PHYSICAL REVIEW B 99, 165404 (2019)

Coulomb drag effect induced by the third cumulant of current
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The Coulomb drag effect arises due to electron-electron interactions when two metallic conductors are placed
in close vicinity to each other. It manifests itself as a charge current or voltage drop induced in one of the
conductors, if the current flows through the second one. Often it can be interpreted as an effect of rectification
of the nonequilibrium quantum noise of current. Here, we investigate the Coulomb drag effect in mesoscopic
electrical circuits and show that it can be mediated by classical fluctuations of the circuit collective mode.
Moreover, by considering this phenomenon in the context of the full counting statistics of charge transport, we
demonstrate that not only the noise power but also the third cumulant of current may contribute to the drag
current. We discuss the situations where this contribution becomes dominant.
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I. INTRODUCTION

The Coulomb drag effect is the phenomenon observed
in a system of two interacting conducting circuits, which
manifests itself as a charge current or a voltage drop induced
in a drag circuit, when a charge current flows through a
drive circuit [1]. It originates from the broken electron-hole
symmetry and electron interactions, and therefore it is often
studied in mesoscopic systems of reduced dimensionality,
such as quantum wires [2—-8], quantum dots [9-12], and quan-
tum point contacts [13—15], where both effects are strongly
pronounced. Its manifestation is particularly interesting in
quantum conductors, where the electron-hole asymmetry is
connected to the energy dependence of the transmission co-
efficients [16] and can be tuned by applying a gate voltage. In
such systems the Coulomb drag can be viewed as an effect of
rectification by the drag circuit of quantum noise in the drive
circuit [15]. Although known also in higher dimensions [17],
this effect is more evident in low-dimensional systems, where
it can be used to measure the spectral density of the noise
[9,10] and its properties [15], as well as to probe fundamental
fluctuation relations [11].

In all mentioned above examples the main contribution to
the drag effect comes from the two-point correlation function
(81(t)81(0)) of current fluctuations §/ in the quantum con-
ductor at time scales of the order of the correlation time 1,
(typically given by one over the voltage bias or temperature),
where fluctuations are essentially quantum. From a broader
perspective of the full counting statistics (FCS) of quantum
conductors [18], such a correlation function is a characteristic
of the Gaussian noise. To clarify this fact, let us consider the
moment generating function

ZO.t) =Y e*?PQ,1) (1
0

of the charge Q transmitted through a quantum conductor
during time ¢, and for simplicity take the Markovian (clas-
sical noise) limit, ¢ > 79, where the short-time fluctuations
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contribute to the generator independently,

_ n (K)"
In[Z(h, )] = IZ "— )

n=1

so that it becomes linear in time. Here (/")) are the current
cumulants, the first three being the average current, (1)) = (I),
the zero-frequency noise power, ( f dr(81(¢)61(0)), and
the third cumulant (7%)) = [ dt fdt (81(t)81(t")81(0)), where
481 are the current ﬂuctuatlons Although the current cumulants
enter the FCS generator (2) on equal footing, experimentally
the high-order cumulants are much less accessible than the
second one, because in large systems their contributions to
measured quantities (including the drag current) are sup-
pressed due to the central limit theorem. The third current
cumulant has been experimentally studied by explicitly col-
lecting the statistics of the transferred charge [19-24] and by
studying the weak asymmetry of the escape rate in Josephson
junction threshold detectors [25,26] with respect to the current
bias.

Alternatively, one can consider the Coulomb drag effect
in mesoscopic circuits in the context of the noise detection
physics, where the drive circuit generates nonequilibrium
noise, while the drag circuit plays the role of the detector.
It turns out [27] that the current through the tunnel junction
detector is expressed in terms of the correlation function,
which in the long-time limit acquires the form e'V'Z (A, t).
Here, V is the voltage bias across the junction, Z(X, t) is the
moment generator (1), and the counting variable A plays the
role of the effective coupling constant. This holds for normal
tunnel junctions with arbitrary interactions [28], which allows
one to derive the drag current without specifying microscopic
details of the device. This is the reason why we choose a
tunnel junction as a detector in our consideration. Typically,
the effective coupling between the drive and drag circuits is
weak, A < 1, which explains the suppression of cumulants
of the order n > 2. Note, however, that according to Eq. (2)
the third cumulant of current, in contrast to the second one,
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FIG. 1. The simplified electrical circuit for studying the
Coulomb drag effect is shown. It consists of two parts: the drive
circuit, containing a quantum conductor with the resistance Rg,
which is the source of the current noise, and the drag circuit, con-
taining a tunnel junction with the resistance Ry and capacitance Cr,
which serves as a detector of noise. The voltage bias AV =V, —V,,
applied to the quantum conductor, causes the average current (/)
and nonequilibrium current fluctuations 8/ through it. The circuit re-
sponds by the voltage fluctuations §V across the tunnel junction at the
characteristic frequency w, = 1/(RC), where the circuit resistance is
defined as R™' = R;' + Ry, and the total capacitance is given by
C = Cp + Cr. These fluctuations cause the drag current I, through
the tunneling junction, which is calculated perturbatively in small
1/Rr. The extra potential V; is applied to tune the circuit to the point
V =0 in order to cancel the average bias across the junction. An
example of an open circuit for the drag effect detection is discussed
in Sec. V.

