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Nonlinear thermovoltage in a single-electron transistor
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We perform direct thermovoltage measurements in a single-electron transistor, using on-chip local thermome-
ters, in both the linear and nonlinear regimes. Using a model which accounts for cotunneling, we find excellent
agreement with the experimental data with no free parameters even when the temperature difference is larger than
the average temperature (far-from-linear regime). This allows us to confirm the sensitivity of the thermovoltage
on cotunneling and to find that in the nonlinear regime the temperature of the metallic island is a crucial
parameter. Surprisingly, the metallic island tends to overheat even at zero net charge current, resulting in a
reduction of the thermovoltage.
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I. INTRODUCTION

The use of nanodevices has emerged as one of the key
technologies in the quest to establish a sustainable energy
system, allowing at the same time the control of heat flow
in small circuits [1]. So far, most of the investigations of
thermal properties in nanostructures have focused on the
thermal conductance [2–11]. Conversely the thermovoltage,
which describes the electrical response to a temperature dif-
ference and is directly related to both the power and effi-
ciency of thermal machines [1], is much less studied. This
is due to the difficulty in coupling local sensitive electron
thermometers and heaters/coolers to the sample under study
in order to have a well-defined, known temperature difference
across the device. The thermovoltage has been measured in
devices based on nanowires [12,13] and on quantum dots
[14–26]. In these experiments, however, the temperatures of
the electrodes were typically not measured directly, but rather
determined as fitting parameters, and there are no experiments
where the temperature of the electrodes and the thermovolt-
age are measured simultaneously. Furthermore, there are no
experiments probing the thermovoltage in devices based on
metallic islands, while theoretical works for these systems
have focused only on the linear response regime [27–33]. The
nonlinear thermovoltage though has been theoretically studied
in discrete-level systems in Refs. [34–43].

In this paper, we report on the measurement of the thermo-
voltage in a metallic single-electron transistor (SET) using on-
chip, local tunnel-junction-based thermometers and electron
temperature control. This system allows us to perform thermo-
electric measurements with an unprecedented control, within
both the linear and nonlinear response regimes, imposing tem-
perature differences exceeding the average temperature. Using

*paolo.erdman@sns.it

a theoretical model which accounts for nonlinear effects and
cotunneling processes, we find an excellent agreement with
the experimental data with no free parameters. On one hand,
this allows us to nail down quantitatively the role of cotun-
neling processes on the thermovoltage. On the other hand,
we find that in the nonlinear regime the temperature of the
island emerges as a crucial parameter. Surprisingly, although
the thermovoltage is measured at zero net charge current,
within the nonlinear response the island tends to overheat to a
temperature greater than the average lead temperature, which
results in a suppression of the thermovoltage. We show, how-
ever, that the nonlinear thermovoltage can be optimized up to
a factor of 2 with respect to the experimentally observed value
by lowering the temperature of the island to the temperature
of the cold lead. This could be achieved by exploiting the
phonons in the island which act as a third thermal bath coupled
to our system.

II. EXPERIMENTAL SETUP

Figure 1(a) is a colored scanning electron micrograph of
the device and Fig. 1(b) is a schematic representation of
the experiment with the same colors highlighting the main
elements of the fully normal-conducting SET. The left lead L
(red) and the right lead R (green) are tunnel and capacitively
coupled to a central metallic island I (yellow), which is under
the influence of a tunable gate electric field (orange). A volt-
age bias, Vb = VL − VR, can be applied to the SET electrodes
and the corresponding current I can be measured for an initial
characterization of the device. The temperature TR of the
electrons in R is fixed to the bath temperature, given the strong
electron-phonon coupling in the large and “bulky” lead. On
the other hand, the electronic temperature TL in the left lead
(red) can both be varied and measured using the supercon-
ducting tunnel probes (blue). The tunability of the temperature
is possible thanks to the superconducting wire (purple) in
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FIG. 1. Representation and characterization of the single-
electron transistor. (a) False-colored scanning electron microscopy
(SEM) image of the full device and a zoomed-in view around the
metallic island (yellow) tunnel coupled to two normal leads (red and
green). (b) Schematic representation of the system with the same
coloring as in the SEM image. The heat balance in the metallic
island is represented by red arrows. (c) Absolute value of the current
through the SET as a function of the applied source drain voltage Vb

and of the gate-induced charge ng.

