostructures is nontrivial (i.e., C = 2). The spectral func-
tions of two edges that are obtained by spatially integrating
the localized spectral function over the left and right halves of
the nanoribbon are plotted in Figs. 8(c) and 8(d), respectively.
Two chiral edge states appear at each edge with energy within
the global bulk band gap.
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FIG. 9. Band structure (left column) and spectral function (right
column) of the zigzag nanoribbon of antiferromagnetic heterostruc-
tures with domain wall in the middle. The total width of the nanorib-
bon is 42.6 nm. The left half of the nanoribbon has parameters
λz

AF,1 = −λz
AF,2 = 0.28 eV, 2λR/3 = 0.3 eV, and C = 2. In (a) and

(b), the right half of the nanoribbon has parameters λz
AF,1 = −λz

AF,2 =
−0.28 eV, 2λR/3 = 0.3 eV, and C = −2. In (c) and (d), the right
half of the nanoribbon has parameters λz

AF,1 = λz
AF,2 = 0.28 eV,

2λR/3 = 0 eV, and C = 0. For the band structure of the noninter-
acting model, the chiral edge states at the domain wall are plotted as
solid (red) lines; the edge states at the open boundaries are plotted as
dashed (blue) lines; the bulk states are plotted as dotted (black) lines.

The presence of the Hubbard interaction also enlarges the
band gap of each valley in the CTM phase. For the het-
erostructures with λz

FM,1 = λz
AF,2 = 0.1 eV and λR = 0.2 eV,

the interacting model is nontrivial with C = −2. The spectral
functions of the left and right edges of the zigzag nanoribbon
of the heterostructures are plotted in Figs. 8(e) and 8(f),
respectively. Within the band gap of each valley, two edge
states localized at the right open boundary appear, as shown
in Fig. 8(f). The edge states that connects the conductor
and valence bulk bands in the same valley are topologically
protected. Although the global band gap vanishes, the trans-
portation feature of the topologically protected edge states
could be harnessed by tuning the Fermi level into the band
gap of one valley.

D. Topological edge states at domain wall

The domain walls between two regions with different
Chern numbers and overlapping bulk gaps host localized
chiral edge states. Nanoribbons with such a domain wall along
the axis function as spin valve III. The first (second) type of
domain wall has Chern numbers of C = ±2 (C = 2 and C =
0) on either side. For a typical zigzag nanoribbon of antifer-
romagnetic heterostructures with the first type of domain wall
in the middle, the band structure of the noninteracting model
and the spectral function of the interacting model are plotted
in Figs. 9(a) and 9(b), respectively. The exchange fields of
both graphene layers are reversed across the domain wall.
For the interacting model, the spectral function is obtained

FIG. 10. The same type of plot as in Fig. 9. The total width
of the nanoribbon is 42.6 nm. The left half of the nanoribbon has
parameters λz

FM,1 = −λz
AF,2 = 0.17 eV, 2λR/3 = 0.082 eV, and C =

2. In (a) and (b), the right half of the nanoribbon has parameters
λz

FM,1 = −λz
AF,2 = −0.17 eV, 2λR/3 = 0.082 eV, and C = −2. In

(c) and (d), the right half of the nanoribbon has parameters λz
FM,1 =

λz
AF,2 = 0.17 eV, 2λR/3 = 0 eV, and C = 0.

by spatially integrating the localized spectral function. The
integral region avoids the open boundaries and covers the
domain wall, so that only the chiral edge states of the domain
wall are visualized. Because the Chern number is changed by
4 across the domain wall, there are four chiral edge states.
Two of these chiral edge states have nearly linear monotonic
dispersion; the other two chiral edge states have oscillating
dispersion around the intrinsic Fermi level. In the presence
of the Hubbard interaction, the bandwidth of the oscillating
dispersion is suppressed, as shown in Fig. 9(b). For a typical
zigzag nanoribbon of antiferromagnetic heterostructure with
the second type of domain wall in the middle, the band
structure and spectral function are plotted in Figs. 9(c) and
9(d), respectively. The exchange field of only one graphene
layer is reversed across the domain wall. The Rashba SOC
of the region with C = 0 is set to zero, so that the bulk
gap is large. Only two chiral edge states with nearly linear
monotonic dispersion appear at the domain wall. For realistic
materials, the parameters are smaller than those in Fig. 9, so
that the finite-size effect couples the chiral edge states at the
open boundaries and the domain wall. However, the coupling
becomes insignificant for wider nanoribbons.