simply shifts the voltage bias in this correlation function:
V — V — A3(I*) /6. This leads to the idea that Markovian
(classical) odd cumulants of noise, being a nonequilibrium
property of a quantum conductor (they vanish at zero bias)
may propagate to the drag circuit and cause the DC drag cur-
rent by shifting the bias. The fact that this effect is determined
by the long-time behavior of the cumulants means that many
particles cumulatively contribute to the fluctuations of the
collective mode that mediates interaction between drag and
drive circuits. Such a property differentiates this phenomenon
from the Coulomb drag effects studied so far, where the main
contribution comes from short time scales given by the corre-
lation time of current fluctuations [15]. However, this simple
idea does not include the effects associated with the full
time dependence (beyond long-time limit) of the generator in
Eq. (1) and, thus, requires a more rigorous analysis, which is
the subject of the present paper.

A simplified electrical circuit for detecting the drag effect
is shown in Fig. 1. (An alternative open circuit setup is
considered in Sec. V.) It contains a quantum conductor that
emits a nonequilibrium current noise, and a tunnel junction
detector, where the drag current is induced. The fluctuations
of the current in the conductor, §/, do not propagate directly
towards the detector: They are accumulated in the capacitor
and lead to voltage fluctuations §V across the tunnel junction.
Current and voltage fluctuations are related by the solution of
the Langevin equation:

R

Z(w) = (3)
where Z(w) is the impedance of the circuit, w, = 1/(RC) is
the circuit response frequency, the circuit resistance is defined
as R = RL_l + R;!', and the total capacitance is given by
C = Cp + Cr. Atlong times, w.t > 1, i.e., at low frequencies,
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FIG. 2. An example of an open circuit for studying the Coulomb
drag effect is shown. Compared to the circuit shown in Fig. 1, an
extra capacitor Cp is added in order to filter out the DC component
of the voltage V, as well as the low-frequency part of fluctuations
8V . The high-frequency part of fluctuations propagates towards the
detector part of the circuit and causes the drag voltage Up across
the tunnel junction. One can use the additional shunt resistor Rp to
controllably access the nonlinear regime of the tunnel junction. The
relation between the drag voltage Up, in the open circuit and the drag
current I in the circuit shown in Fig. 1 is studied in Sec. V.

one obtains 8V = RéI, giving indeed (V3) = R3((I*)), where
R quantifies the effective interaction between electrons in
the drive and drag circuits. However, for an Ohmic tunnel
junction the main contribution comes from short time scales,
t € 1/w., where, due to the prefactor Z(w), the voltage
fluctuations are suppressed as 1/w? [see Eq. (3)]. In Sec. III
we rigorously show that this leads to complete cancellation
of the drag effect from the classical noise in Ohmic tunnel
junctions [30]. Therefore, we focus in the paper on the tunnel
junctions with different nonlinear I-V characteristics, find the
drag current I perturbatively in small 1/R7, and express it
in terms of the Markovian third cumulant of current of the
quantum conductor, (I*)), and the circuit parameters.

This paper is organized as follows. In Sec. II we use the
P(E) theory of tunneling [31] to derive the expression for
the drag current in terms of the I-V characteristics of the
tunnel junction. Then, in Sec. III we apply the weak coupling
expansion to formally express the drag current in terms of the
cumulants of the current of the quantum conductor. In Sec. IV
we separately consider the drag effect in tunnel junctions with
analytical and nonanalytical I-V characteristics. In Sec. V we
investigate the drag effect in the open circuit setup (see Fig. 2),
which is experimentally more relevant. Finally, in Appendix
B we use the stochastic path integral (SPI) technique [32] to
derive the second and third voltage cumulants in terms of the
current cumulants in the quantum conductor.