clean contact with the left lead through which there is no heat
conduction and thanks to the limited size of the normal (red)
part of the lead that reduces the electron-phonon heat flux.
Electrons within the island are in local equilibrium at temper-
ature TI since the electron-electron interaction is much faster
than the tunneling rates [44]. The experiment is performed in a
dilution refrigerator at bath temperatures typically between 50
and 400 mK. For the thermovoltage measurements, the SET
voltage bias source and current preamplifier [sketched in red
in Fig. 1(a)] are disconnected. Crucially, the thermovoltage Vth

is probed directly across the SET using a room-temperature
voltage preamplifier with ultralow input bias current below
20 fA. Fabrication details can be found in Ref. [9] where
“sample B” is the device used for this experiment.

Figure 1(c) shows the absolute value of the current I across
the device at 65 mK as a function of the potential bias Vb and
of the gate-induced charge ng = (CLVL + CRVR + CgVg)/e,
where CL, CR, and Cg are, respectively, the capacitances of
the island to L, to R and to the gate electrode, and Vg is the
gate voltage. In the dark blue regions, Coulomb diamonds,
single-electron tunneling between the leads and the island is
not allowed, and the current is very small. At half-integer
values of ng, “degeneracy points,” there are conductance peaks
at zero bias since single-electron tunneling is allowed for any
finite-voltage bias.

III. MODEL

The state of the SET is characterized by the probability
P(n) to have n excess charges on the island. The electrostatic
energy necessary for this is

U (n) = EC (n − ng)2, (1)

where EC = e2/(2C) is the charging energy with C = CL +
CR + Cg. Electron tunneling between the leads and the island
induces transitions between charge states. The leading-order
process in a perturbative expansion in the tunnel coupling
between the island and the leads corresponds to a single-
electron transfer between the leads and the island (sequential
tunneling) [45,46]. The sequential-tunneling rates for trans-
ferring electrons from α = L,R (I) to β = I (L,R), with the
island initially having n charges, is denoted by �αβ (n) (see
the Appendix for details).

Higher-order processes can become dominant if all
sequential-tunneling processes are energetically unfavorable
[in the Coulomb diamond region in Fig. 1(c)]. In particular,
cotunneling (second-order process) refers to the transfer of
an electron from one lead to another, without changing the
charge state of the island but going through a virtual state. The
dominant contribution of this kind is inelastic cotunneling,
i.e., the electron which tunnels from lead L, say, to I via a
virtual state has a different energy with respect to the electron
tunneling from I to R [47]. We denote the rate of inelastic
cotunneling that transfers a charge from α = L (R) to β =
R (L), when n electrons are on the island before the process
occurs, by γαβ (n).

The probabilities P(n) can be computed by solving a
master equation (see the Appendix for details). The charge
current can then be written as I (Vb) = Iseq + Icot, where

Iseq = e
∑

n

P(n)[�LI(n) − �IL(n)] (2)

is the sequential-tunneling contribution, given by electrons
tunneling between lead L and I, and Icot = e

∑
n P(n)

[γLR(n) − γRL(n)] is the inelastic cotunneling contribution
[29,30,46,48,49]. We compute the sequential and cotunneling
rates exactly, without linearizing in the voltage bias and
temperature difference (see the Appendix for details).