For a zigzag nanoribbon of antiferromagnetic/ferromag-
netic heterostructures with the first and second types of do-
main wall in the middle, the numerical results are plotted in
Figs. 10(a) and 10(b) and in 10(c) and 10(d), respectively.
For the first type of domain wall, the dispersions of the four
chiral edge states are nearly linear and monotonic within a
bandwidth around the intrinsic Fermi level and are oscillating
dispersively outside of this bandwidth. The presence of the
Hubbard interaction enlarges the bandwidth in which the
chiral edge states have nearly linear monotonic dispersion, as
shown in Fig. 10(b). The two chiral edge states of the second
type of domain wall have similar features.
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FIG. 11. Scheme of a three-way current partition and recombi-
nation at the junction of three domain walls.

Because the Chern number could be one of the three values,
±2 or 0, the junction among three regions with three different
Chern numbers can be constructed as shown in Fig. 11. The
Chern number of each region is labeled in the figure. The
junction of three domain walls supports current partition or
recombination [92,93]. In Fig. 11, the topological domain
walls are marked by solid (blue) lines, with a solid (blue)
arrow indicating the direction of the one-way charge current at
Fermi level. The three-way junction at the left supports current
partition, and that at the right supports current recombination.
The open boundaries of the regions with C = ±2 are marked
by red (dashed) lines, which also support one-way charge cur-
rent labeled by the empty red arrows. The open boundaries of
the region with C = 0 are marked by black (dotted) lines. On
the other hand, the junction among four regions with Chern
numbers of +2, −2, +2, and −2 along a (counter)clockwise
sequence support the current partition and recombination as
well [48]. The large-scale integrated spintronic circuits could
be constructed from jigsaws of regions with varying Chern
numbers.

IV. CONCLUSION

Spin valves with CIP geometry consisting of het-
erostructures of two-dimensional hexagonal crystals and
(anti)ferromagnetic insulators are studied by solving the tight-
binding model with the presence of a (staggered sublattice)
exchange field. The band structure of heterostructures in
bulk can be switched between insulating and metallic by
rotating the magnetization orientation of the antiferromag-
netic exchange field(s). The presence of Hubbard interac-
tion increases the sensitivity of the band gap to the anti-
ferromagnetic exchange field(s). In the presence of Rashba
SOCs in the single layer honeycomb lattice model with out-
of-plane antiferromagnetic exchange field, topological phase
transitions among BI, SM-C, QVH, and SVPM phases are
driven by the staggered sublattice intrinsic SOC, while metal-
insulator transition among BI, VHM and SM phases are
driven by the uniform intrinsic SOC. Rotating the antiferro-
magnetic exchange field to the in-plane direction switches
the metallic phases into an insulating phase. For antifer-
romagnetic, antiferromagnetic/ferromagnetic, and ferromag-
netic heterostructures of the bilayer honeycomb lattice model,
the Rashba SOC induces a topological phase transition to

QAH or CTM phase with a Chern number of ±2, ±4, or
±6. The coexistence of Hubbard interaction and Rashba SOC
enlarges the global band gap of the QAH phase or the band
gap of each valley of the CTM phase. According to the
phase diagrams of the varying types of bilayer honeycomb
lattice models, flipping the antiferromagnetic exchange field
could switch the topological number between nonzero and
zero, which in turn switches the topological edge states of
nanoribbon on and off. Domain walls between two regions
with different Chern numbers (or valley Chern numbers)
and an overlapping energy range of the global band gaps
host chiral edge states. The presence of Hubbard interaction
improves the quality of varying types of chiral edge states
by enlarging the bandwidth with nearly linear monotonic dis-
persion. Three-way current partition or recombination devices
consisting of the junction of three regions with three different
Chern numbers (or the intersection of three domain walls)
are proposed, which could be the building block for large-
scale integrated antiferromagnetic spintronic systems. Further
studies of antiferromagnetic spin valve systems would require
the discovery or engineering of realistic antiferromagnetic
materials to induce antiferromagnetic exchange fields, as well
as additional adatom doping to induce SOC.