II. P(E) THEORY OF TUNNELING
AND THE DRAG EFFECT

In this and next sections we closely follow Refs. [27], [28],
and [33]. We consider a tunnel junction in the presence of
the noise of the collective mode, propagating in an electrical
circuit from a quantum conductor, as shown in Fig. 1, and
apply the P(E) theory of tunneling [31] to evaluate the current
in the tunnel junction induced by this noise. The advantage of
this approach is that to the leading (second) order in tunneling
there is no need to specify the Hamiltonian of the leads of the
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tunnel junction to derive the expression for the drag current:
An arbitrary disorder and interactions can be included. The
electron tunneling is described by the Hamiltonian (through-
out the paper we use unites, where |e| = 7 = 1)

Hr =A+A", 4)

where the tunneling operator A transfers an electron from
the left to the right reservoir. According to the tunneling
Hamiltonian approach [34], the tunneling current operator
can be defined as I = —dNy/dt = i(A — AT), where Ny is the
number of electrons in the right reservoir. Thus, in the leading
order in tunneling the average tunneling current Iy = (I) is
given by:

Ir(V) = / dte™" ([A(t), AT(0)]), S

where V is the applied voltage bias. The average here
is evaluated with respect to the equilibrium state: (...) =
>, palnl...In), and p, ox e E/T where |n) are the eigen-
states of the Hamiltonian describing disconnected leads. In
the absence of noise in the circuit, this expression give the
bare [-V characteristics Ip(V') of the junction.

In the next step, we account for coupling of the junction to
noise by substituting [31]

A— %4, AT - eTPAT, (6)

where the operator ¢ increases the charge on the capacitor
by 1, which can be expressed as [¢, O] = i. Then the charge
Hamiltonian He = Q?/2C generates the equation of motion:

¢ =Q/C =4V, )

where 8V is the fluctuating part of the voltage across the
tunnel junction.

In Appendix A we show that the drag current vanishes at
equilibrium as a consequence of detailed balance leading to
the cancellation of contributions from all energies. Knowing
this fact, in what follows we assume that the main contribu-
tion to the drag current comes from nonequilibrium fluctua-
tions at low frequencies, which can be considered classical
(Markovian). This assumption is valid if the circuit response
is slow, i.e., the circuit RC time wc‘l is larger than the noise
correlation time 7. If this is the case the following expression
for the tunneling current is obtained after substituting the
operator A from Eq. (6) to Eq. (5):

oo

Ip=1r(0), Ir(V)= / dol(w)P(V —w),  (8)
—00
where we introduced the notation I, for the drag current. In
this expression P(w) stands for the probability of absorbing
of the energy w from the circuit, which is defined by the
following formula:

1 ) .
P(w)= / dte™ (19~9ON), 9)

where we use the fact that in the classical limit the field ¢(z)
commutes with itself at different times.

III. WEAK COUPLING EXPANSION

We further assume that coupling of the junction to the
system, described by Egs. (3), is weak, i.e., R < 1, and
expand the probability P(w) in cumulants of the phase ¢ to
the third order:

P((,()) — L/\dteiwtijZ(t)iijs(t), (10)
2
where the cumulants are given by
D) = 3([¢(0) = ¢O)F), (11
J(1) = ¢([p() — p(O)1). (12)

Here we assumed the semiclassical (Markovian) noise limit,
AV/w. > 1 with AV =V,; — V| being the bias over the quan-
tum conductor, and neglect quantum corrections [35]. The
correlators J, and J5 are evaluated in Appendix A. In the next
section we will consider the cases of a slow and fast circuit,
where these correlators have to be taken in the short-time
wc|t] < 1 and long-time w,|¢| > 1 limit, respectively.
In the short-time limit, w.|f| < 1, one finds
(S)t2 K(S)t3

h(t) = 22 . L) = 36 : (13)

where the coefficients represent the second and third camulant
of “instant” (at equal times) fluctuations of the potential:
K = ('(cW)’”), m = 2,3. Using Eqgs. (3'), they can be ex-
pressed in terms of the second and the third cumulant of the
current in the quantum conductor at zero frequencies:

KY = (R2C)(I?), K = R/3CHIP o,  (14)

where the total third cumulant reads
3(I*N*0pwe 3TN (I*)
2w? 2w, '

Note that the second and third terms represent circuit cascade
corrections due to the nonlinear and environmental effects,
respectively. These corrections are specific to the regime of
a slow circuit, and they can be found using the SPI method, as
demonstrated in Appendix A (see also Ref. [27]).