In the presence of a fixed temperature bias (TR �= TL), the
thermovoltage Vth is the solution to

I (Vth) = 0. (3)

Notice that the charge current also depends on the temperature
of the island TI. By imposing that the charge current and the
net energy entering the island through electron tunneling are
zero, we find that

TI = TLRR + TRRL

RL + RR
, (4)

where RL and RR are respectively the resistance of the left and
right tunnel junctions. Equation (4), which is found perform-
ing a simple sequential tunneling calculation within linear
response and in the two charge state approximation (valid for
EC � kBT ), reduces to TI = T̄ ≡ (TL + TR)/2 in the present
symmetric case where RL = RR. We will thus initially assume
that TI is given by the average lead temperature T̄ . However,
as we will soon discuss in detail, we find that this assumption
gives quantitatively wrong results beyond the linear response
regime, leading us to the exploration of the impact of TI on the
thermovoltage.

165405-2



NONLINEAR THERMOVOLTAGE IN A SINGLE-ELECTRON … PHYSICAL REVIEW B 99, 165405 (2019)

0.0 0.5 1.0 1.5 2.0
ng

−10

0

10

V
th

[µ
V

]

Sawtooth Seq. Cot. Exp.

FIG. 2. Experimental and theoretical thermovoltage as a func-
tion of ng. The red thin curve represents the sawtooth behavior
predicted with a sequential-tunneling calculation in linear response
and accounting for two charge states. The dashed red curve is
found by solving Eq. (3) including only sequential contributions,
while the green curve includes also cotunneling contributions. The
temperatures of the leads are TL = 134 mK and TR = 190 mK and,
according to Eq. (4), we assume that TI = T̄ .

IV. RESULTS

We focus on two data sets which represent two different
regimes: linear response (Fig. 2), i.e., when the modulus of
the temperature difference �T = TL − TR is smaller than the
average lead temperature T̄ = (TL + TR)/2, and nonlinear re-
sponse (Fig. 3). In both cases, using the model detailed above,
we could accurately reproduce the experimental data without
any free parameter. The system parameters EC = 100 μeV ≈
kB × 1.16 K and RL = RR = 26 k� are independently ex-
tracted from charge current measurements. Figures 2 and
3(a) present the same qualitative behavior, namely, a periodic
oscillation of the thermovoltage with the gate-induced charge
ng and a linear dependence around degeneracy points, but
they exhibit different amplitudes (note that the sign of Vth is
opposite in the two cases since the temperature biases are
opposite).

We first analyze the linear response regime by choosing
the set of data obtained when the temperature of the leads
is TL = 134 mK and TR = 190 mK, such that |�T | < T̄ . In
Fig. 2 we compare the measured Vth (blue dots) as a function
of ng with different theoretical models. The red thin curve
represents the typical sawtooth behavior which is predicted
within linear response accounting only for sequential tunnel-
ing and two charge states. This is characterized by a linear
function of ng, crossing zero at the degeneracy points with
slope EC�T/T̄ [27]. The other two curves (red dashed and
green solid) are instead determined by computing Vth using
Eq. (3) and assuming that TI = T̄ [see Eq. (4)]. The red dashed
curve, which only accounts for sequential tunneling, shows a
smoothened sawtooth behavior as a consequence of includ-
ing multiple charge states in the master equation and of a
finite temperature. However, both models based on sequential
tunneling (thin and dashed red curves) approximately fit the
experimental data only near the degeneracy points (near half-
integer values of ng). In this case, indeed, sequential tunneling
is allowed and thus dominates over cotunneling [29]. On

0.0 0.5 1.0 1.5 2.0
ng

−20

0

20

V
th

[µ
V

]

(a)

(b)

Lin.

Non-Lin. & TI = T̄

Non-Lin. & Heat Bal.

Exp.0 1
245
250
255

T
I[m

K
]

ng

FIG. 3. (a) Experimental and theoretical thermovoltage as a
function of ng. All theoretical curves include cotunneling. The red
dashed-dotted curve corresponds to a linear response calculation
around T̄ . The green dashed curve corresponds to a nonlinear cal-
culation where we fix TI = T̄ , while the black curve corresponds to
a nonlinear calculation where TI, shown in panel (b) as a function of
ng, is calculated solving the heat balance condition in Eq. (5) together
with Eq. (3). The temperatures of the leads are TL = 342 mK and
TR = 63 mK.

the other hand the green solid curve, computed including
cotunneling contributions, shows a strong suppression of the
thermovoltage as we move away from degeneracy points. The
excellent agreement between this model and the experimental
measurements pinpoints the critical dependence of the ther-
movoltage on inelastic cotunneling processes.