ACKNOWLEDGMENTS

The project was supported by the National Natural Science
Foundation of China (Grant No. 11704419). We would like to
thank Professor H.-Q. Wu for discussion.

APPENDIX

Implementation of CPT follows the four steps to calculate
the self-energy �(k, z) in Eq. (7).

(i) At first, a cluster that contains finite number of lattice
sites is defined. The cluster must be able to tile the extended
honeycomb lattice of the original model by being arranged in
a superlattice. Usually, the superlattice breaks the translational
symmetry of the original honeycomb lattice.

(ii) Second, the Green’s function of the isolated cluster
is calculated by exact diagonalization (ED) of the Hamilto-
nian H of the isolated cluster. The Hamiltonian includes the
Hubbard model and the noninteracting model except for the
hopping terms between different clusters. The matrix form
of H is defined in the basis of all Fock states in the Hilbert
space. For half filling of an N-site lattice with spin- 1

2 fermions,
the number of Fock states equates to the combination C2N

N .
The ground state of the Hamiltonian, |�〉, could be calculated
by the Lanczos algorithm [94]. The Green’s function of the
isolated cluster is calculated as

GC
(i,σ ),( j,σ ′ )(z) = 〈�|c(i,σ )

1

z − H+ + E0
c+

( j,σ ′ )|�〉

+ 〈�|c+
( j,σ ′ )

1

z + H− − E0
c(i,σ )|�〉, (A1)

where H+(−) is the matrix form of the interacting Hamiltonian
in the Hilbert space of half pulse (minus) one filling, E0 is the
ground-state energy level of H. The self-energy of the isolated
cluster is defined as �C (z) = z − HC

free − [GC (z)]−1, with HC
free

being the noninteracting Hamiltonian of the isolated cluster.
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FIG. 12. For single layer honeycomb lattice model, the lattice of
clusters in (a) and the lattice of unit cells in (b). The indices of lattice
sites within the cluster is presented in (a). The indices of unit cells
and lattice sites within each unit cell are presented in (b). For bilayer
honeycomb lattice model, the lattice of clusters in (c) and the lattice
of unit cells in (d).

(iii) Third, the self-energy within the primitive unit cell of
the honeycomb lattice is obtained by periodization of �C (z)
[95]. The lattice site index in the cluster is split into a compos-
ite index as i = (α, ī) and j = (β, j̄), where α(β) is the index
of primitive unit cell, and ī( j̄) is the index of the lattice site
within the primitive unit cell. For example, a six-site cluster
and primitive unit cells in single layer honeycomb lattice are
marked by dashed lines in Figs. 12(a) and 12(b), respectively.
The index i( j) takes the value {1, 2, 3, 4, 5, 6} as shown in
Fig. 12(a); the index ī( j̄) takes the value {1̄, 2̄}, the index
α(β ) takes the value {1̂, 2̂, 3̂, 4̂} as shown in Fig. 12(b). The
periodization of the self-energy of the isolated cluster into the
self-energy within one primitive unit cell is obtained as

�P
γ ;(ī,σ ),( j̄,σ ′ )(z) ≡ 1

Nc

∑
Rβ−Rα=Rγ

�C
(α,ī,σ ),(β, j̄,σ ′ )(z), (A2)

�P0
(ī,σ ),( j̄,σ ′ )(k, z) =

∑
γ

�P
γ ;(ī,σ ),( j̄,σ ′ )(z)eik·Rγ , (A3)

where Rα(β ) is the lattice vector of the primitive unit cell. The
cluster might not be divided into a set of complete primitive
unit cells. If the lattice site (α, ī) is beyond the cluster’s lattice
sites [the empty dots in Fig. 12(b)], the corresponding matrix
elements �C