In the long-time limit, w.|f| 3> 1, one obtains

(P Mot = (1) — (15)

el K1
ht)y= == K)=——, (16)

where the coefficients K,(,lf ), m = 2, 3 can be read off Eq. (3)
by replacing Z(w) — R
K =R, K = R (17)

However, as is the case of the slow circuit, the cascade cor-
rections for a fast circuit can be obtained by the SPI method:

6(I°)?dpw.  3(I*)d((I*
(e = 1) — 2 2)2 A

where, again, the second and third term represent circuit
cascade corrections due to the nonlinear and environmental
effects, respectively. The environmental effects in the third
cumulant have been experimentally studied in Refs. [19] and
[22].
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By using the Eqgs. (8) and (10), the drag current can be
written as

dtd : .
Iy = / an To(w)e@—h O+ (19)

The way the third current cumulant enters this expression
suggests that it may have a similar effect on the tunnel junction
as the DC voltage bias, i.e., it may cause a drag current.
Indeed, in the long-times limit (16) the third current cumulant
enters as a linear in time phase shift, i.e., it adds to the voltage
bias, so one expects a finite current even at zero voltage. It
turns out, however, that for an Ohmic tunnel junction, Ip(®)
w, and for a classical noise considered here the drag current
vanishes. Indeed, in this case the integral over w in Eq. (19)
imposes the + — 0 limit, and one obtains:

Ip & &[=a(t) + iJ3(1)]i=0 = O, (20)

according to Eq. (13). Therefore, in the rest of the paper, we
consider the drag current in tunnel junctions with different
nonlinear I-V characteristics.

IV. DRAG CURRENT FOR TUNNEL JUNCTIONS
WITH NONLINEAR I-V CHARACTERISTICS

In this section we evaluate the drag current for two types
of nonlinearities in the tunnel junction. Namely, in Sec. IV A
we consider the analytical regime, Ip(V) =), g,V", where
n=1,2,...,whilein Sec. IV B we investigate the nonanalyt-
ical regime, I(V) = g,V |V|*~! for noninteger . However,
before proceeding with calculations, one needs to check that
the main contribution to the integral in Eq. (19) comes from
frequencies smaller than AV to ensure that our classical noise
approximation still applies (i.e., the noise source 6/ can be
considered Markovian). Since P(w), given by Egs. (10)—(12),
is already taken in the classical limit, it is sufficient to check
that the integral in Eq. (8) does not diverge at infinity for
V = 0. For doing so, let us consider the asymptotic behavior
of Eq. (10) for frequencies w 3> max{w,, (K;”)'/?}. Using the
short-time dependence of the cumulant (B9) we find that the
even (odd) part of P(w) scales as ™7 with y =4 (y =5).
Therefore, as long as n < 3 in the analytical regime and o < 4
in the nonanalytical regime the classical noise approximation
is valid. Outside this parameter range, either the quantum
character of the noise or high-frequency cutoff of /(V') should
be taken into account, which is beyond the scope of this paper.

A. Analytical regime

Assuming the analytical I-V dependence,

IO(V)=Zg,,V", n=12..., Q1)

and that the integral (19) converges, we first perform the
integration over w and then remove resulting delta functions
by the integral over time,

o0
Ip = Z l-ngnalne—lz+i13 oo = g2K2(S) + g3K(S), (22)

n=1

where we kept only the first two terms of the expansion, since
higher-order terms are small due to the weak coupling regime.

Using Eq. (14), we arrive at the result:

Ip = TR0 + SR ). 23
where the first term can be interpreted as a noise rectification
effect, while the second term is the drag effect induced by the
third current cumulant. The letter contribution is an even func-
tion of the source current and can be measured by changing
its direction, even though it is the subdominant contribution
to the drag current.

The fact that the drag current in this case is determined
by the short time dependence of the cumulants allows us to
discuss our finding in the context of earlier published results,
where the drag effect originates from the electron-electron
scattering. This concerns the noise rectification effect. We
note that the first term in Eq. (23) has a simple structure: It
is proportional to the product of the noise power ((I?)) and the
circuit response frequency w,.. Estimating the source noise as
{I*)) o« AV, where the AV is the voltage bias applied to the
quantum conductor, we conclude that the noise rectification
contribution scales as w.AV. The same structure can be
found in the drag current derived in Ref. [15] in the quantum
regime, w, > Q = max(AV, T), where T is the temperature
of the system. In this case the frequency integrals are limited
by Q. In the shot noise limit, AV > T the noise power is
proportional to the bias applied to the quantum conductor,
AV, while the cutoff frequency is determined by the same
scale (as discussed above), which leads to the following result
Ip o« AVZ,

Close to equilibrium, AV « T, the drag effect originates
from an even component of the nonlinearity in the I-V char-
acteristic of the quantum conductor that scales as AV?[15].
In this case the noise power scales as (/%)) oc AVT, while
the frequency cutoff is given by the temperature, resulting
in Ip o« AVT?, which becomes I, x AVTw, in the case of
classical noise. Interestingly, this contribution to the drag
current depends on the direction of the source current, and
thus it may compete with the third cumulant contribution.
Therefore, we propose to do measurements in the regime,
where the I-V characteristics of the mesoscopic conductor is
an odd function.