We now move to the nonlinear regime. In Fig. 3(a) we
show the measured thermovoltage as a function of ng (blue
dots) compared to theoretical calculations, all of which in-
clude cotunneling contributions. The lead temperatures are
TL = 342 mK and TR = 63 mK, such that |�T | > T̄ . The
red dashed-dotted curve is computed within the linear re-
sponse regime choosing the average lead temperature T̄ as the
characteristic temperature. More precisely, we solve Eq. (3)
setting TI = T̄ and choosing a small temperature difference of
the leads δT around T̄ to find the thermopower S ≡ Vth/δT
for δT → 0. We then calculate the thermovoltage as Vth =
S(TL − TR), where now TL = 342 mK and TR = 63 mK are
the actual lead temperatures. As we can see from Fig. 3(a),
this linear response model overestimates the thermovoltage
almost by a factor of 2. A nonlinear calculation (green dashed
curve) improves the agreement with the experimental data.
This calculation is performed by solving Eq. (3) using the
actual lead temperatures and, as before, we fix the island tem-
perature at TI = T̄ . The difference between the red dashed-
dotted and green dashed curves proves that we are indeed
in the nonlinear response regime, and it shows that the main
effect of the nonlinear response is to decrease the amplitude
of the thermovoltage. However, we still do not obtain a good
agreement with the experimental data.

We find that we can get a perfect agreement with the
experimental data if we further improve the model by
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determining also the island temperature TI through a heat
balance equation, rather than fixing it at T̄ . More precisely
[see Fig. 1(b)], we denote by Q̇tun the heat current entering
the island from sequential and cotunneling events (see the
Appendix for details) and by Qel-ph = 	V (T 5

I − T 5
R ) the heat

current flowing from electrons in the island to the phonons (we
assume that the electronic temperature TR in the bulky right
electrode is equal to the temperature of the phonons). V is the
island volume and 	 is the electron-phonon coupling constant
which only depends on the material. The temperature of the
island can thus be determined by the following heat balance
equation:

Q̇tun = Q̇el-ph. (5)

The values of the parameters entering Qel-ph that we use
are determined independently: V = 225 × 100 × 29 nm3 is
estimated from SEM images and 	 is obtained from Ref. [9]
for this device (sample B). The value, 	 = 2.8 WK−5 m−3,
is close to the standard literature value for copper [44] and is
in agreement with measurements of other samples fabricated
using the same Cu target.

The black curve in Fig. 3(a) is thus determined by com-
puting both Vth and TI simultaneously by solving Eqs. (3)
and (5) without any free parameters for each value of ng.
As we can see, the nonlinear model, complemented with
the heat balance equation, is in excellent agreement with the
experimental measurements, demonstrating that TI is indeed
an important parameter in the nonlinear regime. Conversely
we have verified that, using the parameters of Fig. 2 which are
within the linear response regime, Vth only weakly depends
on the particular choice of TI between TL and TR. In Fig. 3(b)
we plot the island temperature TI, as a function of ng over a
single period, determined in the same calculation that leads to
the black curve in Fig. 3(a). Remarkably, despite the very low
phonon temperature (63 mK), the calculated TI ≈ 250 mK is
much larger than the average lead temperature T̄ = 202.5 mK.
This means that while the net charge current across the SET is
zero, the heat current due to electrons tunneling back and forth
is overheating the island to a temperature that is significantly
larger than the average temperature, resulting in a further
decrease of the thermovoltage. This is another signature of
the nonlinear response of the system, as it violates Eq. (4).
We further find that the island temperature displays a weak
ng modulation of approximately 10 mK, but this prediction
cannot be confirmed in the present experiment.