(α,ī,σ ),(β, j̄,σ ′ )(z) is set to zero in Eq. (A2). Because

there are two lattice sites in one primitive unit cell, �P0(k, z)
only contains on-site and nearest-neighbor terms. A similar
scheme of cluster for bilayer honeycomb lattice and the index
of lattice sites are shown in Fig. 12(c). The lattice sites in
the primitive unit cell are chosen as shown in Fig. 12(d), so
that �P0(k, z) contains nondiagonal terms between nearest-
neighbor intralayer and interlayer lattice sites.

(iv) At last, the Bloch periodic boundary condition is
applied to the nearest-neighbor terms of �P0, which gives the

(a)

x

y
1 2 N

c

(b)

FIG. 13. The scheme of clusters in (a) and (b) for zigzag nanorib-
bons of single layer and bilayer honeycomb lattice, respectively.

nondiagonal terms in �(k, z). The diagonal terms in �(k, z)
are the same as those in �P0(k, z).

The third and fourth steps restore the translational sym-
metry of the original honeycomb lattice. Inserting the self-
energy in Eq. (7) gives the Green’s function. As a comparison,
the mean-field (MF) approximation captures only the on-site
electrostatic interaction. The self-energy is assumed to be
diagonal and independent of k and ε, i.e., the self-energy is
self-consistently defined as �MF

iσ,iσ := U 〈niσ̄ 〉.
The spectral function of zigzag nanoribbons is also calcu-

lated by CPT. The clusters of nanoribbons of single layer and
bilayer honeycomb lattices are shown in Figs. 13(a) and 13(b),
respectively. The unit cell of nanoribbon contains too many
lattice sites to perform ED. Thus, the unit cell is separated
into Nc clusters along the x direction, each containing eight
lattice sites. The Green’s function of each cluster, Gi

C with
i ∈ {1, 2, . . . , Nc}, are calculated by ED. The Green’s function
of the isolated unit cell is obtained by inversion of the block
tridiagonal matric

GC (z)

=

⎡
⎢⎢⎢⎢⎢⎣

[
G1

C (z)
]−1

V 1,2
x 0 0

V 2,1
x

[
G2

C (z)
]−1

V 2,3
x 0

0
. . .

. . .
. . .

0 0 V Nc,Nc−1
x

[
GNc

C (z)
]−1

⎤
⎥⎥⎥⎥⎥⎦

−1

,

(A4)

where the nondiagonal blocks V i,i±1
x represent hopping along

the x direction between neighboring clusters. The Green’s
function of the nanoribbon is obtained by periodization of the
isolated unit cell’s Green’s function,

G(ky, z) = GC (z)

I − (Vy+eikyLy + Vy−e−ikyLy )GC (z)
, (A5)

where Vy± represents hopping along ±y direction between
unit cells, and Ly is the period along the y direction.

The solution of CPT preserves the symmetry of the original
Hamiltonian. Thus, in the absence of an (anti)ferromagnetic
exchange field, the solution does not have (anti)ferromagnetic
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order. By contrast, the solution of MF could spontaneously
break the symmetry and indicate antiferromagnetic order for
pristine graphene. In bulk, spontaneous antiferromagnetic or-
der occurs for U > 2.2t . A more accurate calculation with
quantum Monte Carlo shows that the phase transition occurs
at U = 4.5t [96]. In this paper, U = 1.6t is used for realistic
graphene, allowing the spontaneous antiferromagnetic order
to be neglected. For a zigzag nanoribbon, the spontaneous
antiferromagnetic order could occur with any U [51–53]. The

spontaneous antiferromagnetic order is spatially localized at
the open boundaries and induces a band gap that is strongly
dependent on the width of the nanoribbon. If the width is
larger than 8 nm, the gap becomes negligible. For the nanorib-
bons in this paper, the width is much greater than 8 nm, so that
the spontaneous antiferromagnetic order and the induced band
gap could be neglected. As a result, CPT calculation could
capture the major physics of the interacting systems in this
paper.
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