B. Nonanalytical regime

In this section we consider tunnel junctions with nonana-
lytical I-V characteristic of the form

Lh(V) =g VIVI“ !, 24)

where o is a noninteger number, and g, is an arbitrary
constant. Such an I-V characteristic is typical for systems with
interactions, e.g., Luttinger liquids or disordered systems.
Since I(V) is an odd function of the voltage bias V, only
the third current cumulant contributes to the drag effect, as
one can easily see from Eq. (19). Due to weak coupling, and
since the time integral in Eq. (10) is limited by J,, one can
expand the exponential function in the integral in small Js:
P(w) = Py(w) + §P(w), where

1 A
SP(w) = 5 / dte'™ "0 1 (1). (25)
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In contrast to the analytical regime, here one should separately
consider the cases of the slow circuit w, < R*{(I?)) and of the
fast circuit w. >> R*{(I*)) [37]. Note that in the latter case w,
is still bound from above, since the circuit response should
be slower then the correlation time of the noise: w. < AV,
which is consistent with the requirement of weak coupling
R « 1, since {(I*)) ~ AV.

1. Slow circuit, o, < R*{({I*))

In this case the contribution to the integral in Eq. (25)
comes from times r < 1/w,, therefore we use the short-time
limit (13) for the phase correlation functions. Substituting
these expressions into Eq. (25), we obtain

a)3K3(5) }
— : . (26)
N2 N3
2(K,7)" 6(Ky")

2

eyl ©)
e { wk;

\/ 271K2(S)

Substituting this expression for the correction to the proba-
bility distribution function along with nonanalytical I-V char-
acteristics into Eq. (19), we arrive at the result for the drag
current for -2 < o < 4

2@=D/2 (g — 1)go 24«
Ip = r
3/ 2

where the correlation functions K,(,f) ,m = 2,3, are expressed
in terms of the current cumulants in Eqs. (14) and (15).
This expression correctly reproduces the above results for the
Ohmic (¢ = 1) and cubic (@ = 3) terms in [-V characteristics
of the tunnel junction [see Eq. (23)].

For o < —2 the integral in Eq. (19) becomes divergent
at small frequencies. Introducing the infrared cutoff wy, we
express the drag current as:

SP(w) = —

)[Ké”](“‘”/zKé”, @7)

Ip g K /[(KS) P wye?]. (28)

Interestingly, for the case of a nonanalytical I-V characteristic
of a tunnel junction, the drag current depends both on the
second and the third cumulants, in contrast to the case of the
analytical nonlinearity. It is clear that this result cannot be
obtained perturbatively in noise power, since Kz(s) enters this
expression nonanalytically.

2. Fast circuit, o, > R*{(I*))

Taking into account the result (16) and using Eq. (25)
we arrive at the following expression for the third cumulant
correction to the probability distribution function:

1 .
OP(@) = f dre =K 12 g 1), (29)

where the correlator Kz(f ) s given by Eq. (17). (This re-
sult holds up to small relative corrections of the order of
R2(I%) /w..) We first concentrate on the case 1 <o < 4,
where an interesting situation arises: The drag current is
determined by neither the short-time nor the long-time limit
of J3(¢). Consequently, it acquires unusual nonlinear and en-
vironmental cascade corrections that have not been discussed
in literature. Straightforward calculations lead to the following

result:
3
Ip = gaR {aa)(wz‘-l«ﬁ» — §w3‘3«12>>28ch>
T 2
+2F (@) 2 (I*)dg <<12>>}, (30)

where C(a) = [{°dxx*"'/(x* + D(x* +4) and F(a) =
Jo© dxx®='/(x* + 1)%. This expression is obtained up to cor-
rections of the order of [R?((I?)) /w.]*"". Note that for a = 3
it agrees with the third cumulant contribution in Eq. (23).

In contrast, for —2 < o < 1, the drag current becomes de-
termined solely by the long-time behavior of J3(¢), therefore
it can be expressed in terms of the correlators (17) and (18),

4 o )Joe— ’
Ip = _%F(a +2)[KS kY, G1)

where the function F is introduced above. Finally, for o <
—2, we regularize I-V characteristics at small voltages by the
cutoff wy. Then the drag current in this case has the form given
by Eq. (31) after the replacement F (o 4+ 2) — (wg /wc)‘”z.