Finally we discuss how the thermovoltage depends on
TI. In Fig. 4 we plot V max

th , the maximum amplitude of Vth,
computed by solving Eq. (3) at fixed lead temperatures TL =
342 mK and TR = 63 mK and varying TI between the lead
temperatures. The black solid lines and the gray area point to
the actual experimental value of V max

th and to the correspond-
ing computed TI which differs from T̄ [see black curves in
Figs. 3(a) and 3(b)], while the dashed green lines point to
V max

th calculated setting TI = T̄ [see the green dashed curve in
Fig. 3(a)]. We find that V max

th strongly depends on the choice of
TI and that it increases as TI is lowered. Indeed, at TI = TR =
63 mK, the amplitude of the thermovoltage reaches 27 μeV,
twice the experimental value [see blue dots in Fig. 3(a)]. Thus,
by increasing the energy exchange between the electrons and
phonons in the island, for example, by increasing the island’s
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FIG. 4. The maximum amplitude of the thermovoltage V max
th is

plotted as a function of the island temperature, for TR � TI � TL. The
green dashed lines point to the values of V max

th and TI found in the
nonlinear calculation at fixed TI = T̄ [see the green dashed curve of
Fig. 3(a)] while the black solid lines and the gray area refer to the
nonlinear calculation including the heat balance equation (see the
black solid curve of Fig. 3).

volume, we can lower the temperature of the island, which in
turn results in an increase of Vth.

V. CONCLUSIONS

We performed measurements of thermovoltage in a metal-
lic island tunnel coupled to normal leads. Within the linear
regime we nail down the role of cotunneling in determining
the thermovoltage. Within the nonlinear response regime we
explore temperature biases, determined with on-chip ther-
mometers, even larger than the average lead temperature.
Using a theoretical model which accounts for cotunneling
and nonlinear effects, we find an accurate agreement with the
experimental data without any free parameters. In particular,
we find that the temperature of the metallic island becomes
an important parameter which must be determined by solving
a heat balance equation for the island. Surprisingly, even if
the net charge current through the system is vanishing and
the coupling to the leads is symmetric, the metallic island
overheats to a temperature larger than the average lead temper-
ature. As a consequence, the amplitude of the thermovoltage
oscillations decreases.
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APPENDIX: COMPUTING CHARGE
AND HEAT CURRENTS

The system is described by the following Hamiltonian:

Ĥ =
∑

α=L,R

Ĥα + ĤI + Ĥt, (A1)

where Ĥα = ∑
kσ (εk + eVα )a†

kσα
akσα is the Hamiltonian of

the free electrons in lead α = L,R, ĤI = ∑
kσ εkc†

kσ
ckσ +

EC (n̂ − ng)2 is the Hamiltonian of the electrons in the metallic
island, and Ĥt = ∑

kpσα t (α)
kp c†

pσ akσα + H.c. is the usual tunnel-

ing Hamiltonian between the leads and the island. akσα (a†
kσα

)
is the destruction (creation) operator of electrons in lead α

with energy εk + eVα and spin σ , ckσ (c†
kσ

) is the destruction
(creation) operator of electrons in the metallic island with
energy εk and spin σ , and n̂ is the operator for the number
of excess electrons on the island.

In order to describe charge and heat transport in the
system, we employ a master equation approach to compute
the probabilities P(n) in terms of all processes that can in-
duce transitions between charges states (the tunneling rates).
Sequential tunneling of electrons between the island and
the leads changes the charge state by one, so it enters the
master equation. Cotunneling processes instead transfer an
electron from one lead to another one via a virtual state in
the island, but the overall process does not change the number
of electrons in the island; consequently, the master equation
does not depend on cotunneling. Second-order processes that
transfer two electrons from/to the leads to/from the island can
be safely neglected as the charging energy EC is much larger
than the thermal energy kBT and than the voltage bias range
considered in this work. The master equation reads

∂P(n)

∂t
=

∑
α=L,R

{−P(n)[�αI (n) + �Iα (n)] + P(n − 1)

×�αI (n − 1) + P(n + 1)�Iα (n + 1)}, (A2)

and we solve it by setting ∂P(n)/∂t = 0 for every n.
Equation (A2) states that the probability of being in charge
state n can decrease [first right-hand-side (r.h.s.) term] if the
island has n excess charge states and an electron tunnels
into or out of the island, while it can increase (second and
third r.h.s. terms) if, after a sequential tunneling process, the
number of excess charges on the island is n.