V. DRAG EFFECT IN THE OPEN CIRCUIT SETUP

In Sec. IV we derived the drag current I for the most
elementary setup shown in Fig. 1, where the tunnel junction
is electrically connected to the circuit. The disadvantage of
such connection is that it might be difficult to measure the
drag effect due to the third cumulant of the current in the
background of the nonzero average DC current contribution.
Fortunately, our results can be easily modified for the case of
an experimentally more relevant setup shown in Fig. 2, where
the drag voltage Up is measured and where the DC component
of the average current is filtered out.

First, we note that the role of the capacitor Cp in the setup
in Fig. 2 is to filter out the DC component of the bias, V.
However, one has to be sure that the largest part of fluctuations
8V still propagates towards the tunnel junction. This is the
case when, on one hand, the detector circuit does not screen
the fluctuations and, on the other hand, only a small part of the
voltage drops across the capacitor Cp at relevant frequencies.
The former holds if the impedance of the detector circuit

i 11— ia)(CD + CT)R
a)CD 1— la)CTR

Zp(w) = ; (32)
where R™! = R;' + R}," is large compared to the impedance
(3) of the drive circuit Z(w) at the characteristic frequencies
of fluctuations w, = (RC;)~!. The letter condition holds if
the impedance of the detector capacitor i/(wCp) is small
compared to the impedance of the rest of the detector circuit
(1 /ﬁ — iwCr)™" at frequencies of the order of w.. The two
conditions are satisfied simultaneously, if (i) RCr < RCy,
RCp > RCy, and R > R, or, alternatively, (ii) RC; > RC,
Cp > Cr, and C; > Cyr [38]. These conditions imply that the
detector is noninvasive and that our previous results for the
drag current hold.
The drag voltage is determined by the condition
Up

Ir(Up) + R =0, (33)
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where Iy is given by Eq. (8). This equation follows from
Kirchhoft’s law and the fact that the DC current through the
open circuit vanishes. In the case of the tunnel junction with
analytical I-V characteristics [see Eq. (21)], Eq. (33) is solved
trivially, giving

Up = -, (34)
D= Ry + Ry D-

Note that the tunneling conductance 1/Ry arising here is
nothing but the expansion coefficient g; in Eq. (21).

In the case of a nonanalytical I-V characteristic (24), one
should distinguish between two limits depending on how the
value of the drag voltage Up compares to the width I" of the
distribution P(w), which can be estimated as

I = R2(I*) min <1, 1] @ (35)

RY (1*)

If the width I of the probability distribution is small compared
to the drag voltage Up, then Eq. (33) can be solved by
expanding Ip(w) in (8) around @ = Up, giving the relation

Iy(Up) +Up/Rp = —Ip, (36)

where [, is given by Eq. (24).

If the first or second term on the left hand side of the equa-
tion (36) dominates, one obtains Up = —|Ip/ge|"/* or Up =
—Rplp, respectively. Note that in this regime the expression
for the drag current (23) still applies. However, the coefficients
are expressed in terms of Up, namely, g» = (g4/2)x(ox —
DU and g3 = (g4/6)a (e — 1)(a — 2)US . For instance,
if 1/Rp =0 and the second cumulant contribution to the
drag current dominates, one has |Up| o R[w.{(I*))]"/?, while
for the case where the third cumulant dominates, one gets
|Up| o R[a)f, (I*»1'/3. When comparing Up to T in Eq. (35),
we see that for the fast circuit, w. > R?((I*)), the regime
Up > T' is indeed realized. However, for the slow circuit,
w, < R*(I?)), Up is of the order of I' or smaller. For the
finite shunt conductance 1/Rp the second term in Eq. (36)
may start dominating. However, this may be compensated by
even smaller values of Up.

This brings us to the limit I" 3> Up. Expanding Ir in
Eq. (8) with respect to the small V = Up and using Eq. (33),
one again arrives at Eq. (34). However, now the tunneling
conductance is given by the following expression

R;' = / dulo(w)P(—w)dw, (37)

where we integrated by parts. Thus, the noise simply smears
out the singular I-V characteristics (24) at voltages of the order
of T, and one can estimate 1/Ry ~ g,I"*"!. Since in this case
the tunneling resistance depends on the properties of both the
tunneling junction and the noise, it is convenient to shunt the
tunnel junction by Rp < Rr, so that

Up = —Rplp, (38)

further lowering the drag voltage to values Up < I'. In this
regime the results of Sec. IV B for the drag current apply.