Given the probabilities, the charge current can be computed
by summing Iseq and Icot given in Eq. (2) and below. The
energy entering the metallic island Q̇tun can be computed
as

Q̇tun ≡ IE
L + IE

R = Ih
L + Ih

R + e(VL − VR)I, (A3)

where IE
α and Ih

α are respectively the energy (measured respect
to the common voltage ground) and heat currents leaving
reservoir α, and we used the fact that IE

L = Ih
L + eVLI and IE

L =
Ih
R − eVRI . We can simply interpret the r.h.s. of Eq. (A3) by

noticing that the heat entering the metallic island is given by
the sum of the heat leaving the leads and the heat generated by
the Joule effect. We notice that a shift of the energy reference
shifts VL and VR, but it does not change Ih

L and Ih
R, so Q̇tun, as

defined in Eq. (A3), does not depend on the unphysical energy
reference.

The heat currents can be calculated in terms of “heat rates.”
We thus define �h

αI(n) as the rate of heat leaving reservoir α

when electrons tunnel sequentially from lead α to the island
with n initial electrons, and we define �h

Iα (n) as the rate of
heat entering lead α when electrons tunnel sequentially from
the island to lead α with n initial electrons. Analogously, we
define γ

h/out
αβ (n) as the rate of heat leaving lead α when a

cotunneling process transfers one electron from lead α to lead
β with n electrons in the island, and we define γ

h/in
αβ (n) as

the rate of heat entering lead β when a cotunneling process
transfers one electron from lead α to lead β with n electrons
in the island. Notice that also cotunneling processes where
α = β must be considered in the heat currents, since the
electron leaving and the one entering the same lead can have
different energies. Also the heat currents can be written as
Ih
α = Ih/seq

α + Ih/cot
α , where

Ih/seq =
∑

n

P(n)
[
�h

αI(n) − �h
Iα (n)

]
(A4)

is the sequential-tunneling contribution, given by electrons
tunneling between lead α and I, and

Ih/cot
α =

∑
n,β=L,R

P(n)
[
γ

h/out
αβ (n) − γ

h/in
βα (n)

]
(A5)

is the inelastic cotunneling contribution.
Using the T -matrix theory (or generalized Fermi golden

rule) [48–50], we can compute sequential and cotunneling
rates. The transition rate from a given initial state |i〉 to a final
state | f 〉 is given by

�i→ f = 2π

h̄
pi(1 − p f )|〈 f |T |i〉|2δ(E f − Ei ), (A6)

where pi and p f are the probabilities of finding the system in
state i and state f , Ei and E f are the energies of states i and
f , and T = Ĥt + Ĥt G0Ĥt + · · · is the T matrix with G0 =
1/(Ei − Ĥ0 + iη) denoting the Green function in the absence
of Ĥt , i.e., Ĥ0 = ĤL + ĤR + ĤI. We compute sequential rates
by taking T at first order in Ĥt . We thus take T = Ĥt in
Eq. (A6) and sum over all states in the lead and in the island,
yielding

�αI (n) = 2π

h̄

∑
k1σ1,k2σ2

fα
(
εk1

)
f −
I

(
εk2

)∣∣ 〈0|ck2σ2 Ht a
†
k1σ1α

|0〉 ∣∣2

× δ
[
εk2 − εk1 + �Eα (n)

]
, (A7)

where �Eα (n) = U (n + 1) − U (n) − eVα is the electrostatic
energy difference to move an electron from lead α to the
island, fα/I(ε) = {1 + exp [ε/(kBTα/I )]}−1 is the Fermi dis-
tribution of lead α at temperature Tα or of the island at
temperature TI, f −