VI. SUMMARY

It is natural to think of the Coulomb drag effect as re-
sulting from the friction between electron systems of two
adjacent conductors due to electron-electron scattering. It can
be caused either by the direct Coulomb interaction or by the
exchange of virtual excitations, such as plasmons or phonons.
However, in the case of the Coulomb drag in mesoscopic
electrical circuits it is more appropriate to think of the noise
rectification effect, since the drag is mediated by the collective
mode, such as a potential on a capacitor. Nevertheless, in the
quantum regime, where the characteristic circuit response fre-
quency w, is much larger than the effective noise temperature
Q = max(AV,T) [15], one can still think that electrons of
the drive circuit “push” electrons in the drag circuit thereby
creating the drag current or voltage, because the circuit re-
acts to current fluctuations in a quantum conductor almost
immediately. In this paper we consider the opposite regime,
w: K 2, and study the Coulomb drag effect in mesoscopic
circuits mediated by the classical noise of a collective mode.
This allows us to put our analysis in the context of the FCS
[18] and to investigate the drag effect due to the Markovian
(frequency independent) third cumulant of the current. The
interest in the third current cumulant is motivated by the fact
that this is essentially a nonequilibrium and non-Gaussian
component of current noise, which vanishes at equilibrium.

We consider a simple mesoscopic circuit, shown in Fig. 1
(and its experimentally more relevant modification in Fig. 2).
It contains a quantum conductor, the source of noise, and a
tunnel junction detector, where the drag current is induced.
We evaluate the drag current perturbatively in the tunneling
Hamiltonian using the P(E) theory of tunneling [31] and
express it in terms of the second and third current cumulants,
assuming weak coupling of the detector to the circuit. For
doing so, we apply the SPI technique [32], the functional
method of solving the circuit Langevin equations, which
allows one to find circuit cascade corrections to high-order
current cumulants. We find that, surprisingly, the drag current
vanishes in the case of an ohmic tunnel junction detector.
Therefore, we concentrate on the drag effect induced in a
tunnel junction detector with a nonlinear I-V characteristics.

It is important to distinguish nonlinear I-V characteristics
of the two sorts: the relatively smooth analytical I-V curve,
that can be expanded in the voltage bias V around V = 0, and
the I-V curve essentially nonanalytical at V = 0 point, as in
the case of various kinds of zero-bias anomaly effects. Thanks
to the tunneling Hamiltonian approach used in the paper, there
is no need to specify the reason for such nonanalyticity. In the
former case the contribution to the drag effect comes from
short (but still Markovian) time scales, and the result takes
a simple form (23). In the weak coupling regime considered
in the paper the second cumulant contribution to the drag
current dominates. However, it is an even function of the
source current, therefore, the third cumulant contribution can
be singled out by changing the direction of the current. The
case of a nonanalytical I-V characteristic is special in the
sense that not only the drag current is different for a slow (27)
and fast (31) circuit, but also there is a regime where the drag
current (30) acquires contributions from different time scales.
In this case it contains cascade corrections that have not been
discussed in literature.
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Finally, we consider the drag effect in an open circuit (see
Fig. 2), which is experimentally more relevant, because in
this case there is no need to extract the drag current from the
background contribution due to the DC voltage bias. Instead,
one can measure the drag voltage induced across the tunnel
junction and use the results (34), (36), and (38) to express it
in terms of the “bare” drag current found in the paper.
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APPENDIX A: ABSENCE OF THE DRAG CURRENT
AT EQUILIBRIUM

In this Appendix we analyze the mechanism behind the
cancellation of the drag current at equilibrium. In this case, it
is crucial to consider the field ¢(¢) as quantum. Consequently,
we cannot use the simplified expression for the tunneling
current in the limit of classical fluctuations (8), rather we use
a more general formula that is obtained after substituting the
operator A from Eq. (6) to Eq. (5):

(V) = / Aol Pur(@)ia(V — )

o]

— Pre(—)lge(V — w)], (AD)

where the currents Irg, Iz; are the two components of the
I-V characteristics Ip(V) = Ipg — Igy of the tunnel junction
that describe the electron tunnel in different directions and
correspond to the two terms originating from the commutator
in Eq. (5). The functions

1 . . .
Prr(w) = Efdtezwt<et¢(t)eﬂ¢(0))’ (A2)

Pri(0) = L / dte (e 0) (A3)
2

are the probabilities of absorbing the energy w from the circuit

which depend on the direction of tunneling. In the case of

classical fluctuations these probabilities are related to the one

in Eq. (9) as P p(w) = Pri(—w) = P(w).

We are now in the position to discuss how the drag
current vanishes at equilibrium. Therefore, we set V =0 in
Eq. (Al) and assume that the circuit is in equilibrium at
the temperature 7¢. We then apply the spectral decomposi-
tion to the probabilities (A2) and (A3) and write Prr(w) =
> PCnl(nle®|m)|*8(w + E, — E,;). By comparing this ex-
pression to the similar result for P, (@) and using the equilib-
rium weights pc,, o« e 5/7¢ we arrive at the detailed balance
equation:

Pro(®) = Prr(—w)e®e. (A4)

Assuming now that the detector tunnel junction is at equilib-
rium at temperature 7p and applying the spectral decomposi-
tion to equations (5), we obtain

Igp (@) = e~/ [ (). (AS5)

Using these two detailed balance equations in equation (A1),
we arrive at the following result:

Ir(0) = / h doPr(@)r(—o)[1 — e /Te/™]. (A6)

oo
We note that all the available frequencies, including quantum
fluctuations, contribute to the total current (A6), and all these
contributions cancel at the global equilibrium 7¢ = Tp.

APPENDIX B: STOCHASTIC PATH INTEGRAL

Although we need to find the correlation functions (11) and
(12) of the field ¢, it turns out to be convenient to start directly
with the generating function

Z(x) = (ex(¢(l)—¢(0))> (B1)

and evaluate it up to the third order in x in the exponent
using the functional method. Since we are interested in the low
frequency limit, where the field ¢ can be considered classical,
we apply the SPI technique [32], which correctly implements
averaging in (B1) over solutions of the Langevin equation
(3). Given the relation (7) of the field ¢ to the charge on the
capacitor Q, we write Eq. (B1) as

Z(x) = /’DQDA exp(S), (B2)

S=/dt’[—)»Q'~I—H(Q,k)+(X/C)®(t’)Q], (B3)

where H(Q, 1) is the cumulant generating function for the
current fluctuations in the quantum conductor

(") = 9%HQ, Mlr=o,

and the function ©(z") = 0(¢')0(t — t’) projects onto the inter-
val [0, t].

Since we consider the classical noise, we are obliged to
choose the leading order saddle-point solution of the SPI (B2),
which gives

log[Z(})] = Ssp(X ).

Thus, the saddle-point action Sg,(x ) may be considered a gen-
erator of the cumulants of the field ¢ () — ¢(0). We evaluate
it up to third-order terms in x by solving classical Hamilton’s
equations of motion. Namely, we split the “Hamiltonian” in
two parts, H = Ho + AH, where

Ho = —w A0 + (1/2)(1*)

(B4)

(BS)

accounts for the average current and the zero-frequency noise
power, and the part

AH = —[0gw A0 + 5[ (I°N1A*Q + ¢ (I°)A°  (B6)

is to be considered as a perturbation. It contains the contri-
bution of the third cumulant of the current in the quantum
conductor, while the first and second term represent the non-
linear and “environmental” cascade correction, respectively
[39].

The part H, together with the source term in the action
(B3) generate the equations of motion

0=-w.0+ (I*Wr, i=wl—(x/C)OF), (BT
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which can be easily solved with the conditions Q =1 =0
at t' = —oo and for ¢’ >t (otherwise, A would diverge at
infinity). The solution has to be substituted back to the action
(B3), eventually giving the saddle-point action (B4). Interest-
ingly, one can show that there is no need to account for the
corrections to the equations of motion from the perturbation
AH, since they contribute to terms starting from fourth order
in x. This greatly simplifies calculations.
The final result can be presented in the following form

log[ZO1 = x*h (1) + XI5 (1), (BS)
where the second cumulant is given by
R* (%) ot
() = 7 [t + (e = 1)]. (B9)

According to the structure of the perturbation part of the
Hamiltonian (B6), the third cumulant contains three terms

J3(t) = J3e) + TN () + T () (B10)

that represent the nonlinear and environmental correction, as
well as the so-called minimal correlation contribution [39,40].
Introducing the notation T = w,?, they read

R3(I*)?dpw,
g = RN 000 4 ot 4 o2 48T ),
4w}
R3{(I*) 0 (I?
T = LZQ«»[TU +e Y +2(e " = 1)],
2w?
n R(P)
Jn = o QT —344e7 " — 7). (B11)

We note, that the calculations in this Appendix and the above
results hold for + > 0. For ¢ < 0, one can use the symmetry
Jo(t) = Jo(—t) and J3(t) = —J3(—t). Finally, evaluating the
asymptotic of the expressions (B11) for w.t <« 1 and w.t >
1, one arrives at the results (13)—(18).
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