α/I(ε) = fα/I(−ε) = 1 − fα/I(ε), and kB is
the Boltzmann constant. An analogous expression holds for
�Iα (n). The heat rates are computed in the same way, taking
into account that an amount of heat εk is removed(injected)
from(into) a lead if an electron with momentum k tunnels
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from (into) the lead. We thus have that

�h
αI (n) = 2π

h̄

∑
k1σ1,k2σ2

εk1 fα
(
εk1

)
f −
I

(
εk2

)∣∣ 〈0|ck2σ2 Ht a
†
k1σ1α

|0〉 ∣∣2

× δ
[
εk2 − εk1 + �Eα (n)

]
,

�h
Iα (n) = 2π

h̄

∑
k1σ1,k2σ2

εk2 fI
(
εk1

)
f −
α

(
εk2

)∣∣ 〈0|ak2σ2αHt c
†
k1σ1

|0〉 ∣∣2

× δ
[
εk2 − εk1 − �Eα (n − 1)

]
. (A8)

By assuming that the energy levels in the leads and in the
island form a continuum, by taking a constant density of
states around the Fermi energy, and by replacing the hopping
parameters t (α)

kp with their averaged value over k and p, we
can write the sequential rates and heat rates in terms of the
functions

ϒα (�E ) ≡ 1

e2Rα

∫ +∞

−∞
dε fα (ε) f −

I (ε − �E ),

ϒh
α (�E ) ≡ 1

e2Rα

∫ +∞

−∞
dε ε fα (ε) f −

I (ε − �E ), (A9)

where Rα is the tunnel resistance between lead α and the
island, as follows:

�αI(n) = ϒα[�Eα (n)], �Iα (n + 1) = ϒα[−�Eα (n)],

�h
αI(n) = ϒh

α[�Eα (n)], �h
Iα (n + 1) = −ϒh

α[−�Eα (n)].

(A10)

Cotunneling rates are second-order processes that involve
initial and final states with two electrons, so we now consider

T = Ĥt G0Ĥt . We thus take |i〉 = a†
k1σ1α

c†
q1τ1

|0〉 and | f 〉 =
a†

q2τ2β
c†

k2σ2
|0〉, which corresponds to considering the process

where an electron in state k1σ1 tunnels from lead α to the
island into state k2σ2, and another one coherently tunnels from
the island in state q1τ1 to lead β into state q2τ2. From Eq. (A6)
we have that

γαβ (n) = 2π

h̄

∑
k1σ1, k2σ2
q1τ1, q2τ2

fα
(
εk1

)
fI
(
εq1

)
f −
β

(
εq2

)
f −
I

(
εk2

)

×
∣∣∣∣∣
∑

ν

〈 f |Ht |ν〉 〈ν|Ht |i〉
Ei − Eν + iη

∣∣∣∣∣
2

δ
[
εq2 + εk2 − εq1 − εk1

+ e(Vβ − Vα )
]
, (A11)

where Ei = εq1 + εk1 + eVα + U (n) is the energy of state |i〉,
the sum over |ν〉 runs over a complete set of eigenstates {|ν〉}
of H0, and Eν is the energy, evaluated with H0, of state |ν〉. As
we did for the sequential rates, we notice that in the processes
described in Eq. (A11), the heat leaving reservoir α is εk1 ,
while the heat entering reservoir β is εq2 . The cotunneling heat
rate leaving reservoir α, γ

h/out
αβ (n), is thus given by Eq. (A11),

adding an εk1 inside the sum over the initial and final states,
while the cotunneling heat rate entering reservoir β, γ

h/in
αβ (n),

is also given by Eq. (A11), adding an εq2 inside the sum over
the initial and final states. Manipulating Eq. (A11) using the
same approximations mentioned for the sequential rates, we
find that by defining

υαβ (�E ,�E1,�E2) = h̄

2π

∫ +∞

−∞
dεϒα (−ε)ϒβ (ε + �E )

∣∣∣∣ 1

ε + �E1 − iη
− 1

ε − �E2 + �E + iη

∣∣∣∣
2

,

υ
h/out
αβ (�E ,�E1,�E2) = h̄

2π

∫ +∞

−∞
dεϒh

α (−ε)ϒβ (ε + �E )

∣∣∣∣ 1

ε + �E1 − iη
− 1

ε − �E2 + �E + iη

∣∣∣∣
2

,

υ
h/in
αβ (�E ,�E1,�E2) = − h̄

2π

∫ +∞

−∞
dεϒα (−ε)ϒh

β (ε + �E )

∣∣∣∣ 1

ε + �E1 − iη
− 1

ε − �E2 + �E + iη

∣∣∣∣
2

, (A12)

we can write the cotunneling rates and heat rates as

γαβ (n) = υαβ[e(Vβ − Vα ),�Uα (n),−�Uβ (n − 1)], (A13)

γ
h/out
αβ (n) = υ

h/out
αβ [e(Vβ − Vα ),�Uα (n),−�Uβ (n − 1)], (A14)

γ
h/in
αβ (n) = υ

h/in
αβ [e(Vβ − Vα ),�Uα (n),−�Uβ (n − 1)]. (A15)

At last, we notice that the integrals in Eq. (A12) are divergent in the limit η → 0+. In order to overcome this problem, we adopt
a commonly used “regularization scheme” [29,30,46,48,49]. All three integrals can be written in the form

I =
∫ +∞

−∞
dεg(ε)

∣∣∣∣ 1

ε − α1 − iη
− 1

ε − α2 + iη

∣∣∣∣
2

=
∑
i=1,2

{∫ +∞

−∞
dεg(ε)

∣∣∣∣ 1

ε − αi − iη

∣∣∣∣
2
}

− 2
∫ +∞

−∞
dεg(ε) Re

{
1

(ε − α1 + iη)(ε − α2 + iη)

}

=
∑
i=1,2

{
I (1)

i

} − 2I (2), (A16)
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where g(ε) is a suitable function and α1 and α2 are suitable constants. We now analyze each integral:

I (1)
i =

∫ +∞

−∞
dεg(ε)

∣∣∣∣ 1

ε − αi − iη

∣∣∣∣
2

=
∫ +∞

−∞
dε

g(ε) − g(αi ) + g(αi )

(ε − αi )2 + η2

= g(αi )
∫ +∞

−∞
dε

1

(ε − αi )2 + η2
+

∫ +∞

−∞
dε

g(ε) − g(αi )

(ε − αi )2 + η2

= πg(αi )

η
+ P

∫ +∞

−∞
dε

g(ε) − g(αi )

(ε − αi )2
+ O(η), (A17)

where P denotes a principal value integration. We notice that the last step of Eq. (A17) is an expansion for small η. In particular,
the first term diverges as 1/η, the second one is finite and independent of η, while the third one goes to zero if η → 0. The
regularization scheme consists of dropping the divergent term and retaining only the second term, which is finite and independent
of η:

I (1)
i → P

∫ +∞

−∞
dε

g(ε) − g(αi )

(ε − αi )2
. (A18)

Let us now turn to

I (2) =
∫ +∞

−∞
dεg(ε) Re

{
1

(ε − α1 + iη)(ε − α2 + iη)

}

=
∫ +∞

−∞
dεg(ε)

(ε − α1)(ε − α2) − η2

[(ε − α1)(ε − α2) − η2]2 + η2[(ε − α1) + (ε − α2)]2

=
∫ +∞

−∞
dεg(ε)

(ε − α1)(ε − α2) − η2

(ε − α1)2(ε − α2)2 + η2[(ε − α1)2 + (ε − α2)2 + η2]
. (A19)

We notice that the denominator in Eq. (A19) is always positive and non-zero. In the limit η → 0, the term proportional to
(ε − α1)(ε − α2) turns into a principal value integration, while the term proportional to −η2 vanishes. The regularization scheme
thus consists of

I (2) → P
∫ +∞

−∞
dε

g(ε)

(ε − α1)(ε − α2)
, (A20)

which is now finite and independent of η.
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